
  

Active Machine Learning of Complex Visual Tasks 
 

Phil Sheridan 
School of Computing and Information Technology 

Griffith University, Brisbane, Australia 
p.sheridan@griffith.edu.au 

Steve Drew 
School of Computing and Information Technology 

Griffith University, Brisbane, Australia 
s.drew@griffith.edu.au 

Abstract 
This paper reports on the development of an 
artificial vision system implemented in software and 
its application to mammography. It describes a 
supervision strategy that facilitates the machine-
centered learning of complex visual tasks.  The key 
contributions of this paper are the description of our 
“active” learning strategy and a mechanism by 
which pixels associated with individual artifacts 
visible to a human eye in an image can be captured 
and used as training examples for a machine-
learning algorithm. Techniques are discussed in the 
context of the analysis of micro-calcifications.  The 
significance is that it provides a means by which ill-
defined concepts (e.g. visual characteristics of 
tumors) that are embedded in a complex image  (e.g. 
mammograms) can be more efficiently and 
accurately learned by a machine. 
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1. INTRODUCTION 
Breast cancer is the most common form of cancer in 
women and the second highest cause of death for 
women in the world .  One million new cases were 
discovered last year with over 580,000 of those 
coming from the United States, Europe and 
Australia.  Between one third and one half of that 
number of cases currently add to the mortality total 
each year [1,2].  Consequently these same countries 
are leading the research into breast cancer detection 
and treatment. 
 
A leveling of the rate of mortality and morbidity due 
to breast cancer in western countries has been 
attributed to the various programs of early detection 
and intervention [3].  This enables most cancers can 
be detected while still relatively small and more 
successfully treatable.  With some qualification, [4-
10] screening mammography is considered the best 
early detection method available.  Consequently, 
most national guidelines recommend a combination 
of procedures including periodic clinical 
examination and screening mammography for 
women over the age of 40 years [3].  
 
Screening mammography is typified by a huge 
volume of cases (sets of radiographs) to be 
processed with a very low yield of detectable 
abnormalities.  Correctly and consistently detecting 

and diagnosing early stages of masses and micro-
calcification clusters from the range of complex 
“normal” background breast tissue arrangements has 
proven to be a difficult, tedious and time-hungry task 
for most mammography radiologists [4,5].   
 
With low intrinsic specificity, one feature of current 
CAD applications is that as the sensitivity is 
increased the number of false positive indications 
also increases, leading to increased patient recall 
rate.  Conversely as sensitivity is decreased then the 
number of false negative indications increases, 
meaning that more tumor indications are missed [4].  
At this time, no CAD system can approach the 
optimal combination of sensitivity and specificity 
that a competent screening radiologist can attain 
[11].  Sensitivity in most CAD tests is acceptable but 
the best figures for specificity are less than one third 
of a radiologist practiced in screening 
mammography.   
 
It appears that before any confident reduction of 
their workload with CAD can happen the specificity 
figures must improve dramatically.  In essence this is 
a problem of expanding the capabilities of machine 
vision and learning with respect to digital image 
analysis.   
 
From a graphical analysis perspective, discerning 
indications of cancer from the complex background 
of breast parenchyma is essentially a “signal to 
noise” exercise [4].  A trained radiologist can 
classify more than a dozen different abnormal tissue 
artifacts from an infinite range of normal tissue 
densities and arrangements.  Each type of artifact 
might appear in countless different configurations, 
ensuring that program-driven machine learning, 
concept generalization and classification remains 
unachieved.    
 
This paper reports on the in-progress development of 
a software-based machine vision/learning system 
named “Akamai”.  The word “Akamai” comes from 
the Hawaiian language and means “smart” or 
“intelligent”.  Akamai presents a human-supervised 
machine learning process that captures expert 
knowledge using image mark-up tools, to train the 
machine to visually recognize and classify image 
artifacts in digital mammograms.  Using this 
software system, the machine learner is trained to 
“see” what the expert sees and correlate this with the 
expert’s determination of the detected image artifact.  



  

Sufficient, selected training examples with 
significant features indicated, allows us to create a 
learner that can generalize a concept from 
accumulated knowledge and apply it to the task of 
classification.  In Akamai, a “lazy” or supervisor-
centered learning mode with the highest level of 
human supervision, each training example might 
take the expert several minutes to load, mark-up and 
classify.  With a complex concept, requiring a large 
number of training examples, the supervision 
overhead soon becomes prohibitive.   
 
We describe here a progressive machine learning 
approach that is learner-centered and allows the 
machine to take advantage of its increasing 
“expertise” to minimize human supervisor input.  A 
sequence of increasingly machine-centered learning 
modes move the machine from a slow, “passive” 
learner to one that is actively and interactively 
seeking input from the human supervisor.   
 
This paper presents a description of our approach to 
the development of a machine vision/learning 
system and its learning methodology.  Key 
algorithms are described in detail that highlights the 
system’s unique nature and significant potential for 
image analysis.  Results from a case study using 
Akamai in the analysis of indications of micro-
calcifications are presented.  Their significance for 
application of the system to other lesion types and 
other medical imaging applications are discussed.  
Performance considerations are discussed along with 
current and future directions for research and 
development.   
  
2. CIPA – IMAGE PARTITIONING  
Akamai implements some of the key functionality of 
the primate vision system [17,18], taking advantage 
of aspects that relate to efficient memory usage, 
learning from visual cues and image processing 
speed.  A primate’s retina has an arrangement of 
cones that is described by a hexagonal lattice [19]. 
The hexagonal architecture optimizes both 
information capture and error reduction by providing 
maximum receptor area with minimum inter-
receptor space.  Bees exploit this property to 
optimize the quantity of honey stored for the amount 
of wax used.  This property, known as the 
honeycomb conjecture was not proven until recently 
by Peterson [20].   
 
The concepts of space-variant sensing and the 
hexagonal lattice [19,20] were combined to form the 
underlying architecture of a new paradigm for 
artificial vision, named Spiral Architecture. The 
thrust of this paradigm is that it attempts to extract 
computational principles inherent in biological 
vision systems and implement them in digital 
technology.  The mathematical structure of the 
Spiral Architecture is Lie Algebra and is described 
in [21]. 
 

Akamai takes advantage of the efficiencies of 
hexagonal architecture and multi-resolution 
processing by implementing CIPA, the 
“Constructive Image Partitioning Algorithm”.  
Outlined below, and presented in detail in [22], the 
algorithm extracts descriptive attributes (equivalence 
classes) of the image by collecting together 
hexagonal pixels, which are contiguous and 
surrounded by a boundary consisting of pixels of 
similar intensities.  Figure 1 displays a collection of 
seven hexagons of the lattice; where it can be 
observed that any three mutually adjacent hexagons 
form a Y-junction at their point of confluence.  

 
Figure 1. Hexagons arranged such that a center 

hexagon is adjacent to six other hexagons.  
 

The algorithm provides a computational method to 
establish this boundary by tracing a path along the 
edges and thus between hexagons.  The edge 
between two hexagons is called an “edgelet”.  The 
path is generated from an initial point by selecting 
the next path element (edgelet) from a choice of two 
at the Y-junction. The algorithm chooses the path by 
remaining between pixels with maximal intensity 
differential.  The reader is referred to [22] for an 
explanation of why the method never involves an 
arbitrary decision in the choice of path elements.  
 

The CIPA algorithm iteratively partitions the pixel 
data producing new equivalence classes at each 
repetition.  The equivalence classes correspond to 
entities visible in the image by the human observer.  
The equivalence relation on the lattice is the 
property of connectedness; two adjacent hexagons 
are connected if their common edgelet is not part of 
a boundary.   
 

At the first iteration, all hexagons are connected and 
thus form a single equivalence class. The path 
commences at the edgelet of a Y-junction separating 
the two pixels of maximum differential intensity. If 
both of the remaining edgelets of the Y-junction are 
not part of a boundary, then the edgelet associated 
with the larger of the two derivatives, is placed in a 
priority queue.  The algorithm then repeatedly 
performs the following two steps:  
� Remove an edgelet from the priority queue; if it 

is not part of a boundary, label it as a boundary 
and  

� Place the edgelet corresponding to the larger of 
the Y-junction's two remaining edgelets, into the 
priority queue.  



  

This boundary generating process terminates when 
the priority queue is empty. The closed boundary 
establishes a finer partitioning of the class by 
producing two new equivalence classes from the 
original. 
 

A natural data structure to associate with the 
algorithm is a binary tree structure.  Each node of the 
tree holds an equivalence class.  The root of the tree 
represents the entire input image partitioned into a 
single equivalence class and thus possesses little 
visual information.  The children of a node are the 
new equivalence classes that result from the 
boundary generated at the parent node.  At the 
completion of each repetition of the algorithm, the 
collection of leaf nodes represents a partitioning of 
the image.  Nodes at different levels of the tree 
represent views of segments of the image at different 
levels of resolution.  Each leaf node of the 
completed tree represents an atomic visual entity.  
 
3. MACHINE LEARNING IN AKAMAI 
Mitchell defines a machine-learning algorithm as 
one that can learn from experience (observed 
examples) with respect to some class of tasks and a 
performance measure [12].  A learning algorithm 
can construct classifiers and/or hypotheses that 
represent and explain complex relationships in data.   
 
Broadly, machine-learning schemes can be classified 
as either “unsupervised” or “supervised”.  In 
unsupervised learning, no information is given to the 
learner about the data or the output and a set of 
programmed rules are followed to characterize, 
classify and cluster the output data.  Supervised 
learning has (expert) knowledge about the data, its 
representation and characterization, and uses this a 
priori  knowledge to classify data examples.  A priori 
knowledge is accumulated through sets of training 
data, pre-classified into positive and negative 
examples of each concept to be learned.   
 
Sufficient, quality examples need to be provided to 
ensure the learning algorithm can reach its required 
accuracy in terms of sensitivity (detection) and 
specificity (identification).  Accounts have revealed 
that most individual learners are stronger in either 
sensitivity or specificity [14].  To ensure high 
sensitivity, a large range of representative, positive 
training examples may be required.  Conversely, 
specificity is improved when an equal, or preferably 
larger number of negative training examples are 
supplied to the learner.  These trends point to the 
requirement of a large amount of training data to 
ensure accurate induced classifiers.   
 
Graphical data sets in medical imaging are a 
complex mixture of signals and noise, presenting a 
learning environment that is best suited to the 
supervised learning approach.  Supervised learning 
methods can be classified as either rule-based, 
statistical or ensemble learning methods [13].  Rule-

based methods (decision trees, version spaces, lazy 
learning, rule-based, etc) are ideal learners where 
classification is based upon discrete or categorical 
attributes.  Statistical methods (naïve Bayesian 
networks, neural networks, support vector machines, 
etc) are ideal in situations where there are multiple 
dimensions to discern and where attributes are of a 
continuous nature.  Each individual learning 
algorithm/method has its strengths and weaknesses.   
 
Akamai has access to range of different learner 
modules that can be used to induce the required 
classifiers for mammogram analysis.  Its current 
default learner is the decision tree and is currently 
being applied to detection and analysis of micro-
calcification clusters.  Other learners for making 
weighted or statistical decisions can also constructed 
using a Bayesian network and/or a neural network 
module.  Future developments provide for the 
implementation of ensemble learners to better 
classify some of the more complex concepts in 
mammograms.  Current work with the Akamai 
system is developing on three fronts and these are 
explained in greater detail in following sections of 
this paper.   
 
4. GUIDING THE SUPERVISION PROCESS 
In this section we describe an interactive, 
performance enhancing strategy (a process) that 
streamlines the acquisition of the training set from 
graphical data.  In particular, a goal of this process is 
to maximize accuracy of classification and minimize 
the expenditure of resources in acquiring the training 
examples. One of the scarce resources in this process 
is the time taken by the human supervisor to acquire 
the training examples.    
 
Our approach to achieving this goal is to initially 
build a classifier from special instances indicative 
aspects of the target concept provided directly by the 
supervisor.  Then, progressively relax the 
supervisor’s responsibility for the identification of 
training instances as the power of the classifier 
improves.  The technique described below embodies 
this strategy.  Either the supervisor or Akamai can 
assume the responsibility for driving the process of 
acquiring training examples.  In either case, as 
Akamai is presented with each training instance, it 
adds the instance to its training set and re-builds its 
classifier from the new set.   
 
4.1 Supervisor-Driven Mode  
In Supervisor-Driven mode, the supervisor takes full 
responsibility for the classification and order in 
which the artifacts are displayed. This responsibility 
can manifest in one of two sub-modes, Static and 
Dynamic.   
 
4.1.1. Static Mode  
The goal of “Static” mode is to generate a collection 
of key occurrences or views of the target concept.  
The collection should also contain examples of the 



  

target concept represented over the full range of 
resolutions employed by Akamai.  The goal is 
achieved by having the supervisor interact with 
Akamai as described in the following process: 
• The supervisor marks the boundary of a key 

instance of the target concept on an image 
presented on the GUI with the use of a mouse.   

• The supervisor then instructs Akamai to foveate 
on the marked artifact.   

• Akamai responds by searching through its 
internal representation of the image for the 
collection of pixels that most closely resembles 
the boundary of the marked artifact.   

• Akamai then displays its artifact on the GUI so 
that the supervisor can visually compare 
Akamai’s artifact with the marked up artifact.  

• After a best match has been established, the 
supervisor classifies Akamai’s artifact as one of 
four possible categories: ‘Is`, ‘Part`, ‘Not` or 
‘Candidate`.    

• The newly created training example is then 
added to the training set.  

This Static mode is generally employed in the initial 
stages of the supervision process to generate positive 
training instances at high resolution and candidate 
instances at the lower resolutions.    
   
4.1.2. Dynamic Mode  
In “Dynamic” mode, the supervisor partially 
relinquishes to Akamai the responsibility to locate 
the training examples. The goal of Dynamic mode is 
to have Akamai learn candidate instances so that it 
can successfully determine when to foveate a 
candidate artifact.  This implements a form of 
“reinforcement” learning and is achieved with 
Supervisor/Akamai interaction as described in the 
following process:  
• Akamai traverses its internal representation of 

the image.   The traversal corresponds to the 
sequence of artifacts as generated by CIPA.   

• On display of each artifact, the supervisor 
classifies it appropriately.  Each time the 
supervisor judges that the features of the current 
artifact represent a possible instance of the 
target concept but requires a view of the artifact 
at higher resolution, the classification of 
‘Candidate` is applied to the instance.  

• At this point, Akamai pauses from the sub-tree 
traversal at the current resolution and attempts 
to locate the artifact at a higher resolution for 
the supervisor to classify.  

• As each artifact is presented to the supervisor, 
Akamai makes a prediction with its latest 
updated classifier.  Akamai compares its 
prediction with that of the supervisor’s 
classification and keeps a running account of its 
error rate.   

• This error rate is displayed on the GUI so that 
the supervisor can monitor Akamai’s 
performance.   

This mode is generally continued until such time as 
Akamai’s error rate is sufficiently small; at which 
time, the supervisor changes the mode of supervision 
to move the learner/classifier on to the next most 
active and responsible role. 
 
4.2. Akamai-Driven Mode     
In the Akamai driven mode, the supervisor 
relinquishes further responsibility to Akamai for the 
learning process.  Akamai drives the traversal of its 
internal representation from the current state of its 
classifier while the supervisor merely provides 
feedback to Akamai on its prediction of each artifact 
displayed.   This mode has three sub-modes, 
“incremental”, “next-positive” and “all-positive”. 
Each of these sub-modes differs only in the amount 
of supervisor feedback provided to Akamai.   
   
4.2.1. Incremental Mode 
With operation in “incremental” mode the supervisor 
provides feedback on all artifacts that Akamai 
considers.  The primary goal of the mode is to 
provide Akamai with feedback on its performance in 
identifying candidate instances and thus its ability to 
distinguish between the artifacts it should foveate 
and those that it should ignore.  Supervisor feedback 
permits Akamai to recover from false positive 
predictions at lower resolutions, which would 
otherwise drive Akamai’s traversal to higher 
resolutions unproductively.  Incremental mode 
continues until such time as the supervisor deems 
that Akamai is identifying candidate artifacts 
sufficiently well; at which time the mode is switched 
to the more machine-centered Next-Positive mode.     
   
4.2.2. Next-Positive Mode 
In Next-Positive mode, Akamai requests feedback 
on each of the artifacts that it classifies as “positive”.  
The goal of the feedback in this mode is to reduce 
Akamai’s false positive error rate.  This is achieved 
with Supervisor/Akamai interaction described as 
follows:  
• Akamai traverses its internal representation of 

the image searching for candidate instances of 
the concept employing the current state of its 
classifier to distinguish between candidate/non-
candidate artifacts.   

• When it finds a candidate instance, it searches 
its internal representation at the next higher 
resolution for an artifact at the identified 
location in the image.   

• In this process, if it finds an artifact that it 
classifies as a positive example of the concept, it 
displays it on the GUI and waits for supervisor 
feedback. 

This mode continues until such time as the 
supervisor deems that Akamai is identifying 
instances of the concept at a sufficiently low error 
rate; at which time the mode is switched to All-
Positive.    
 
  



  

4.2.3. All-Positive Mode  
 In All-Positive mode the supervisor provides 
feedback only after Akamai displays all of the 
artifacts that it has classified as positive.  The 
supervisor’s goal is to correct all of Akamai’s false 
positive and false negative classifications.  To this 
end, upon Akamai’s completion of its attempts to 
identify all occurrences of the target concept, the 
supervisor marks up artifacts on the GUI in a manner 
similar to the technique employed in Supervisor-
Driven Static mode. When the supervisor completes 
this feedback process, a measure of Akamai’s error 
rate is computed and displayed on the GUI.  Akamai 
also has the opportunity to add the supervisor’s 
feedback to its training set and re-build its classifier.  
This mode continues until the supervisor deems 
Akamai’s overall performance is optimal.  At this 
time Akamai’s ability to identify and locate 
instances of the target concept is considered good 
enough to be employed without supervision.     
 
5. CASE STUDY   
Figure 2 displays a cropped mammogram containing 
micro-calcifications.  The supervisor's task is to 
classify the nodes composing the tree structure of 
Akamai's internal representation as either positive or 
negative training examples of the target concept.  In 
this case: “micro-calcification”.   

 
Figure 2. Cropped mammogram showing micro-

calcifications 
 
In this study, the CIPA tree structure for the 
mammogram contains approximately 1000 nodes.  
The number of nodes that correspond to micro-
calcifications is only about 2 percent of the total.  
Initial use of Supervisor-Driven Static mode 
permitted these 20 nodes corresponding to positive 
instances of the target concept to be accessed 
directly and classified accordingly.  The remaining 
980 nodes were then explored in the modes with 
lower levels of human supervision. 
 
In Supervisor-Driven Dynamic mode about 20 
negative instances of the target concept were 
obtained to balance the number of positive and 
negative training instances.  The supervisor then 

switched to Akamai-Driven Incremental mode with 
this initial classifier of micro-calcifications.  Over 
the next 20 nodes, Akamai employed the classifier to 
correctly classify each of these negative instances.  
The supervisor then switched to Akamai-Driven 
Next-Positive mode to correct Akamai’s 
classification of false-positive predictions.  In this 
mode Akamai incorrectly moved to higher 
resolutions frequently.  It was then concluded that 
more instances of ‘candidate’ were required and that 
these instances would be best obtained at 
Supervisor-Driven Static mode.  In this case, the 
supervisor was not able to employ Akamai-Driven 
All-Positive mode due to the excessively high error 
rate in the mode below. 

 
6. DISCUSSION  
“Active” learning in Akamai is still only in early 
developmental stages but already demonstrates 
significant potential.  While tentative results from 
the limited case study did not allow training to 
proceed to the lowest level of human supervision, it 
did demonstrate the feedback cycle that ensures 
learner accuracy.   
 
Convergence in demonstrated learning and positive 
feedback is required before higher modes of machine 
driven learning are allowed.  This ensures, 
progressively, that there are sufficient positive and 
negative examples to maintain both sensitivity and 
specificity at an acceptable level.  This learning 
scheme has some similarity to elements of 
“reinforcement learning” [15,16] and seeks to 
minimise knowledge “noise” by seeking rule 
reinforcement, vision correction and corroboration 
of classification correctness. 
 
Ostensibly, the same technique applied to classifying 
the micro-calcification concept can be applied to any 
lesion concepts in a similar way.  What differs are 
the characterizing attributes of each concept and how 
much training data is required to learn the concept to 
an acceptable accuracy.   
 
The need to make the input of training data more 
efficient is driving the development of a 
collaborative training paradigm with an effective 
collaborative user interface.  Both the paradigm and 
interface, work in progress, are required to 
streamline the training data input and to make most 
effective use of trainer (supervisor/expert) time.   

 
7. CONCLUSION  
In this paper we have given an overview of the 
motivation for developing a computer-assisted 
method for detecting and diagnosing artifacts in 
medical images.  In particular we have stressed its 
importance in application to the area of screening 
mammography and the need to improve the accuracy 
and timeliness of diagnosis of abnormal lesions.  
 



  

Algorithms used in this machine vision/learning 
software are primarily biologically inspired.  Sound 
justification is given for their development as a tool 
for human-supervised machine learning, particularly 
in the area of data embedded in complex images.   
 
Machine-learning paradigms and strategies are 
discussed, in particular the “supervised” learning 
modes and the overhead that they exact in terms of 
supervision time.  A progressive scale of supervision 
modes is described that concurrently ensures that 
sufficient training examples are entered to maintain 
standards of accuracy, and that the supervision 
process is executed in the most efficient manner.  A 
case study is described that demonstrates the stages 
of supervision progression and the requirement for 
convergence towards consistent results before the 
machine-learner is accepted. 
 
With the results of this preliminary case study we 
have demonstrated sufficient success to warrant 
further investigation of this new supervision and 
learning strategy. 
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