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Abstract

Multigrid methods provide a means with which to ac-
celerate the solution of many problems derived from multi-
dimensional linear and nonlinear Partial Differential Equa-
tions. A multigrid approach is applied to anisotropic diffu-
sion, a process that is useful for image smoothing and edge
strengthening. It is demonstrated to improve the response of
the diffusion process by smoothing stubborn low-frequency
artefacts. Where traditional relaxation approaches are used
to solve large systems of equations on high-resolution im-
ages, multigrid methods sustain superior rates of conver-
gence to arbitrary precision and provide a computational
complexity that is linear in the number of pixels of the im-
age.

1. Introduction

Especially in the context of medical imaging, data is
recorded from increasingly high-resolution sources in mul-
tiple dimensions. This expansion poses several problems
for existing image processing techniques, relating to the
scalability of the algorithms designed to process this data.

Anisotropic diffusion techniques were originally used
for the generation of scale spaces by Perona and Malik [6]
and were quickly characterised by their edge strengthening
and image simplification properties [4]. These character-
istics make them useful in preprocessing stages for many
medical segmentation and edge detection problems. In gen-
eral, anisotropic diffusion filters been shown to estimate a
piecewise smooth image from a noisy one [2].

Diffusion in image processing acts much like the phys-
ical process of diffusion, causing dispersion of intensity at
each point while conserving the average grey level of the
image. The process acts iteratively in an explicit discretisa-
tion of the continuous Partial Differential Equation (PDE),
relaxing on the estimate at each step to generate a succes-
sively smoother and simpler image. The number of iter-

ations to be performed may form a parameter of the sys-
tem, or the PDEs may contain a reaction term [8] to pre-
vent a trivial solution. The latter diffusion-reaction allows a
more finely tunable process with an analytical solution for a
given image independant of the initial estimate. Like most
pure relaxation methods, it is slow to resolve low-frequency
artefacts and the rate of convergence decreases sharply with
image size.

Different discretisations of the same equations have
yielded implicit schemes that are significantly faster than
the original explicit scheme. The Additive Operator Split-
ting (AOS) scheme is an order of magnitude faster than the
explicit formulation [7] but also suffers with image size.

Further adaptation of AOS has embedded the process
in a pyramid framework [8]. This acts as a simple multi-
resolution approach to mitigate low-frequency artefacts and
tends to increase greatly the speed of AOS. However,
amending the AOS scheme in this manner is only weakly
justified and a more stringent theory is desirable.

Multi-resolution schemes in general use the efficiency
of an algorithm acting on a small image, by exploiting the
similarities between the solutions of the process on a fine
grid and a coarse grid. Multigrid approaches fall into this
category, and can solve a relaxation process on a linear sys-
tem of equations in optimal time complexity [3]. That is, to
reach a solution of desired precision, the cost of a multigrid
approach is linear in the number of pixels in the image.

The basic operation of a multigrid scheme involves the
transfer of images between fine grids containing many pix-
els and coarse grids with fewer pixels. On coarser grids the
solution error is improved at lower frequencies, while on the
finer grids the solution error is improved at the higher fre-
quencies. When applied to anisotropic diffusion [1] multi-
grid allows effective reduction of low-frequency artefacts at
a similar rate to high-frequency artefacts, without losing the
properties of edge strengthening and region smoothing.

Multigrid methods are suited to improving iterative pro-
cesses on multi-dimensional data, especially where the so-
lution may be arbitrarily precise. Since their initial devel-



opment for solving naturally occurring PDEs, multigrid has
seen extensions to incorporate nonlinear problems and the
algebraic abstraction to problems on irregularly shaped net-
works, demonstrating the versatility of the methods to solv-
ing many varied forms of problems.

2. Anisotropic Diffusion

As introduced by Perona and Malik [6], anisotropic dif-
fusion in image processing is a discretisation of the family
of continuous partial differential equations that include both
the physical processes of diffusion and the Laplacian.
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The continuous equation in (1) describes diffusion in
general on a continuous imageu, where the precise na-
ture of c determines which of the distinct kinds is to oc-
cur. Anisotropic diffusion is denoted by a tensor-valued
c that prevents flow across areas of high discontinuity, re-
stricting diffusion from smoothing across discernible object
boundaries. In the explicit discretisation employed by We-
ickert [7], the effect ofc operating onu can be expressed in
the following form
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The system in (2) represents a network in which theith
pixel intensity of thekth iterationuk will flow towards a
neighbouring pixel of lower intensity, at a rate weighted
by the average of the two corresponding diffusivity coef-
ficientsgi, gj . HereNl(i) denotes the two neighbours of
pixel i along axisl. Essentially, this operation is relaxation
performed onu on a grid of stephl along thel axis. The
coefficients ofg will take values between0 and1, where
a zero value denotes the presence of an edge in the image.
Weickert’s formulation ofg is based somewhat on that of
Catt́e [4].
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If the right hand side of (2) is expressed in matrix form
as (3) then each element along the diagonal ofA will be
negative, and will equal the sum of the remaining (positive)
elements in the row. This indicates that the least eigenvalue
of A will be of zero value, and under the assumption that
the process converges, the greatest eigenvalue of(I − τA)
will have a value of1, characteristic of such PDEs. After

many iterations, the second eigenvalue will determine the
rate of convergence; its value will tend to increase nonlin-
early towards one as the size of the image increases. This
would cause, for instance, more than twice the computation
for an image with twice as many pixels.

When the stopping time is to be only several iterations it
is clear that certain components of the error being corrected
by the diffusion process will respond much more quickly
than others, leading to the presence of larger, spurious arte-
facts within the image. Adding a backwards reaction to (3)
can mitigate this problem by providing a non-trivial solu-
tion to the system of equations that can be solved entirely.

uk+1 = (I + τA)uk + β
(
w − uk

)
(4)

The final term of (4) ensures that the diffusion process
does not drift too far from the original image,w.

The AOS method introduced by Weickert uses a different
discretisation of (1), wherein the matrix representation of
the relaxation process is given by the implicit formulation
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This yields stability in convergence for all positive time-
stepτ , while the explicit method (3) is restricted inτ . With
increased values ofτ , Weickert [7] demonstrated a ten-
fold speed gain when compared to the explicit formulation.
However the cost of every improved bit of precision will
still decrease dramatically as image size increases, making
it unsuitable for applications of increased precision.

3. Applying Multigrid Methods

Although the original multigrid method was first applied
to solve problems involving linear operators in naturally oc-
curring systems of PDEs, it has since been developed to
handle nonlinear systems of equations, such as the class de-
scribed above for anisotropic diffusion. Several methods
exist to apply multigrid approaches to nonlinear systems,
such as the Full Approximation Storage method [5]. Other
approaches assume linearity over small time-steps.

When performing anisotropic diffusion, letv be the so-
lution to the system of diffusion equations

A · v = f (6)

In the case of (3),f is zero, whileA is an operator con-
taining the diffusivity coefficients generated forv. It is con-
venient to describe an estimateu in terms of the solutionv
less an error,v − e. Relaxation upon the estimate reduces
this error until the stable solution is reached.



Denoted byΩh is them-dimensional grid of step sizeh
on which this image is sampled. A coarser gridΩ2h can
be defined by doubling the sampling period along each di-
mension. Multigrid also names therestriction operator(·)↓
to transfer an image fromΩh to Ω2h and theprolongation
operator (·)↑to transfer an image fromΩ2h to Ωh. The
Galerkin condition specifies that these two (linear) inter-
grid transfer operators should be transposes of each other
by a factor of2m.

The operation ofA on Ω2h is in fact a reformulation of
the original PDEs on the coarser grid. Equation (7) illus-
trates howA operates on a coarser grid.

A · u2h = (A · (u2h)↑)↓ (7)

The residualrh of a solution estimateuh on a gridΩh is
defined as

rh = f −A · uh (8)

For a relaxation scheme on a gridΩh, multigrid proposes
a similar relaxation scheme for a system of equations (9) on
a coarser gridΩ2h and equates the residuals of the two (11).
Most importantly, the solution to the fine grid problem is ex-
actly a solution to the coarse grid problem – once reached in
the fine grid, further relaxation in the coarse grid will cause
no change. The relaxation on the coarser grid effectively
solves a portion of the error in the fine grid problem.

A · u2h = f2h (9)

r2h = f2h −A · u2h (10)

f2h −A · (uh)↓ = (fh −A · uh)↓ (11)

∴ f2h = (rh)↓ + A · (uh)↓ (12)

Equations (9)-(12) yield the terms of (7) necessary to
solve as completely as possible foreh in Ω2h, for some
estimateuh of the solution in the fine scale. Once some
satisfactory value ofv2h has been obtained, the coarse grid
errore2h for uh is

e2h = (vh)↓ − (uh)↓ = v2h − (uh)↓ (13)

uh ← uh + (e2h)↑ (14)

The coarse grid error is then used as in (14) to correct the
fine grid estimate.

Solving foru2h could be done by performing relaxation
on (9). Note however that (9) is a set of equations essen-
tially the same as (6) – the true elegance of multigrid is
that coarse grid correction can be performed hierarchically,
minimising the total relaxation performed on still coarser
grids. Themultigrid v-cycleis one such recursive structure,
its coarse grid correction consisting of brief relaxation be-
fore and after a still coarser grid correction.

4. Results

In Section 3, the multigrid framework was presented
with the aim of applying it to anisotropic diffusion. The
nonlinear approach selected assumes linearity during indi-
vidual iterations. The inter-grid transfer operators used are
the traditional upsample and nearest-neighbour interpola-
tion operator and its transpose, the nearest-neighbour blur
and downsample operator [3].

Given the recursive method with which multigrid aug-
ments relaxation at many grid resolutions, each full multi-
grid iteration will naturally have a computational cost
higher than a single iteration of relaxation on the original
image. If a single relaxation operation on the finest grid
of m dimensions is taken as a unit costCrelax of computa-
tion and the cost of performing a single relaxation iteration
scales linearly with the number of pixels in the image, then
the relative costCv−cycle of a multigrid v-cycle iteration is
approximately

Cv-cycle = 2Crelax ·
(
1 + 2−m + 2−2m + . . .

)
(15)

Cv-cycle =
2Crelax

1− 2−m
(16)

Compared to the relaxation iteration, each multigrid iter-
ation is significantly more efficient. Figure 1 compares the
two when operating to solve a linearised diffusion-reaction
problem to convergence as in (4). The progress of each is
measured by comparing the norm of the error‖e‖2 in the
solution estimate to the equivalent cost in relaxation oper-
ations performed. The size of the logarithm of this norm
yields the number of digits to which the error is minimised.
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Figure 1. Comparison of cost of convergence
of multigrid and pure relaxation anisotropic
diffusion processes.



Well and truly before the relaxation operation reaches its
range of linear convergence, it is clear that the multigrid
method has reached a constant number of converged digits
per iteration, and that the rate of convergence for the multi-
grid approach is much faster.

Figure 2 indicates the change in the cost of computation
caused by image size. The major advantage of multigrid
methods is that the cost of convergence is linearly related to
the number of pixels in the image. In this figure is plotted
the progress of multigrid anisotropic diffusion acting on an
image and on a half-size representation of the same image
(one quarter of the total number of pixels). The cost of con-
verging further digits for the small image is one quarter that
for the large image.
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Figure 2. Comparison of cost of convergence
of multigrid anisotropic diffusion on an image
of two different sizes.

Figure 3 illustrates the efficiency of multigrid at remov-
ing many levels of noise from a solution. The image of the
diatom was processed with anisotropic diffusion, both by
performing three iterations of multigrid, and by using the
eight iterations purely of relaxation that comprise the same
computational cost by (16). The difference in remaining
detail between Figures 3(b) and 3(c) is mostly comprised of
larger patches of discolouration that pure relaxation failed
to diffuse. Simplified in this manner, Figure 3(b) could be
easily processed by a simple segmentation algorithm for de-
riving the boundary of the diatom.

As a denoising tool, anisotropic diffusion is generally
considered quite effective. Figure 4(a) presents a clean im-
age of a lung, corrupted in Figure 4(b) by independent and
identically distributed additive Gaussian noise of standard
deviationσ = 0.01. The noisy image was anisotropically
diffused using relaxation to give Figure 4(c). As the noise
was diffused, it formed irregularities in the image that the

(a) Original image (b) Diffused with multigrid

(c) Diffused with relaxation

Figure 3. A comparison of anisotropic diffu-
sion techniques acting on (a) a microscope
image of Actinocyclus Actinochilus, a diatom
using (b) multigrid, and (c) pure relaxation.

relaxation method was less effective at smoothing. Fig-
ure 4(d) shows that the multigrid method produced fewer
spurious edges and blocks.

5. Conclusion

Multigrid methods are a means to accelerate linear and
nonlinear relaxation problems derived from PDEs. They
provide convergence to within a given precision that is lin-
ear in the number of pixels in an image, and can be applied
to systems of equations of any number of dimensions. The
hierarchical operation on an estimated solution allows for
the correction of many scales of error at once, where tradi-
tional relaxation methods would perform poorly.

Anisotropic diffusion is useful as a preprocessing stage
to higher levels of image processing. It smooths image
interiors to accentuate boundaries for segmentation; it re-
moves spurious detail to improve the response of edge
detection algorithms; it also proves effective at removing
noise from images. However, relaxation processes that
implement anisotropic diffusion tend towards leaving low-
frequency artefacts that are difficult to dissipate without
over-processing the image.



(a) Original image (b) Image with additive
noise,σ = 0.01

(c) Denoised with relaxation (d) Denoised with multigrid

Figure 4. Comparing diffusion methods for
denoising; (a) the unaltered image; (b) with
additive Gaussian noise; (c) denoising using
relaxation; (d) denoising using multigrid.

Combining anisotropic diffusion with multigrid meth-
ods greatly diminishes the artefacts introduced, improving
the response of the processing while reducing the compu-
tational cost. Multigrid methods can be broadly applied to
many other PDEs for similarly excellent improvements in
computational efficiency.
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