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Abstract

We propose a new voxel similarity measure which uses
local image structure as well as intensity information. The
derivatives of linear scale space are used to provide struc-
tural information in the form of a feature vector for each
voxel. Each scale space derivative is assigned to its own in-
formation channel. We illustrate the behavior of the similar-
ity measure for a simulated signal and 2D medical brain im-
ages to demonstrate its potential for non-rigid, inter-subject
registration of 3D brain MR images as a proof of concept.

1. Introduction

Registration is a process of aligning objects within im-
ages. It is particularly useful for medical image analysis
because it provides a method of placing patient anatomy in
the same coordinate frame. This allows, for example, in-
formation from different imaging modalities (MR, CT), or
the same imaging modality at different timepoints (serial or
longitudinal), to be combined. Voxel intensity based sim-
ilarity measures have been demonstrated to perform well
for the automatic rigid-body registration of medical im-
ages [6] [2] [7]. However, rigid-body motion is only ap-
plicable to anatomy that is constrained by bone, whereas
most organs of interest are comprised of soft tissue that un-
dergoes non-rigid motion. Voxel intensity based similar-
ity measures have limitations for non-rigid registration be-
cause non-corresponding anatomy can have the same inten-
sity. This can result in false maxima of the similarity mea-
sure. One way of addressing this limitation is to use addi-
tional geometrical information of the local image structure.
Here we propose using the spatial derivatives of the Gaus-

sian scale space to provide such information. Essentially
this results in a feature vector instead of a scalar (intensity)
for each voxel. We require a similarity measure that is able
to match images with a non-linear relationship between in-
tensities, e.g. images of different modalities. We explore
the use of multi-dimensional mutual information as a match
criteria.

1.1 Related work

Shen et al. [5] designed a similarity measure that de-
termines image similarity based on a attribute vector for
each voxel at grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) interfaces. The attribute vector is
derived from the voxel’s edge type and geometric moment
invariants calculated from voxel intensities in a spherical
neighborhood. This similarity measure is specifically de-
signed for intra-modal, inter-subject MR brain image regis-
tration and requires a GM, WM and CSF segmentation.

In contrast, we aim for a general purpose registration
algorithm that can be applied to inter-modality data direct
from the scanner without a pre-processing step. We start
by establishing a set of desirable properties of the simi-
larity measure and use these to devise a mutual informa-
tion measure that utilises more structural image informa-
tion than simple intensities. In this way we retain the de-
sirable inter-modality property of mutual information. We
use the derivatives of the Gaussian scale space expansion
of the image to provide this local information. To assess
the performance of the measure we present some simula-
tions and results of inter-subject intra-modality registration
experiments.



2. Theory

We start with a standard intensity based similarity mea-
sure, mutual information [1] [9], that is known to perform
well for rigid-body registration.

2.1. Similarity measures for rigid-body registration

Mutual information measures are derived from the joint
intensity distribution P (a, b) which is closely related to the
joint histogram. P (a, b) represents the probability that cor-
responding voxel intensities are: a in image A and b in im-
age B. Mutual information is defined as:

MI(A, B) = H(A) + H(B) − H(A, B) (1)

Where

H(A) = −

∫
A

P (a) log P (a)da (2)

H(A, B) = −

∫
A∩B×A∩B

P (a, b) log P (a, b)dadb (3)

Similarly, normalised mutual information (NMI), was
shown by Studholme [3] to be less dependent on the amount
of image overlap, NMI is defined as:

NMI(A, B) =
H(A) + H(B)

H(A, B)
(4)

2.2. Similarity measures for non-rigid registration

Basically a similarity measure should return a value
that is a smooth decreasing function of misregistration. A
quadratic function is thought desirable to facilitate gradi-
ent based optimisation. If we use operator L to extract
the additional geometrical information from the image then
L should be invariant to rigid-body transformations, that
is to say that for image A and rigid transformation T:
L ◦ (T ◦ A) = T ◦ (L ◦ A).

2.3. Scale space derivatives

In analogy to the Taylor series expansion of a continuous
function, a 3D image I(x) can be expanded in terms of its
scale space derivatives:

fn = fi,j,k =
∂i+j+k

∂xi∂yj∂zk
(Gσ(x) ∗ I(x)) (5)

Where Gσ is the Gaussian defined as:

Gσ(x) =
1

2πσ2
exp(−|x|2/2σ2) (6)

So the image can be expanded as this:

∞∑
i=0

∞∑
j=0

∞∑
k=0

fi,j,k (7)

The scale space derivatives are mutually independent and
can be used as a set of image features that contain informa-
tion about image structure.

2.4. Multi-channel information theoretic similarity
measures

We have a set of derivative features {fn} for each im-
age which we propose to use to construct a feature space.
We apply a multi-dimensional similarity measure to this
space. We assigning each derivative from the image pair
fn(A), fn(B) to an information channel as illustrated in
Figure 1.
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Figure 1. Corresponding features
(fi(A), fi(B)) are assigned to the same
information channel.

Equations 1 and 4 are simply 2D forms of an N-
dimensional (ND) information measures. For two pairs of
features the joint event is 4D, i.e. 4D joint histogram and
we need two information channels. The mutual information
measures are as follows:

MI(A1, A2; B1, B2) = H(A1, A2) + H(B1, B2) −

H(A1, A2; B1, B2) (8)

NMI(A1, A2; B1, B2) =
H(A1, A2) + H(B1, B2)

H(A1, A2; B1, B2)
(9)

A1, A2 and B1, B2 refer to derivatives determined from
the target and source images respectively.



3. Methods

3.1 Implementation of Gaussian scale-space

In our experiments we consider only the luminance, first
and second order derivative terms of the scale space expan-
sion. The luminance image I0(x) is generated by convolv-
ing the image I(x) with a Gaussian kernel G(x): I0(x) =
G(x) ? I(x) where G(x) = 1

2πσ2 exp(−|x|2/2σ2). The
gradient magnitude image I1(x) = |∇(I0)| and the Lapla-
cian image I2(x) = ∇2(I0). In the experimental work
we refer to these as luminance, gradient magnitude of lu-
minance and Laplacian of luminance. The intensity of the
Laplacian of luminance image was normalised by subtract-
ing the minimum so that its minimum is zero. To avoid trun-
cation during convolution, the image was reflected about
each boundary by half the kernel width. Gaussian convolu-
tion and differentiation (central derivative and forward and
backward derivatives at the boundary voxels) were imple-
mented in matlab (Mathworks Inc, MA, USA) for 1D sig-
nals and 2D images and in C++ using vtk (Kitware, NY,
USA) classes for 3D images. In all instances, the kernel ra-
dius was chosen to be three times larger than the standard
deviation to avoid truncation effects.

3.2 Implementation of multi-dimensional mutual
information

A major difficulty obstacle of this approach is that the
dimensionality of the joint histogram array depends on the
number of derivative terms n. The array size grows as a
power of n. This can lead to a sparsely populated array,
also the memory required and access time grow as a power
of n. Reducing the number of bins can help, but this only
results in a linear reduction of size.

Image interpolation is generally the most computation-
ally intensive part of voxel-based algorithms and grows lin-
early with n. A possible way of reducing the overhead could
be to down-sample images. For 3D images, down-sampling
by a factor of 2 reduces the number of voxels that need to be
interpolated by a factor 23 = 8. In summary, this approach
seems viable for small n with down-sampling.

All similarity measures were also implemented in both
matlab (1D signals and 2D images) and also in C++ for
3D images. For the non-rigid registration of 3D images a
segmentation propagation algorithm based on the method
described in [8] and the 4D similarity measures were im-
plemented in C++ and vtk by adding to and redesigning a
number of classes of the Guy’s computional image science
groups’ registration toolbox [10].

4. Validation experiments and results

Our validation strategy is based on assessing the registra-
tion function, i.e. similarity as a function of misregistration.
We desire a smooth function that increases with decreasing
misregistration. We compare the new measures with stan-
dard ones on progressively more complex data.

Our validation strategy is based on a set of three progres-
sively more difficult registration experiments. In the first a
pair of 1D signal simulations with no noise are used. The
second uses a pair of 2D MR brain images of the same per-
son. This image pair were acquired in registration, but they
differ mainly because of noise. The third uses non-rigid
registration for the inter-subject registration of a pair of 3D
brain MR images of different people.

4.1 Geometrical scaling of synthetic signal

A test signal was constructed by low-pass filtering a sig-
nal consisting of two rectangular pulses. We chose to model
the imaging system using a unit width Gaussian low pass
filter. The luminance, gradient magnitude of luminance and
and Laplacian of luminance signals were generated from
the test signal using a Gaussian filter of standard deviation
σ = 6 samples. Figures 2 and 3 illustrate the test signal and
scale space derivatives.
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Figure 2. Test signal (A) and derived sig-
nals used for registration simulation exper-
iments.Gaussian filtered Luminance signal
(G*A) (σ = 4) and gradient magnitude of lu-
minance |∇G ∗ A| (σ = 4).

To assess the behavior of similarity measures as a func-
tion of misregistration (registration function) a copy of the
test signal was geometrically scaled relative to the original
signal. The similarity of these two signals was measured
as a function of the scale factor (sx,1 ≤ sx ≤ 3), where
sx = 1 represents perfect registration.



10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

scale σ=4.00

A
G*A
∇2 G*A

Figure 3. Test signal (A), Gaussian filtered Lu-
minance signal (G*A)(σ = 4) and Laplacian of
luminance ∇2G ∗ A (σ = 4).

Figure 4 shows the resulting graph for four similarity
measures: standard normalised mutual information, stan-
dard normalised mutual information applied to luminance
signal, 4D normalised mutual information using luminance,
4D normalised mutual information using luminance.

For the standard form, there was a false maximum at
sx ≈ 1.6 and the function is ill-conditioned for sx > 1.6.
Gaussian smoothing helps condition the registration func-
tion, but it flattens around sx = 1.9. For the 4D measures,
both were well-conditioned and relatively easy to optimise.

4.2 Translational misregistration of a brain sub-
image

This experiment was designed to simulate non-rigid reg-
istration of clinical brain image data. We can evaluate the
behavior of our proposed similarity measure by taking two
2D images of the same anatomy and misregistering a small
sub-image of one relative to the other. The data was ac-
quired by scanning a volunteer’s brain with a special T1W
3D gradient echo MR sequence with two interleaved read-
out lines. This data was reconstructed into two 3D spatial
images separated by an interval of TR (a few milli-seconds).
Essentially the difference between the two images is noise,
but there is also a small difference in motion artefacts due
to fast flowing blood. These images can be considered as
a registration gold-standard, and the graphs of the registra-
tion function tell us how the similarity measure behaves as
a function of misregistration for images with a noise differ-
ence. We took an axial slice through the lateral ventricles
and extracted a 32 × 32 pixel sub-image as illustrated in
Figure 5. Then we misregistered the sub-image relative to
the other image by applying a x-translation tx, where tx
increases from left to right direction in Figure 5. tx = 0
voxels represents perfect registration. Figure 6 shows the
results of the experiment. The standard NMI flattens out

Figure 4. Similarity plots of standard and 4D
Normalised mutual information (NMI) for the
1D test signal as a function of geometric scale
change (sx,1 ≤ sx ≤ 3). Standard form:
NMI(A,B). Standard with Gaussian blurring
(σ = 6): NMI(G*A,G*B). 4D NMI with Gaus-
sian and gradient magnitude of luminance
input channels (σ = 6): NMI (G ∗ A, |∇(G ∗
A)|; G ∗ B, |∇(G ∗ B)|). 4D NMI with Gaussian
and Laplacian of luminance input channels
(σ = 6): NMI (G ∗ A,∇2G ∗A; G ∗ B,∇2G ∗ B).



Figure 5. Illustration of the 32 × 32 pixel sub-
image of the brain used for registration ex-
periments.

for |tx| > 4 voxels making it difficult to optimise. Gaus-
sian smoothing widens the capture range to |tx| = 6 vox-
els while the 4D measures have the widest capture range
of |tx| = 7 voxels. This behavior could be important for
multi-resolution optimisation, thought useful for recovering
large deformation.

4.3 Segmentation propagation from atlas to clini-
cal image

It is possible to use non-rigid registration to propagate
segmentations from one subject image space into another.
We apply the method described in [8], based on registering
the Montreal Neurological Institute (MNI) brain atlas [4] to
the subject image, and then use the non-rigid transforma-
tion to propagate the segmentation of the lateral ventricles
into the subject space. Figure 7 shows the results of the seg-
mentation propagation with the new 4D similarity measure
and the standard one. There are relatively small differences,
however, the blue contour appears smoother and closer to
the ventricular boundary.

5. Discussion and Conclusions

We have established a set of desirable properties of sim-
ilarity measures for non-rigid image registration of inter-
modality data. We have used these to design a novel sim-
ilarity measure based on the derivative of Gaussian scale
space. We demonstrated that this has a wider capture range
than standard forms for large deformations using a synthet-
ically misregistered signal. We have also shown that this
is present when translating a sub-image for 2D brain slices.
For non-rigid inter-subject 3D brain image registration of
there is similar performance to the standard measure.
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Figure 6. Plots of the similarity as a func-
tion of translational misregistration for a pair
of 2D MR Brain images. Standard NMI (no
blurring); standard NMI(Gσ ∗ A, Gσ ∗ B);
NMI(Gσ ∗A, |∇Gσ ∗A|; Gσ ∗B, |∇Gσ ∗B|) and
NMI(Gσ∗A,∇2Gσ∗A; Gσ∗B,∇2Gσ∗B) Images
are misregistered in the range −15 < tx < 15
voxels. The Gaussian width is σ = 2 voxels.

Figure 7. Comparison of the non-rigid inter-
subject registration of 3D MR brain images
with the new 4D and the standard 2D similarity
measures. The boundary of the lateral ven-
tricle have been propagated into the space
of the subject image using non-rigid regis-
tration. The unregistered ventricular bound-
ary is shown in purple, the propagation with
the standard 2D NMI is shown in green and
4D propagation with NMI(G ∗A, |∇G ∗A|; G ∗
B, |∇G ∗ B|) is in blue.
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