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Abstract

The extraction of a fractal code from an image involves
the partitioning of the image into a set of range blocks.
There is also a corresponding set of domain blocks to
choose from. For each range block, a suitable domain block
is found using some prescribed criterion. The mapping be-
tween the domain and range blocks, which is a contrac-
tive transformation, forms the fractal code for this range
block. The fractal code for the image is a collection of frac-
tal codes for all range blocks. Because domain and range
blocks can be chosen from different part of the image, a
small change in one parts of the image can affect fractal
codes for other parts. In this paper, we define subfractals
which are independent fractal codes for different parts of
the image. This feature of subfractals is useful for new ap-
plications of fractal image codes in pattern recognition, es-
pecially face recognition. This paper introduces an algo-
rithm for extraction of subfractal codes for a gray-scale im-
age.

1 Introduction

The fractal code of an image is a set of contractive map-
ping each of which transforms a domain block to its cor-
responding range block. The distribution of selected do-
main blocks for range blocks in an image depends on the
content of image and the fractal encoding algorithm used
for coding. Some methods use the best matching domain
while some others use the first match. The shapes of do-
main blocks can be square, rectangle, triangle and so on.
The size of domain blocks in the domain pool can also be
fixed or variable. All of these parameters can combine to
make the fractal codes sensitive to small changes in image.
A small variation in a part of the input image may change
the contents of the range and the domain blocks in the frac-
tal encoding process, resulting in a change in transforma-

tion parameters in the same part and other parts which use
the domain blocks of this part. In this paper, we introduce
a new method of fractal image coding to make the fractal
code of each part independent of variations of other parts.

2 Subfractals

Is there any local relationship between range and domain
blocks of an image? It is one of the first questions that
any researcher in this field may ask. Fisher in his book [3]
(chapter 3, page 69-72) tried to show that the correspond-
ing domain block for each range block is random in posi-
tion relative to it. He plotted the distributions of the differ-
ence in the x and y positions of the domains and ranges for
an encoding of 512 × 512 Lena image as well as the the-
oretical distribution of the difference of two randomly se-
lected points as shown in Figures 1 and 2 . In these Figures,
(xr, yr) and (xd, yd) are the range and domain positions.
Fisher calculated the probability distribution of dx and dy ,
where dx and dy are the differences in x and y coordinations
of two points randomly chosen in the unit square with uni-
form probability, as ρ(dx) = 1−|dx| and ρ(dy) = 1−|dy|.

In the book, Fisher mentioned ”so even when the points
are chosen randomly, it appears that there is a preference
for local domains. However, this is an artifact . . . there is a
slight preference for local domains, but the effect is small”.
It may be a small effect for fractal compression but it plays
a big role in the fractal recognition. If the relation between
range and domain blocks is random, a small variation in a
part of the image will change the range and domain blocks
in a random area. Also this change may cause a change
in the fractal codes of all the range blocks which are cor-
responding to those domain blocks. It clearly shows that if
the domain blocks’ distribution is random, a small change in
some part of an image will affect the fractal codes of other
parts, and it means that this change will be propagated ran-
domly. On the other hand, as Fisher explained, traditional
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Figure 1. A distribution of the difference in
the x position of the domains (xd) and ranges
(xr) for an encoding of 512 × 512 Lena image,
as well as the theoretical distribution (dashed
line) of the difference of two randomly se-
lected points. Adopted from Fisher[3].
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Figure 2. A distribution of the difference in
the y position of the domains (yd) and ranges
(yd) for an encoding of 512 × 512 Lena image,
as well as the theoretical distribution (dashed
line) of the difference of two randomly se-
lected points. Adopted from Fisher[3].

fractal image coding methods prefer to choose local domain
blocks for each range block but it will not always happen.
Our experiments have shown that non-constant range blocks
from a given segment tend to use domain blocks from the
same segment. As can be inferred from Fig.1 and Fig.2, for
a sample image like Lena (512× 512 ) the number of range
blocks which match with domain blocks in their neighbor-
hood with a radius of 60 is significantly higher than a ran-
dom matching between two blocks. This is owing to sim-
ilar properties such as the same texture. This fact makes
some usage of fractal codes for recognition,(for example
[2]) robust to some variations like expression variations on
a face because these kinds of variations cause only small
local changes around lips or eyes that do not affect the en-
tire fractal codes. While the fractal codes of two different
faces (a big change) will affect the block partitioning, range
blocks and domain blocks and the entire code is changed.

To generalize this good property, we propose a new frac-
tal coding method which chooses a domain block for each
range block from the same area as range block. It guaran-
tees that any changes in a area or segment will only effect
the fractal codes related to that area and will not propagate
anywhere else. It means that the fractal codes of different
areas of the image will be independent.

A subfractal is defined to be a set of fractal codes that
map a subset of domain blocks in an image to domain
blocks that cover the several part of the image. These codes
will be calculated to be independent of other codes of the
other parts of the same image.

3 Subfractal Coding

To calculate subfractals for an image we propose this al-
gorithm. We assume here that images are face images from
a standard face database like the Banca face database[4]:

Step 0 (preprocessing) - For all face images use eye loca-
tions and histogram equalization to form a geometri-
cally and photometrically normalized face image data-
set.

Step 1 - Nominate the subfractal area for each part such as
left and right eyes, nose, lips and the rest of the im-
age manually only for one arbitrary normalized image
of the database. This information will be used for all
other normalized images of the database as well.

Step 2 - For each subfractal, partition the area with non-
overlapping r × r range blocks.

Step 3 - Cover the subfractal area with a sequence of
overlapping domain blocks in k different sizes 2r ×
2r, 22r×22r, . . . , 2kr×2kr to form a domain pool for
that area. Also, add the 90o, 180o, 270o rotated version



of each block to the domain pool. Add the mirrored
imaged version of each member of domain pool to the
pool, as well.

Step 4 - For each range block, find a domain block from
domain pool of the same subfractal area that best cover
the range block. It can be done by minimizing the dis-
tance function E(R,D) :

E(R,D) =

√
√
√
√

r∑

i=1

r∑

j=1

(R(i, j) − T (D)(i, j))2

between range block R and domain block D. The
transformation

T (D) = Flip(F,Rotate(θ,Resize(
1

L
,D)))

resizes (L ∈ {2, 4, . . . , 2k}), rotates (θ ∈
{0, π

4 , π
2 , 3π

4 }) and flips (F ∈ {0 = No flip, 1 =
Horizontal flip}) domain block to match the corre-
sponding range block.

Step 5 - Record geometrical position of the range block
and domain block as well as parameters L, θ, F as ge-
ometrical part of fractal code for the range block.

Step 6 - Calculate luminance parameters o and s and
record them as other part of the code :

s =
α

β

o = R −

(
α

β

)

D

where

α =
r∑

i=1

r∑

j=1

(
T (D)(i, j) − D

)
.
(
R(i, j) − R

)

β =

r∑

i=1

r∑

j=1

(
T (D)(i, j) − D

)2

D =
1

r2

r∑

i=1

r∑

j=1

T (D)(i, j)

R =
1

r2

r∑

i=1

r∑

j=1

R(i, j)

Step 7 - Repeat steps 4-6 for all range blocks in the sub-
fractal area.

Step 8 - Repeat steps 2-7 for all subfractals in the image.
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Figure 3. Range blocks (top left) in four ma-
jor subfractal areas (eyes, nose and lips) and
corresponding domain blocks (bottom rows)
for an arbitrary face image. Top right, a plot
of pixel values vs. pixel numbers for last
matched domain and range block is shown.

In figure 3 range blocks in four major subfractals (eyes,
nose and lips) and corresponding domain blocks for an ar-
bitrary face image are shown. A plot of pixel values for last
matched domain and range block is also shown. Examina-
tion of this plot for all the range blocks shows that even with
the restriction of choosing domain blocks from a subfractal
area which is smaller than the image there is enough free-
dom of choice to find a good match for most of the range
blocks. This arises from the overlapping of domain blocks
which increases the number of domain blocks in the domain
pool rapidly and the existence of different transformed ver-
sions of a block in the domain pool. To speed up the cod-
ing process, we can encode constant range blocks with only
their geometrical parameters and their average pixel values.

4 Analysis of the model

The analysis of the model is given here using get-block
and put-block operators adopted from Davis [1]. Let Γk

n,m :

=N → =k, where k ≤ N , be a get-block operator which is
the operator that extract the k×k block with lower corner at
n,m from the original N × N image,and (Γk

n,m)∗ : =k →

=N be put-block operator which inserts a k×k image block
into a N × N zero image, at the location with lower left
corner at n,m. A N × N image xf ∈ =N can be shown as
:

xf =

M∑

i=1

(xf )i =

M∑

i=1

(Γri
ni,mi

)∗(Ri)



=

M∑

i=1

(Γri
ni,mi

)∗{Gi(Γ
di

ki,li
(xf )) + Hi} (1)

xf =

M∑

i=1

(Γri
ni,mi

)∗{Gi(Γ
di

ki,li
(xf ))}

︸ ︷︷ ︸

A(xf )

+

M∑

i=1

(Γri
ni,mi

)∗(Hi)

︸ ︷︷ ︸

B

(2)
that {R1, . . . , RM} are a collection of range blocks that par-
tition xf and Gi = =d

i → =r
i is the operator that shrinks

(assuming di > ri) , translates (ki, li) → (ni,mi) and ap-
plies a contrast factor si, while Hi is a constant ri × ri

matrix that represents the brightness offset. We can write
Di = Γdi

ki,li
(xf ). Thus, the image xf can be rewritten as

the following approximation:

xf = A × xf + B (3)

In this equation A,B are fractal parameters of the image
xf .

Because Gi is a combination of some geometrical trans-
formation and a brightness scaling, we can show that matrix
A is a product of a contrast matrix Ψ and another matrix Λ,
that we call the distribution matrix:

A = Ψ × Λ (4)

The values on the contrast matrix Ψ are the contrast fac-
tors si, (0 ≤ si < 1). The distribution matrix Λ shows the
relationship between each pixel of a range and correspond-
ing pixels of the domain. So in each column of the matrix,
we have non-zero values only in the rows corresponding to
the domain pixels which effect that range pixel. As the frac-
tal code of an image is not unique, there are many different
possible values for Ψ and Λ. We can study these general
cases:

Case 1 - Each range pixel is in relation to only one domain
pixel, each column of Λ has only one non-zero value
λi:

A =










0 s1 . . . 0
. . . 0 . . . s2

s3 0 . . . 0
...

...
. . .

0 0 sn 0










×








0 . . . λ3 . . . 0
λ1 0 . . . 0
...

. . .
... λn

0 λ2 0 . . . 0








This case can only happen when the size of range
blocks is equal to the size of domain blocks and will
not be true for most of fractal image encoding meth-
ods.

Case 2 - Each range pixel is in relation to all the pixels of
the image:

A =








s1 s1 . . .

s2 s2 . . .
...

...
. . .

sn . . . sn







×








λ11 λ12 . . . λ1n

λ21 λ22 . . . λ2n

...
...

. . .
...

λn1 λn2 . . . λnn








This case can only happen when the range blocks are
derived from the entire image and not only from a por-
tion of the image.

Case 3 - Each range pixel is related to some of the domain
pixels of the image. In this case, each column of dis-
tribution matrix has some zero and some non-zero val-
ues. The subfractal concept is one special subclass of
this case. For subfractals, we choose domain and range
blocks from the same portion of image so the matrixes
A and Λ are sparse but we can re-arrange them in the
form of diagonal matrixes of subfractals.

We will illustrate this idea with an example: Suppose
image X is a 3 × 3 grayscale image below, with 3 dif-
ferent subfractal areas a, b, and c :

X =





a1 b1 b2

a2 a3 a4

c1 c2 a5





So xf can be :

xf = A × xf + B

xf =

















a1

b1

b2

a2

a3

a4

c1

c2

a5

















A = Ψ × Λ

We define a swapping transformations Υi,j
row(X) as a

transformation which swap the row(i) and row(j) of
matrix or vector X with each other. In the same way,
we define Υi,j

col(X) for swapping col(i) and col(j).
Using linear algebra, it can be easily shown that :



Ψ =

















sa11 0 0 sa12 sa13 sa14 0 0 sa15

0 sb11 sb12 0 0 0 0 0 0
0 sb21 sb22 0 0 0 0 0 0

sa21 0 0 sa22 sa23 sa24 0 0 sa25

sa31 0 0 sa32 sa33 sa34 0 0 sa35

sa41 0 0 sa42 sa43 sa44 0 0 sa45

0 0 0 0 0 0 sc11 sc12 0
0 0 0 0 0 0 sc21 sc22 0

sa51 0 0 sa52 sa53 sa54 0 0 sa55

















Λ =

















λa11 0 0 λa12 λa13 λa14 0 0 λa15

0 λb11 λb12 0 0 0 0 0 0
0 λb21 λb22 0 0 0 0 0 0

λa21 0 0 λa22 λa23 λa24 0 0 λa25

λa31 0 0 λa32 λa33 λa34 0 0 λa35

λa41 0 0 λa42 λa43 λa44 0 0 λa45

0 0 0 0 0 0 λc11 λc12 0
0 0 0 0 0 0 λc21 λc22 0

λa51 0 0 λa52 λa53 λa54 0 0 λa55

















Υi,j
row(xf ) = Υi,j

row(A×xf+B) = Υi,j
row(Υi,j

col(A))×Υi,j
row(xf )+Υi,j

row(B)

and

Υi,j
row(Υi,j

col(A)) = Υi,j
row(Υi,j

col(Ψ)) × Υi,j
col(Υ

i,j
row(Λ))

So the form of Ψ and Λ after this series of transforma-
tion will be

x̂f = Υ3,2
row(Υ1,2

row(Υ7,8
row(Υ9,8

row(xf )))) :

Ψ̂ =

















sb11 sb12 0 0 0 0 0 0 0
sb21 sb22 0 0 0 0 0 0 0
0 0 sa11 sa12 sa13 sa14 sa15 0 0
0 0 sa21 sa22 sa23 sa24 sa25 0 0
0 0 sa31 sa32 sa33 sa34 sa35 0 0
0 0 sa41 sa42 sa43 sa44 sa45 0 0
0 0 sa51 s52 sa53 sa54 sa55 0 0
0 0 0 0 0 0 0 sc11 sc12

0 0 0 0 0 0 0 sc21 sc22

















Λ̂ =

















λb11 λb12 0 0 0 0 0 0 0
λb21 λb22 0 0 0 0 0 0 0
0 0 λa11 λa12 λa13 λa14 λa15 0 0
0 0 λa21 λa22 λa23 λa24 λa25 0 0
0 0 λa31 λa32 λa33 λa34 λa35 0 0
0 0 λa41 λa42 λa43 λa44 λa45 0 0
0 0 λa51 λ52 λa53 λa54 λa55 0 0
0 0 0 0 0 0 0 λc11 λc12

0 0 0 0 0 0 0 λc21 λc22



















Matrixes Ψ̂ and Λ̂ can be divided to independent ma-
trixes Ψa,Ψb,Ψc and Λa,Λb,Λc. It is because we
used subfractals and in each subfractal, pixels are only
related to other pixels of its own area. Thus

x̂f =





Xa

Xb

Xc





=





Ψa 0 0
0 Ψb 0
0 0 Ψc



×





Λa 0 0
0 Λb 0
0 0 Λc



×





Xa

Xb

Xc





+





B̂a

B̂b

B̂c





and finally

Xa = Ψa × Λa × Xa + B̂a

Xb = Ψb × Λb × Xb + B̂b

Xc = Ψc × Λc × Xc + B̂c

5 Discussion and Conclusion

In this paper, a new concept of subfractal is defined. Sub-
fractals are independent fractal codes of different parts of
an image. Each pixel of these areas is only related to other
pixels of the same area. This property makes subfractals in-
dependent of the changes in other areas which make them
suitable for using as features for recognition applications
such as face recognition. An algorithm for extracting sub-
fractals is proposed. In this algorithm, for each range block,
we try to find a suitable domain block within the same sub-
fractal area. To expand the domain pool for each subfrac-
tal, we used the overlapping partitioning with different size
and also we added 7 different rotated and flipped versions
of each domain block to the pool. In this paper, we also
showed the mathematical basis which makes this subfrac-
tal codes independent of each other. As fractal code of an
image is not unique, we propose the use of subfractals with
the same geometrical parameters as features for applications
such as face recognition.
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