Segmenting Cortical Structures by Globally Minimal Surfaces
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Abstract

In this paper we examine a new prospect for volumet-
ric image segmentation, the globally minimal surface algo-
rithm, and its application to segmenting anatomical struc-
tures in the brain. Existing minimal surface algorithms typ-
ically use a variational approach and so are prone to be-
coming stuck in local minima. The globally minimal surface
algorithm used here is based on a maximal flow approach
which has been mathematically proven to obtain optimal
segmentations.

We present the application of globally minimal surfaces
to segmenting a number of structures in the brain, as well
as to tracking changes in the shape of the brain in a study
of elderly patients. The results demonstrate that this new
method is able to obtain robust and accurate segmentations
with little user interaction. We conclude that a wide range
of medical segmentation problems may benefit from the ap-
plication of globally minimal surfaces.

1 Introduction

The segmentation of structures in the brain from mag-
netic resonance images is an important early stage in the
quantitative analysis of a range of degenerative brain disor-
ders. This is a challenging problem due to, on the one hand,
the complicated shape of these structures and, on the other
hand, the often poor contrast between tissues in the brain.
As a result a range of segmentation methods have been pro-
posed for this task with varying degrees of success.

Pham et al. [9] presented a complex segmentation
method for reconstructing the cerebral cortex from mag-
netic resonance images. Their method consisted of several
stages including tissue classification, masking of undesir-
able regions of the brain, topology correction and smooth-
ing of the surfaces, and lastly a deformable surface driving

the final result toward the cortex. Unfortunately the tissue
classification suffered somewhat from noise, leading to poor
results in successive stages. In addition the surface smooth-
ing led in some cases to oversmoothing of the final result.

Wang et al. [11] investigated the measurement of volu-
metric changes in brain structures from magnetic resonance
imaging. Their method was based on the classification of
tissue types. This took into account partial volume effects,
leading to a segmentation method with sub-pixel precision.
They presented in [10] a validation of their methodology
on a study of rates of brain atrophy in various stages of
Alzheimer’s, using normal elderly subjects for controls.

Goldenberg et al. [7] proposed a coupled geodesic active
surface model in order to automatically extract the corti-
cal gray matter boundaries in volumetric brain scans. They
also presented an efficient numerical scheme to implement
the coupled active surface model. The resulting segmenta-
tion method was successfully demonstrated on volumetric
magnetic resonance images.

Unfortunately for methods based on the classification of
tissue types such as [9, 11], local image information may
be unreliable due to the presence of noise or irrelevant ob-
jects. This introduces errors into the classification which
must be corrected by later stages. Filtering and geometric
smoothing are common ways to reduce these errors after
the fact however they reduce segmentation precision. Ac-
tive contours and surfaces such as those used in [7] have
been widely applied to image analysis and particularly to
medical image segmentation. They are able to take into ac-
count basic geometric assumptions such as the expectation
of surface regularity. However these methods are known to
be difficult to initialise and often converge to an incorrect
result without manual guidance.

In [3], Appleton et al. presented a novel approach to
medical image segmentation, the globally minimal surface
method. Globally minimal surfaces were proposed by Ap-
pleton and Talbot in [1] as an optimal form of geodesic
active surface. They remove the dependence of geodesic
active surfaces upon their initial configuration, leading to



a reliable and robust segmentation method in practice. A
mathematical proof of their optimality was included in this
paper. A more extensive presentation of globally minimal
surfaces is also given in [2]. Preprints of [2] and [3] may be
obtained from the first author.

In this paper we will present the application of globally
minimal surfaces to the segmentation of anatomical struc-
tures in 3D magnetic resonance images of the brain. Sec-
tion 2 reviews the development of the globally minimal sur-
face method, from the popular geodesic active contour seg-
mentation energy through to a flow-based method which
has been proven to obtain the optimal segmentation surface.
Section 3 explains the practical application of the globally
minimal surface method, including the selection of an ap-
propriate metric as well as the placement of seeds to select
the object to be segmented. Section 4 demonstrates the ap-
plication of globally minimal surfaces to the segmentation
of a number of physiological structures in the brain. In ad-
dition it presents a study into the changes in brain shape and
volume of 8 elderly subjects over a 10 month period.

2 Globally minimal surfaces
2.1 Defining a surface energy for segmentation

Minimal surfaces were proposed for image segmenta-
tion by Caselles et al., initially for two dimensional image
segmentation as geodesic active contours [4], and later in
three or more dimensions [5]. S is the segmentation sur-
face, which is closed as it corresponds to the outline of an
object being segmented. They are smooth closed surfaces
which minimise the following energy function:

E[S] = /S gdS D

The metric g is a weighting function over the image do-
main which is obtained from local image information at
each point. As the energy E is to be minimised, the met-
ric should ideally be low on the boundaries of objects and
high elsewhere.

Caselles et al. proposed to minimise this energy using
a variational framework. Beginning with an initial surface,
they evolved this surface by small deformations so as to suc-
cessively lower the surface energy, halting at a local mini-
mum. This surface evolution was implemented using a level
set embedding, the details of which may be found in [4, 5]
and a fast implementation in [6].

Minimal surfaces have proven to be popular in med-
ical image segmentation where the objects under anal-
ysis tend to be smooth but may have widely varying
shapes. Unfortunately the local minimisation proposed by
Caselles et al. and in common use provides no guarantee
on the quality of the final segmentation. This is because

Figure 1. An example of the minimal surface
— maximal flow duality in a two dimensional
image. Arrows depict the flow F while the
minimal surface S forms a bottleneck for the
flow. The source s is a small region inside
the object of interest while the sink ¢ is the
boundary of the image.

the energy described by Equation 1 is highly non-convex,
containing many local minima which may trap the evolving
surface. As a result minimal surfaces often require substan-
tial user interaction in order to obtain good segmentations,
which limits their practical application.

2.2 A maximum-flow formulation

In [1], Appleton and Talbot proposed a novel minimisa-
tion method for this problem. They observed that the min-
imisation of Equation 1 is dual to the maximisation of the
following flow system:

e Conservation of flow: divEF = 0.
e Capacity constraint: | F| < g.

Here E' is a vector field representing the velocity of an ideal
fluid at every point in the image domain. Flow proceeds
from one or more sources s inside the object of interest to-
ward one or more sinks ¢ outside of the object of interest.
This is depicted in Figure 1. The speed of the flow is lim-
ited at each point by the metric g. As the flow is increased
it is restricted by the metric, until a bottleneck forms which
prevents any additional flow between the source and sink.
Once this occurs the flow is maximal and the bottleneck is
the globally minimal surface. This dual form of the mini-
mal surface problem is convex, so that the maximisation of
the net flow is very simple to achieve. For additional details



regarding the maximum flow formulation and its numerical
implementation, we refer the reader to [2].

3 Segmentation using globally minimal sur-
faces

In this section we show how to apply the globally min-
imal surface framework to image segmentation. This pro-
cess consists of two parts: firstly the design of a suitable
metric whose minimal surfaces will form good segmenta-
tion contours, and secondly the placement of internal and
external seeds to select the objects to be segmented. Exam-
ples are presented at the end of this section.

3.1 Metric selection

As we seek to minimise the surface energy given in
Equation 1, it is important that the metric g have low val-
ues on the boundary of the object to be segmented and
relatively high values elsewhere. Object boundaries often
exhibit an abrupt change in image intensity or in higher
level features such as colour and texture. Therefore, in [4]
Caselles et al. proposed the following image-based metric:
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Here I is the image, G, is the operation of convolution by
a Gaussian of scale ¢, and |V - | computes the magnitude of
the image gradient. ¢ is an additional parameter controlling
the smoothness of the minimal surface. This was originally
proposed for scalar images but may be extended to colour
images or to texture analysis by extending the definition of
the gradient operator |V - | appropriately.

3.2 Seed placement

The globally minimal surface method requires the selec-
tion of both internal and external seeds. These seeds con-
strain the minimal surface to include some regions of the
image and to exclude others. Typically the external seed is
simply the boundary of the image while the internal seed is
a small region inside the object to be segmented. However
in complex segmentation problems we may place additional
internal or external seeds to guide the segmentation surface
where the correct object boundaries are ambiguous.

For 3D data it may be somewhat more complicated to
place these seeds. To facilitate the segmentation of volu-
metric data we have designed a simple graphical user inter-
face. This allows a user to navigate through a 3D dataset
by viewing 2D slices. In addition it allows the placement
of polyhedral seeds inside and outside of the object of in-
terest. This user interface is described in more detail in [3]
and may be downloaded for evaluation from [8].

3.3 Examples

Figure 2 depicts the segmentation of a cell in a histologi-
cal section. Here it is only necessary to use a single internal
seed to select this object. Note that despite the large amount
of background clutter in the image, the globally minimal
surface forms a good segmentation.

Figure 3 depicts the segmentation of an x-ray image of
a clavicle. This is a more complex segmentation problem
as several bones and a large screw have overlapped in the
projection to film. As a result in this example it is neces-
sary to use a number of internal seeds, guiding the globally
minimal surface to include each part of the clavicle.

Figure 2. The segmentation of a cell in a his-
tological section using a single internal seed.

4 Results

In this section we present the use of globally minimal
surfaces to segment three structures in the brain: the lat-
eral ventricles, the corpus callosum, and the hippocampi.
Data consists of volumetric (3D) T1-weighted magnetic res-
onance images of the head. These segmentations are pre-
sented in order of increasing difficulty to demonstrate the
new segmentation method over a range of problems. We
then present the application of globally minimal surfaces in
a study to track the changes in volume and shape of the
brain in elderly subjects. This analysis may be used to
quantify the progress of degenerative brain disorders such
as Alzheimer’s. Segmentations were performed on T1-
weighted magnetic resonance images.

4.1 Segmenting cortical structures

The first and simplest segmentation is that of the lateral
ventricles, depicted in Figure 4. This segmentation is rela-
tively straightforward due to the simple shape of the ventri-
cles as well as a clear intensity gradient on their boundary.
A single internal seed was placed inside each of the two
ventricles, while the external seed was simply the boundary
of the volume.



Figure 3. Segmentation of an x-ray image of a clavicle. Depicted in order: the original image, a

gradient metric, and the resulting segmentation.
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Figure 4. Segmentations of the lateral ventricles from a T1-weighted MRI dataset. Left: A 2D slice of
the segmentation surface. Remainder: Different 3D views overlayed on the original data.

The second segmentation is a medial portion of the cor-
pus callosum, depicted in Figure 5. The segmentation of the
corpus callosum is more challenging than the segmentation
of the lateral ventricles, as the boundary of the corpus cal-
losum is obscured as the slices advance in a saggital aspect
from the mid-plane of the brain. This segmentation required
only a single internal seed, with the external seed being the
boundary of the volume as before.

The third and most complex segmentation is that of the
hippocampi, depicted in Figure 6. In this case the external
seeds were bounding boxes for each hippocampus, while
the internal seeds were line-like polyhedra following the
centre lines of the hippocampi. The contrast in this segmen-
tation is poorer due to the presence of some cerebro-spinal
fluid (CSF) and white matter in adjacent to the hippocampi.

4.2 Tracking changes in shape

Due to degenerative diseases or simply as a consequence
of aging a patient’s brain may change shape over time. Lo-
cating and quantifying these changes may assist in the early
diagnosis of degenerative diseases.

MRI datasets were taken from a large cohort in a compar-
ative study into Alzheimer’s disease and normal aging [11].
Eight data sets from eight elderly control subjects were
used. Datasets consisted of two volumetric scans acquired
from the same subject with 10 months separation. Each pair
of datasets was co-registered prior to segmentation using a
Euclidean (rigid body) transform. Following segmentation
we may track changes in the shape of the brain according to
the offset distance between the two snapshots.

Table 1 presents the differences in volume as well as the
similarity index [12] of each subject’s brain over the period
of the study.

Figure 7 shows the changes to the brain in the 6th sub-
ject, who exhibited the greatest change in shape. Depicted
are corresponding 2D slices which show that the most sig-
nificant changes have taken place at the base of the brain.
A surface offset map is also given showing areas of con-
traction (blue) and expansion (yellow). This analysis may
be useful for locating particular areas of the brain which are
atropying due to disease or expanding due to tumour growth
for example.
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Figure 5. Segmentation of the corpus callosum from a T1-weighted MRI dataset. Left: A 2D slice of
the segmentation surface. Remainder: Different 3D views overlayed on the original data.
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Figure 6. Segmentations of the hippocampi from a T1-weighted MRI dataset. Left: A 2D slice of the
segmentation surface. Remainder: Different 3D views overlayed on the original data.

5 Conclusion

We have presented a new method for the segmentation
of anatomical structures in the brain from magnetic reso-
nance images. This method is based on the computation of
a globally minimal surface according to a metric and a set
of seeds. The metric is derived from the image data while
the internal and external seeds select the object to be seg-
mented and may also be used to fine-tune a segmentation.
The globally minimal surface algorithm based on a maximal
flow formulation is more robust than previous variational
approaches such as level sets. Results have been presented
demonstrating the application of this new method to seg-
menting a number of structures in the brain as well as to
tracking changes in brain shape in elderly subjects. Based
on these results, we suggest that globally minimal surfaces
may be useful for a broad range of medical segmentation
applications.
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Figure 7. Tracking changes in the 6th dataset. Depicted in order: 2D slices of the segmentations at
10 months separation, a 3D view of the initial segmentation, and a surface offset map.
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