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Abstract

Accurate age-specific models of pediatric patients for ra-
diation dosimetry purposes are not presently available. In a
world-first effort to build such models, we are currently de-
veloping a scheme that combines deformable models with
a priori anatomical knowledge and minimal human super-
vision. However, the outcome of applying a deformable
model is often significantly dependent on its initialization.
This is an obstacle to accurate and robust automatic or
near-automatic segmentation. In this paper, we propose a
novel approach to reducing this sensitivity to initialization
by deriving a vector field from topographic and Euclidean
distance transforms. It is aimed to extend the influence of
target gradients over the entire image in a consistent fash-
ion, while enabling the model to ignore irrelevant gradi-
ents. Initiated by one or more seeds, the vector field is
computed using an efficient numerical method, and has so
far been integrated into a parametric (snake) model and a
geodesic active contour level set model. Preliminary exper-
iments targeting different organs have shown that this is a
highly promising approach. We believe that this approach
will satisfy the need for a high degree of automation in using
deformable models for our dosimetry work.

1 Introduction

Radiation exposure from diagnostic procedures in-
creases the risk of cancer development later in life, par-
ticularly when large radiation doses are involved. This is
especially relevant for pediatric patients. Accurate estima-
tion of the amount of radiation energy deposited in various
tissues within the body resulting from a radiological pro-
cedure constitutes an essential scientific basis for the deter-
mination of the optimal dose. Numerical simulation via a
Monte Carlo radiation transport code has proven to be ef-
fective for this purpose. However, the simulation requires
a computational model as a ”virtual phantom” that repre-
sents the typical patient. Unfortunately, no accurate models
for children currently exist. Scaled-down adult models are
not sufficiently accurate as they do not take into account the
proportional differences between adults and children. In a

world-first effort to build precise pediatric models, we aim
to establish a large and dynamically growing database of
CT and MR images of pediatric patients, and to construct
the models on this basis. This model building requires that
the data be first segmented into different tissues, however
it is not feasible to delineate each organ via manual meth-
ods. We are currently developing a scheme that combines
the deformable model approach with a priori anatomical
knowledge and minimal human supervision. However, the
outcome of applying a deformable model is often signif-
icantly dependent on its initialization, mainly because the
model generally has a tendency to converge upon encoun-
tering the first set of significant gradients on its path of evo-
lution. This is an obstacle to accurate and robust automatic
or near-automatic segmentation. In this paper, we present
the first stage of our radiation dosimetry work. This is a
novel approach aimed at reducing the models’ dependence
on initialization and parameters in order to achieve a higher
degree of automation.

2 Related Work

The earliest deformable model [3] had very limited cap-
ture ranges. Early attempts to improve this include a balloon
model which applies either a constant or a gradient-adaptive
force in the direction of the contour or surface normal. The
geodesic active contour (GAC) model [1] introduced later
incorporates propagation and advection terms. Although
these measures help relax initialization requirements, they
do not completely remove the need for the initialization to
meet certain conditions [13]. Another widely applied ap-
proach is to modify the external force. The gradient vector
flow (GVF) method [16, 13] is perhaps the most prominent
example, which uses a spatial diffusion of the gradient of
an edge map to supply an external force. This technique
enables gradient forces to extend from the boundary of the
object, and has an improved ability to deal with concavities
over using distances from edgels [2, 16]. A major draw-
back of this approach, however, is that it cannot discrimi-
nate between target and irrelevant edges. A third approach
is hybrid segmentation. Various other techniques (e.g. mul-
tiresolution processing and ad hoc search methods), have
also been used in attempts to relax the initialization require-



ments. Although deformable models’ sensitivity to initial-
ization has attracted significant research interest and effort,
a robust generic approach has not yet been available.

3 Influence Zones Based on Topographic Dis-
tance

We examine a metric based image partition approach [8]
for the purposes stated above. Given K+1 sets of con-
nected voxels {Si : i ∈ I} as the partition seeds, where
I = {0, 1, 2, . . ., K}, and a measure d(x, y) that defines the
distance in a domain D between points x ∈ D and y ∈ D,
a Skeleton by Influence Zones (SKIZ, alternatively known
as a generalized Voronoi Diagram) can be generated based
on the corresponding distance metric. Defining the distance
from x to Y ⊂ D as d(x, Y) = inf

y∈Y
d′(x, y), the influence

zone of Si, for example, is

Zi = {x ∈ D : ∀j ∈ I\{i}[d(x, Si) < d(x, Sj)]}

The distance measure used for SKIZ needs to be linked to
the image intensity in order for it to be applicable to image
segmentation. One such measure is the topographic dis-
tance on a gradient image. In fact, it has been established
that SKIZ with respect to the geodesic topographic distance
is equivalent to the watershed of the image [8, 11], and this
has been used in the metric-based definition of the water-
shed transform [8, 14]. This is the basis of partial differen-
tial equation (PDE) models of the watershed [7, 12], which
have been exploited to incorporate smoothness into the wa-
tershed segmentation [12]. The geodesic topographic dis-
tance (GTD) from a point x to the ith seed, given a C2 real
function f on a continuous domain Dc as the relief image,
is τi(x) = inf

γ∈{Γ(x,y):y∈Si)}

∫

γ

|∇f(s)|ds, where Γ(x, y) is

the set of all paths from x to y. Suppose Si is entirely on
a local minimum of f . Let δi(x) = f(sc

i ) + τi(x), where
i ∈ I , sc

i ∈ Si. Based on the GTDs, Dc can be partitioned
into overlapping sub-sets

{Ωi = {x ∈ Dc : ∀j ∈ I\{i} [δi(x) ≤ δj(x)]}, i ∈ I}.
(1)

It can be proven that ∂Ωi ∩ ∂Ωj coincides with the most
significant gradient on a geodesic path (with respect to
the topographic distance) between the two corresponding
seeds [12, 8]. This is illustrated in Figure 1, where a 1D im-
age is used for simplification. Note that the strength and the
continuity of the gradients are both necessary in nD with
n > 1.

A sometimes overlooked condition for the above to hold,
in general, is that the seeds are at local minima of f , and
that these are the only local minima in the image. If this
condition is not satisfied (e.g. in a case such as the middle

image in Figure 1), homotopy modification or swamping [9,
8] may need to be performed. so as to obtain an image like
that illustrated at the bottom of Figure 1.

We exploit the relationship outlined above for the pur-
pose of supplying an external force to a deformable model.
We selectively expose the boundary gradients of the object
of segmentation as the strongest continuous edge between
the seeds, and combine the outcome with the Fast March-
ing Method [15], as discussed in the following sections.
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Figure 1. Topographic SKIZ partitions an image
along the largest gradients between the seeds. Top: A
gradient magnitude image as the relief image, object
marker O (open circle) and background marker B1
and B2 (red filled circles). Bottom: Modified homo-
topy given the seeds; in terms of the distance traveled
along axis T (topographic distance), the filled trian-
gles are closer to the marker B1, whereas the open
triangles are nearer to the marker O. SKIZ positions
are marked by the vertical dash lines.

4 Globally Consistent Vector Field

Dual Marking Scenario First, we discuss the scenario
that segmentation seeds (connected components) are pro-
vided to identify both the target and the background. We
also call these identification markers. They consist of one
placed interior to the boundary of the target organ, and one
or more external to the target. More than one background
marker is usually not necessary but can however result in
more robustness where the image is complex. This will
be demonstrated later. Without loss of generality, suppose
that S0 is placed within the target of segmentation, and
{Sj : j ∈ {1, 2, . . . , K}} are placed outside in the back-
ground. We compute a maximum difference image M in
which

M(x) = max
j∈I

{δ0(x) − δj(x)} (2)

This operation can be implemented very efficiently, as
shown in 5.2. In order for it to be applicable to parametric
and Statistical deformable models, we inversely threshold

M to obtain a binary image B0(x) =

{

1, M(x) ≤ 0
0, otherwise

.

B0(x) itself is unlikely to be an optimal segmentation of the
target, due to degradation or deficiencies in the boundary



gradients that are often present, and a lack of model con-
straints (e.g. smoothness, shape constraints) to overcome
these deficiencies. It is possible to use B0 for the initial-
ization of the model. This is analogous to the hybrid seg-
mentation approach reviewed in Section 2. Special care,
however, must be taken if it is possible that the target en-
closes significant internal gradients, due either to noise or
to sub-entities with varying intensities1. It is sufficient, and
more robust, to use a globally consistent flow field that can
be integrated into a deformable model, without necessar-
ily using the above initialization strategy. A further advan-
tage of doing so is that some isolated gradients, while not
playing a role in defining B0, can be additionally taken into
account. For this, we first compute a distance map D0 on
image B0, i.e. D0 = E(B0), where E is a Euclidean dis-
tance transform. This information may be used similarly to
a method proposed in [2], where a distance map to edgels is
used. A complimentary set of computation follows, namely,
B1(x) = B0(x), D1 = E(B1). These will be used to com-
pute the vector field. In order to overcome potential prob-
lems near deep concavities[16], a pressure force or prop-
agation term that incorporates the sign of M , sgn[M(x)],
can be used. This makes the force or propagation automat-
ically adaptive to inflation or deflation requirements, in ac-
cordance with whether the part of the model is inside or
outside of the segmentation object. This is a significant ad-
vantage of our approach.

Single Marking Alternative Under some circumstances
it may be more desirable to use a single seed, especially in
applications that use fully automatic initialization. If all in-
ternal gradients present within the target are known to be
isolated (e.g. those due to imaging noise or artifacts), or
are significantly weaker compared with those at the object
boundary, the difference between the GTDs on either side
of the boundary should be large enough for a segregating
threshold to be easily found. In such a case, a binary im-

age B0 can be obtained by B0(x) =

{

1, δ0(x) ≤ η

0, otherwise
,

where η is an application-dependent constant. D0, B1 and
D1 can be calculated similarly to the methods presented
above. However, this method cannot be used where the gra-
dient composition interior to the target cannot be estimated
a priori.

Integration with Deformable Models For a parametric
model, we obtain the following vector field

F =







−mD∇D, |∇D′| = 0, |∇D| 6= 0
−∇E, 0 < |∇D′| ≤ h

−mD′∇D′, |∇D′| > h

, (3)

1This can be either due to the inherent anatomy of the entity of interest
(e.g. an aortic aneurysm that surrounds a contrast enhanced blood flow
channel) or because of various pathologies (e.g. calcifications) or artifacts
(e.g. stent grafts).

where E = −|∇(Gσ ∗ I)|2, h, mD are constant parame-
ters. Smaller |∇D′| values are present near the ridge (or
skeleton) of the object. The above conditional is designed
to improve the performance on high-curvature convex parts,
or very thin components of the object. F has the potential
to replace the gradient image with ”cleaned up” vectors that
are globally consistent, in contrast to the short range and in-
consistent information in the gradient image. A flow field
such as Eq. 3 can be readily integrated into a parametric or
a geometric deformable model, as demonstrated in existing
works with the GVF model [16, 13]. For example, F can
help drive the deformation of a parametric model v with a
surface parameterization s as follows:

∂v
∂t

= −β
∂4v
∂s4

+ (F(x) · N(x))N(x), (4)

where N is the surface normal, β is one of the model param-
eters. As F may be perpendicular to N in some situations,
notably inside concavities[16], a pressure force γN(x) or
γ{sgn[M(x)]}N(x) is used to deal with these situations.
The latter form represents a distinct advantage of this ap-
proach as it is adaptive, in that it is automatically either
inflating or deflating according to whether the node of the
model is inside or outside of the segmentation object.

Regarding a level set model [15], previous examples ex-
ist of integrating a vector field into such a model [5, 13, 15].
In a preliminary scheme, we simply define P = ∇D+∇D′.
Incorporating the curvature-dependent motion and propaga-
tion terms, the level set evolution is governed by

∂u

∂t
= α′h(|∇I |)|∇u|div

∇u

|∇u|
+β′h(|∇I |)|∇u|+γ′P·∇u,

(5)
where h is a sigmoid function such that h : R+ → (0, 1],
h(0) = 1, h(r) → 0 as r → ∞, and α′, β′ and γ′ are the
scaling parameters.

Note that the initialization is performed by combining
D and D′. The term (γ′P · ∇u) in Eq. 5 provides rein-
forcement towards the boundary calculated from the mark-
ers and balance against the mean curvature deformation
∂u
∂t

= h(|∇I(x)|)|∇u|div ∇u
|∇u| . Similar to the parametric

model, constant propagation is sometimes necessary. As
noted above, an advantage of our approach is that the sec-
ond term on the right hand side may be replaced by

β′sgn(M)h(|∇I |)|∇u|.

We believe that this will make it automatically adaptive to
the need for either inward or outward propagation. This
will remove a practical restriction in the application of the
GAC level set model, which is that in practice the model
needs to be completely interior or exterior to the true object
boundary[13].



5 Implementation and Computation

5.1 Selecting the desired range of the gradient
magnitude

In order for the target boundary to correspond to the
gradients that will be located by the balance of the GTDs
between the markers, the appropriate band of the gradient
magnitude needs to be selectively enhanced. This is a cru-
cial step in using the proposed approach, unless a signifi-
cant number of markers are used (in nD with n > 1) and
the placement of the markers can be carefully controlled,
as otherwise inappropriate selection may result in incorrect
gradients being identified and a consequent segmentation
failure. The gradient map is transformed as follows:

w =







Hw, |∇I | ≤ Li

Hw − |∇I|−Li

Hi−Li

(Hw − Lw), Li < |∇I | < Hi

Lw, |∇I | ≥ Hi

,

(6)
where the range between Li and Hi designates the desired
gradient magnitude band (we have always chosen Li = 0),
Hw is a positive number large enough to ensure a near zero
GTD on any topographically flat path between two points
in the image, and Lw is a small positive number.

5.2 Accurate and Efficient Computation of GTDs

A key component of the proposed method is the com-
putation of the GTDs. Recent advances in applied math-
ematics have allowed the GTDs to be computed more ac-
curately and efficiently. The GTD function τ(x), as a spe-
cial case of the weighted distance transform, satisfies the
Eikonal PDE [6] |∇τ | = 1

q
, where q is the speed.

For the speed function, one can use

q =
1

λ|∇I | + ε
, (7)

where λ and ε are mapping parameters, and ε ≈ +0. In
practice, we have used the function w in Eq. 6 as an approxi-
mation. Thus, the GTDs can be computed using the efficient
Fast Marching Method (FMM) [6, 10] developed by Sethian
and his associates(e.g. [15]). Compared with alternatives
such as those based on chamfer metrics or graph search,
FMM both leads to isotropic distance propagation [6], and
results in an accuracy that is not limited by the discretiza-
tion of the image [15]. In fact, FMM yields a solution that is
close to the ideal [6]. The maximum difference map (Eq. 2)
is efficiently implemented via multiple-front Fast Marching
propagation. Only one round of propagation is necessary.
For GAC level sets, D and D′ are combined to initialize the
model in our experiments. In addition, an infinite impul-
sional response filter that approximates a convolution with
the derivative of a Gaussian kernel is used for efficient com-
putation of gradient maps.

6 Experiments

Experiments have been conducted using synthetic data,
CT and MR data. We present some quantitative evaluations
as well as well as preliminary quantitative validations.

6.1 Quantitative Evaluations

Experiments with the Parametric Model Two single-
voxel markers were employed, one placed randomly in the
liver to identify it as the target, the other outside to designate
the background. When the background marker was appro-
priately placed (explained below), the model was able to
find and segment the target despite the abundant irrelevant
gradients between the initial model and the target (Fig. 2),
due to the globally consistent vector field providing guid-
ance in place of image gradients. Our tests have revealed
no restriction on the placement of the target marker, other
than that it must be interior to the boundary profile of the
target structure. On the other hand, these tests also indicate
that a background marker will make a useful contribution
only if it is not completely encircled by an equally strong
or stronger edge than the target’s boundary (such as the ver-
tebra). Based on tests conducted so far, examples of where
”useful” background markers can be placed for the segmen-
tation of the liver in the image are indicated by the white
dots in the lower image of Fig. 2. One possibility to en-
sure the appropriate placement of a background marker is
via intensity and neighborhood tests.

Experiments with the Geometric Deformable Model
The integrated 3D GAC level set model has been tested in
the segmentation of the lung (on 10 3D images), the brain
tumour (on 10 cases) and the knee (6 cases). Within each
group of experiments, the same set of parameters have al-
ways been applied to all the images used in the group. Sat-
isfactory results have been achieved in each case upon vi-
sual inspection. Single-voxel markers were used in the dual-
marking approach, one being placed randomly in the target
and the other outside. Some examples are shown in (Fig. 3).

6.2 Quantitative Studies

Accuracy We used MR images for the quantitative vali-
dation of our algorithm. The data used are from the SPL
and NSG Brain Tumor Segmentation Database [4], which
contains 10 T1-weighted SPGR MR images of the brain2

together with ”ground truth” data. We studied the segmen-
tation of the brain together with the tumours. This is a chal-
lenging task as some of the tumours have strong gradients

2The dimensions of the 10 images are 256 x 256 x 124, with a voxel
resolution of 0.9375 x 0.9375 x 1.5 mm

3



Figure 2. Experiments with a parametric deformable
model on a CT image. Upper Left: the image, the
initial model (large white circle) and the two mark-
ers (black dots) that are use to respectively iden-
tify the target and non-target background. Upper
Right: the globally consistent vector field (white ar-
rows) and the resultant segmentation (black contour).
Lower: Examples showing where a potential back-
ground marker should be placed in order for it to
make a useful contribution to the segmentation of the
Liver. That is, it can be put in any one of the places
indicated by the white dots.

at their boundaries. Manual segmentation by four indepen-
dent human experts was available on a randomly selected
2D slice in each of the ten cases in the SPL and NSG Brain
Segmentation Database [4]. For this battery of tests, the
”single making” method was used. Typically two mark-
ers3 each comprising of a single voxel were placed with the
brain to identify it as the target. No background markers
were used. A σ value of 1 was used for the smoothing,
Hi = 5.0, and η = 1500. We refer to the voxels in the
”ground truth” segmentation (the expert’s segmentation) as
the True Target. We separately consider the False Target
(the number of voxels segmented by our method but not
by the expert) and the Missed Target (the number of voxels
segmented by the expert but not by our method). In Figure
4, the mean errors (the main bars) and the corresponding

3In order to overcome the additional challenge of segmenting the nor-
mal tissues and the tumours together, however, an additional marker was
used in cases where the pathology gives rise to a strong edge, in order to
indicate that the pathology was in fact part of the target to be segmented.
A further exception is case 9, for which a total of 15 markers were placed
inside and around the tumour in order to overcome the strong gradients
present in and around the tumour. In this case the tumour and the normal
tissues are very difficult to be segmented together using the same param-
eters applied to the other cases. In all the cases except this one, our trials
have indicated that the outcome was insensitive to the placement of the
markers. In fact, we failed to observe any effect of the different place-
ments of the markers on the results.

Figure 3. Experiments using a GAC level set model.
We used MR brain images and CT lung images. Left
column: slice views, with the segmentation superim-
posed as the transparent overlay. Right column: 3D
views of the segmentation result.

standard deviations (the error bars) resulting from the com-
parisons are presented, where the left-hand-side bar corre-
sponds to False Target

True Target
and the right Missed Target

True Target
.

Figure 4. The means (main bars) and standard de-
viations (error bars) of the differences to the experts’
segmentations of the brain on 10 cases.

Robustness Since the maximum difference operation
(Eq. 2) that we use means that a single ”useful” back-
ground marker is sufficient to achieve the desired outcome,
we expected the likelihood of success to increase quickly
with the number of markers used, even if no tests are per-
formed regarding their placements. To verify this, we used
the first 3D image from the SPL and NSG Brain Tumor
Segmentation Database, with the target still being a tumor.
In Figure 5, we show the failure rates against the number
background seeds. These seeds were accepted by a back-
ground mask after being randomly generated. The apparent
anomaly when 3, 4 and 5 seeds were used can be explained
by the fact that between different trials markers were gener-
ated independently.



Figure 5. Failure Rate (Y Axis) Vs the Number of
Background Seeds Used (X Axis).

7 Conclusions

We have presented the first stage work of a world-first at-
tempt at establishing accurate pediatric computational mod-
els for radiation dosimetry. This is a novel approach to re-
ducing the sensitivity to initialization for deformable mod-
els using marker-induced vector fields. In this approach,
geodesic topographic distances in the gradient image are
computed in order to locate the most prominent gradients
either between two groups of identifying markers, or sur-
rounding the target marker. This information is integrated
into a parametric or geometric deformable model to guide
its evolution. Our work takes advantage of theoretical anal-
yses of the watershed transform, yet it is outside of the wa-
tershed framework and preserves fully the advantages of
deformable models. An accurate and efficient numerical
method has been used in the implementation.

Our preliminary experiments have demonstrated that, us-
ing this approach, the requirement for (or sensitivity to) the
initial input is minimal for both the parametric and the ge-
ometric models when a relatively high degree of accuracy
needs to be achieved. The main limitation currently is a rel-
ative sensitivity to one of the mapping parameters, Hi in
Eq. 6. Despite this, we believe that this approach will sat-
isfy the need for a high degree of automation in using de-
formable models for our dosimetry work, particularly when
the seeds can be placed automatically based on anatomical
knowledge.
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