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Abstract

A new pixel-mapping method for visualising contrast up-
take in dynamic MR images of the breast is presented. The
method reduces the sequence of images of a single spa-
tial slice over time to a single colour-coded image. This
is achieved by fitting a linear-slope model pixel-wise to the
slice time series and using the fitted parameters to define
HSV colour space coordinates. The model parameters are
related to the shape of the signal intensity-time curve at
each pixel. The effect is that pixels with rapid and signif-
icant initial postcontrast enhancement appear brighter and
more saturated, whilst the nature and degree of interme-
diate and late postcontrast enhancement is reflected in the
colour hue. Preliminary results are reported for six sub-
jects with suspicious MRI findings subsequently confirmed
by pathology. The results suggest that the method shows
promise as a replacement for, or adjunct to, the review of
the raw time series data and/or associated difference im-
ages in the clinical setting.

1. Introduction

Magnetic resonance (MR) imaging of the breast, before
and after the administration of an extracellular gadolinium-
containing contrast agent, can be used to detect and char-
acterise breast diseases [1]. In particular the pattern of en-
hancement, i.e. the change in signal intensity over time, is
an important criterion for the differentiation of malignant

from benign lesions. The patterns for most cancers show an
early steep rise within five minutes of contrast-agent injec-
tion, followed by a plateau, and then washout, whilst those
for benign lesions either do not enhance, or exhibit slowed
continued enhancement with delayed washout [2]. A va-
riety of methods for analysing the change in signal inten-
sity over time have been reported in the literature includ-
ing subjective (qualitative) classification of the shape of the
signal intensity-time curve, measurement of simple quanti-
tative parameters associated with the time-curve (e.g. per-
centage increase in signal intensity 90 s after administration
of the contrast agent and the percentage increase achieved
at the maximum signal intensity), pharmacokinetic mod-
elling (parameters derived from compartmental models of
dynamic contrast enhancement), and neural networks [1].
In the routine clinical setting, however, the most commonly
adopted method is the qualitative approach [3]. Typically
the clinician: (i) reviews images of the raw time series for
each spatial slice, or of subtraction images (postcontrast mi-
nus precontrast), and identifies areas of suspicious enhance-
ment; (ii) uses software produced by the MRI equipment
manufacturer to select regions of interest (ROIs) and to plot
their signal intensity-time curves; (iii) makes a visual as-
sessment of the morphology and architecture of the suspi-
cious lesions (as they appear in higher resolution anatomical
images rather than the dynamic images); and (iv) combines
this information together with patient history to classify the
suspicious lesions.

There are essentially two approaches to the analysis and
presentation of dynamic breast MRI data: ROI analysis



(region-based) and pixel-mapping (pixel-based) [1]. ROI
analysis methods permit the user to select regions of inter-
est and to plot the associated enhancement curves. Pixel-
mapping methods, on the other hand, display quantitative
enhancement information as a colourmap co-registered with
an anatomical image. The enhancement curves generated
by ROI methods have good signal-to-noise ratio but lack
spatial resolution, are prone to partial volume errors, and are
sensitive to ROI selection and placement (e.g. the method
does not inherently take account of the heterogeneity of tu-
mour enhancement) [1]. Pixel-mapping methods have the
advantage of not requiring the user to select an ROI thus
reducing the possibility that a diagnostically significant le-
sion is overlooked, and of introducing partial volume errors
because of ROI misplacement. However, the disadvantage
is that pixel-mapping methods are more sensitive to noise,
and in particular to patient movement during the dynamic
examination.

There are two basic approaches to pixel-mapping: (i)
colour coding simple quantitative parameters associated
with the enhancement curve for each pixel (e.g. FUNC-
TOOL by GE Medical Systems, Milwaukee, USA); and (ii)
fitting a model to each pixel time series and colour coding
the fitted parameters ([4], [5], [6]). A variation on the latter
approach is the three-time-point (3TP) method of [7]. The
3TP method generates a colourmap from the intensity val-
ues measured at three judiciously chosen time points: the
precontrast time plus two postcontrast times. The inten-
sity difference between the first two time points is coded
by colour intensity and the change between the second and
third is coded by colour hue (red, green, and blue). The se-
lection of the three time points is determined using an algo-
rithm based on the fitting of a pharmacokinetic model (Tofts
model) to the data with two free parameters K and υ1; the
remaining parameter values are prescribed by the MR imag-
ing parameters and the contrast agent dose [8]. The algo-
rithm generates several two-axis (K on one axis and ν1 on
the other) colour calibration maps; one for each pair of post-
contrast time points. The map that best divides the K − ν1

plane determines the optimal pair of postcontrast times.
This paper presents a new pixel-mapping method for vi-

sualising significant contrast uptake in dynamic MR images
of the breast. The method is based on the direct visualisa-
tion of the parameters associated with a pixel-wise fit of a
linear-slope model to each slice image series. The model
parameters can be easily related to the shape of the en-
hancement curve (specifically the nature and degree of early
postcontrast enhancement, and of intermediate to late post-
contrast enhancement). The method requires no calibra-
tion or selection of threshold parameters. Additionally the
method utilises order statistic filtering to improve robust-
ness to small in-slice movement. The new pixel-mapping
method effectively reduces the sequence of images of a sin-

gle slice over time to a single colour coded image. The
colour coding of each pixel is performed with respect to
the HSV [9] colour model and encodes the shape of the
enhancement curve. Preliminary results are reported for
six subjects with suspicious MRI findings that were sub-
sequently verified by pathology: three with benign lesions
and three with malignant lesions. The results indicate that
the proposed pixel-mapping method is a valuable visuali-
sation tool that can assist the clinician with the identifica-
tion of suspicious lesions. The method shows promise as a
replacement for, or adjunct to, the review of the raw time
series data and/or associated difference images.

2. Materials and methods

2.1. Image database

Image data from six subjects was used for this study.
The data originates from routine breast MRI examinations
performed by Queensland X-Ray, Greenslopes Private Hos-
pital, Greenslopes, Queensland, Australia in the last four
years. MRI examinations, of a single breast, were per-
formed on a 1.5 T Signa EchoSpeed (GE Medical Systems,
Milwaukee, USA) using an open breast coil which permit-
ted the subject to lie prone. A 3D dynamic scan using an
SPGR sequence of TE = 1.5 ms, TR = 5.4 ms, 10 degree flip
angle, and acquisition matrix size 256× 256 interpolated to
512×512 (ZIP512) was typically used. Gadopentate dimeg-
lumine, 0.2 mmol/kg, was administered manually at a rate
of about 3 ml/s. The number of sagittal slices per volume
acquired for each subject depended on the size of the breast
and ranges from 22 to 56. The number of volumes per scan
for each subject, including one precontrast volume, ranges
from 7 to 11. Slice thicknesses, with 50% overlap (ZIP2),
range from 4.5 to 5 mm. The resulting slice images are of
size 512× 512 pixels with an 8-bit per pixel intensity scale.

The six subjects were deliberately chosen: three exam-
ples of enhancing lesions subsequently confirmed to be ma-
lignant, and three of enhancing lesions subsequently con-
firmed to be benign. The MRI finding of the respective ra-
diologist as well as the subsequent pathology for each of
the subjects are shown in Table 1. The pathology together
with screen captures of the ROIs selected by the radiologist
(including the corresponding enhancement curves produced
using FUNCTOOL) provided the ground truth for the data.
A sample screen capture and associated enhancement curve
are shown in Figure 1.

2.2. Slice data normalisation

For the purposes of this study only the dynamic series
for each slice containing an ROI was used; i.e. one series of
images of a particular slice over time for each subject. The



Table 1. MRI findings and pathology for the
subjects in this study.

Subject MRI finding Pathology
1 8 mm lesion malignant: invasive ductal

carcinoma grade 2
2 5 mm lesion malignant: ductal

carcinoma
3 8 mm lesion malignant: invasive ductal

carcinoma grade 3
4 16 mm ×

11.8 mm ×

11.5 mm lesion

benign: fibrocystic
change

5 small enhancing
lesion

benign

6 focal area of
suspicion < 3 mm

benign: atypical ductal
hyperplasia

time interval between the acquisition of successive postcon-
trast slices is a fixed value for each subject. However, in
practice the clinician acquires several precontrast volumes
but retains only one of these (typically the one yielding the
least amount of motion artefact in the difference images)
for the purpose of constructing an enhancement curve. A
consequence of this is that for any given slice in space, the
difference between the acquisition time for the precontrast
image and the first postcontrast image depends on which
precontrast volume is chosen. This is illustrated (red over-
lay) in Figure 1; the width of the interval A is different to
that of B to I. In this study, this anomaly was corrected by
setting the time stamp of the precontrast slice to be that of
the first postcontrast slice minus the fixed postcontrast slice
interval. In addition, all of the times were offset so that the
precontrast acquisition time is zero.

To attenuate noise and to compensate for small in-slice
movements (on the order of one or two pixels) each slice
image within each volume was filtered using a 3 × 3 or-
der statistic filter (also called a rank filter or operator) [10]
defined to replace the value of the central pixel in a 3 × 3
sliding window with the third largest value. This filter was
chosen in preference to a mean or median filter because
these filters are more likely to miss or diminish the response
of small enhancing areas. It was chosen in preference to a
maximum filter because the maximum filter is prone to se-
lect impulse-type noise artefacts.

Finally, each filtered postcontrast slice was subtracted
(pixel-wise) from its corresponding filtered precontrast
slice, and the precontrast slice pixels set to zero. The result-
ing intensity values thus represent relative MR units (i.e.
relative to the precontrast values). This ensures that en-
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Figure 1. Top: Clinician-traced ROI for subject
1 and the corresponding enhancement curve
produced using FUNCTOOL (Note: The red
overlay is not produced by FUNCTOOL. Re-
fer to the text for an explanation). Bottom:
Proposed HSV visualisation.

hancement curves for individual pixels begin at (0, 0).

2.3. Pixel-wise model fitting

In the work of Kuhl et al. [11] three basic types (shapes)
of enhancement curve were identified as shown in Figure 2.
Type I curves are characterised by rapid early postcontrast
rise followed by a continued straight line or curved rise,
type II by a rapid initial rise followed by a plateau, and type
III curves by a rapid initial rise followed by washout. This
characterisation suggests a very simple model of enhance-
ment based on two piece-wise line segments: the first seg-
ment describes the early postcontrast rise and the second de-
scribes the continued uptake (positive slope), plateau (zero
slope), or washout (negative slope). This model is known
as the linear-slope model in the plant and soil sciences [12].
Given a random sample of i = 1, . . . , n observations on
the intensity response Yi of a given pixel at a corresponding
time ti, and assuming that the intercept of the first line seg-
ment is zero (as must be the case for the normalised data),
the model has the form:

E [Yi] =

{

β1ti if ti ≤ α, and
β1α + β2 (ti − α) if ti > α,



where E [Yi] is the mean or expectation of the random vari-
able Yi, β1 is the slope of the first line segment, α is the
point (time) at which the two line segments meet, and β2

is the slope of the second line segment. This model is not
linear in its parameters (because of the product of α and
β2) and hence cannot be fitted using linear least squares
(LLS). Rather it is necessary to use a non-linear least
squares (NLS) algorithm such as the Levenberg-Marquardt
or Trust-Region algorithms [13]. In contrast to LLS, NLS
algorithms are iterative requiring the specification of initial
parameter estimates [14]. For this study the Trust-Region
algorithm, as implemented in MATLAB (The MathWorks,
Inc., Natick, MA, USA), was used to fit the linear-slope
model to the enhancement curve of each pixel using the fol-
lowing initial parameter estimates: α̂ = t2 (the first post-
contrast time), β̂1 = y2/t2 (the slope of the line from the
origin and joining the observed value at the first postcontrast
time), and β̂2 = 0 (assumes the second line segment has no
slope). Another issue with NLS algorithms is that there is
no guarantee of convergence. Hence in this study the con-
vergence status of each pixel-wise model fit was recorded.
For the data used in this study the Trust-Region algorithm
never failed to converge. Two examples of the fitted model
are shown in Figure 2.

It should be noted that a more complex model of en-
hancement, the biexponential model (a two-compartment
pharmacokinetic model [15]), was initially considered in
this study. The model is defined: E [Yi] = α1e

−β1ti +
α2e

−β2ti . However, although the model can be convinc-
ingly fitted to time curves of pixels in enhancing regions, in
many areas of non-enhancing tissue and in air it either fails
to converge outright or does not do so within a fixed number
of iterations. In the latter case the resulting parameter esti-
mates typically have extreme values making interpretation
difficult. Another issue with the biexponential model is that
it is a four-parameter model and it is more difficult to vi-
sualise four-dimensional data than three. For these reasons
the biexponential model was not used in this study.

2.4. Interpretation and visualisation

The three-parameter linear-slope model above suggests
that a way to visualise the model fit at each pixel is as a
colour specified with respect to a three-dimensional colour
coordinate system such as that defined by the RGB or HSV
colour models [9]. A naive visualisation can be achieved
using the parameters α, β1, and β2 as RGB or HSV colour-
space coordinates. The problem with this approach is that
the dynamic range for these parameters varies from subject
to subject (this is in part a consequence of the variability
in tissue-MR interaction between patients [1]). As a con-
sequence the meaning of the various colours is difficult to
interpret and even more difficult to compare between sub-
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Figure 2. Left: Three types of signal intensity-
time curves and the respective proportion of
benign and of malignant lesions that exhibit
each shape-type [11]. Right: Two examples
of the linear-slope model fit (solid line) to the
normalised slice data (dashed line) for sub-
ject 1.

jects.
A better approach is to colour code the shape of the

enhancement curve at each pixel. The product αβ1 (the
height at the join point) is a measure of the degree of early
postcontrast enhancement. The slope β2 is a measure of
the nature (i.e. continued rise, plateau, or washout) and
degree of the intermediate and late postcontrast enhance-
ment. These quantities can be visualised simultaneously
in HSV colour space as follows. The saturation (S) and
lightness (V) coordinates can be used to encode the prod-
uct αβ1 (early postcontrast enhancement) and the hue (H)
component can be used to encode β2. The resulting plot
will then show brighter and more saturated pixels in areas
of rapid early postcontrast enhancement, and the colour hue
will indicate the rate of intermediate and late postcontrast
enhancement. There are, however, three problems with this
approach. Firstly, if β2 is simply scaled to [0, 1] then the hue
associated with the value zero may be different for different
slices (either from the same subject or for another subject).
Secondly, in the HSV colour model as the value H varies
from 0 through to 1, the hue progresses from red through
orange, yellow, green, blue, magenta, and back to red. This
means that when visualising β2 the colour red can occur at
both extremely positive and extremely negative values (see
Figure 3). Thirdly, the dynamic range of the product αβ1

varies from individual to individual and can be greatly in-
fluenced by extreme values (e.g. due to background noise
and motion artefact).

A solution to the first problem is to clamp zero slope to
the middle of the H range. A solution to the second problem
is to remap the hue scale to obtain hues that range from red
at one extreme (washout) through green (plateau) to blue
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Figure 3. Hue colour scales. From left to right:
the full range of H values, H values in the
interval [0, 0.7] linearly scaled to the interval
[0, 1], and H values described by the function
shown and then linearly scaled to the interval
[0, 1].

at the other extreme (continued rise). Two possibilities are
shown in Figure 3. The non-linear remapping is the better
solution because it gives a better gradation of hues between
the red and blue extremes (note the wide band of green hues
in the middle of the truncated HSV scale). The third prob-
lem can be overcome, or at least diminished, by constrain-
ing the visualisation to only those pixels for which β1 > 0
and α ≥ 0. An example of the proposed HSV visualisation
method is shown in Figure 1.

3. Results: Comparison with clinically marked
ROIs

Each slice corresponding to an ROI in Table 1
was colour-coded using the proposed HSV visualisation
method. In all six cases the ROI marked by the radiolo-
gist coincides with the most prominent cluster of pixels in
the corresponding HSV map. Moreover the hues associated
with these clusters are indicative of the nature of enhance-
ment in the intermediate and late postcontrast phase: red
hues for pixels with a high degree of washout (indicative of
malignancy), blue hues for pixels with significant continued
enhancement (typical of benign lesions), and green hues for
pixels with plateau. The result for subject 1 is shown in
Figure 1 and shows a strong correlation between the ROI
marked by the clinician and the orange/red spots prominent
in the HSV visualisation. Interestingly, at least two other
smaller clusters of hot pixels, adjacent to the ROI, appear
suspicious. Results for another three subjects are shown
in Figure 4. Again, in the case of subject 2 several other
smaller clusters of hot pixels appear suspicious. In the case
of subject 4 several adjacent clusters of light-green pixels
appear to be focal areas of benign enhancement. In the case
of subject 5 the clusters of hot pixels in the lower right are
located within the liver and not the breast tissue and so are
not relevant. The smaller focal areas in yellow at the top the
breast, however, appear suspicious.

4. Summary and conclusion

We have presented a novel pixel-mapping method for vi-
sualising the pattern of contrast uptake in dynamic breast
MRI. Each slice pixel is colour-coded to reflect the shape
of its signal intensity-time curve. This is done by fitting
a linear-slope model to each slice pixel and expressing the
associated parameters that describe the nature and degree
of early, and of intermediate to late postcontrast uptake as
coordinates in HSV colour space. The effect is that pix-
els with rapid and significant initial uptake appear brighter
and more saturated, whilst the nature and degree of the in-
termediate to late postcontrast enhancement is reflected in
the particular colour hue. We applied the method to data
from six subjects—three with benign lesions and three with
malignant lesions—and confirmed that the most prominent
clusters of pixels apparent in the HSV visualisation coincide
with the ROIs of suspicious lesions selected by the radiolo-
gist. The results suggest that the method shows promise as
replacement for, or adjunct to, the review of the raw time
series data and/or associated difference images.

The efficacy of the proposed method needs to be evalu-
ated on a larger database. This will be the subject of further
work.
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