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Abstract

A graph based method is introduced to segment the pec-
toral muscles in screening mammograms. An adaptive
pyramid is used to segment the mammogram into a num-
ber of components. Components forming the pectoral mus-
cle are identified based on position, intensity, and shape.
The boundary of the union of these components forms an
initial boundary that is refined via an adaptive deformable
contour model. The method is tested on 83 medio-lateral
oblique mammograms from the Mini-MIAS database. Seg-
mentation results are evaluated in terms of the proportion of
correctly assigned pixels. Performance compares well with
existing methods based on Hough transform and on Gabor
wavelets.

1 Introduction

Breast cancer screening programs based on mammogra-
phy are used in many countries to facilitate early detection
of breast cancer. Normally mammograms are evaluated vi-
sually by radiologists for signs of cancer. Since the mid
1980’s, many computer algorithms have been proposed for
automating various aspects of detecting the presence of can-
cer in mammograms and commercial products now exist
that implement some of these programs. While detection
rates for automatic systems are quite high, the false pos-
itive detection rates are also high. Accordingly, work con-
tinues on improving all aspects of computer-aided detection
(CAD) for mammography.

Accurate segmentation of the pectoral muscle is among
the many tasks that is needed to improve CAD for mam-
mography. The pectoral muscle is one of the few anatomical
features that appears clearly and reliably in medio-lateral
oblique (MLO) view mammograms. The pectoral muscle is
an important landmark both for providing contextual infor-
mation regarding anatomies and for image registration.

To a first approximation, the pectoral muscle appears as
a bright triangular patch in the upper left or upper right cor-
ner (depending on right or left breast) of the image. This
motivated initial algorithms based on the Hough transform
[2] [4]. The pectoral muscle is usually not exactly triangu-
lar and more accurate segmentation was achieved by using
Gabor wavelets to segment the pectoral muscle without as-
suming straight boundaries [5]. Aside from incorporating
general shape and location assumptions of pectoral muscle,
these methods rely only on local image information.

In this paper, graph theory methods are used in an ef-
fort to incorporate global image information in segmenta-
tion. Graph pyramids were introduced by Tanimato and
Pavlidis in 1975 [6] and have been applied widely in im-
age processing. A graph pyramid is a stack of successively
reduced graphs. At each level in the stack, the graph is a
reduction of the graph at the previous level. A vertex of a
graph at one level is connected to a number of vertices at
the previous level. The vertex in the higher level is called
the parent of the vertices in the previous level and the set
of vertices to which the parent is connected in the previ-
ous level (the children) is called the receptive field of the
vertex. The collection of graphs forms a multi-resolution
description of the image, but unlike multi-resolution rep-
resentations via wavelets or filter banks, the connectivity
between layers provides a vehicle for tracking information
from disparate regions of the image. The connectivity be-
tween layers may be based directly on image intensities or
derived image properties, thus providing a flexible tool for
associating information content.

This paper is arranged as follows. In section 2, adap-
tive pyramids (AP) are described in detail. In section 3,
a method for extracting the pectoral muscle, including an
adaptive deformable contour model to refine the pectoral
muscle boundary, is presented and in section 4 the perfor-
mance of the method on a standard set of mammograms is
reported.



2 Adaptive pyramid

Many methods have been proposed in constructing a
graph pyramid from an original image. A. Montanvert, P.
Meer and A. Rosenfeld introduced a general framework for
building a pyramid graph [3]. In this framework, thel + 1
level graphGl+1 = (Vl+1, El+1) is derived from thel level
graphGl = (Vl, El) by the following steps:

1. The selection of verticesVl+1 from Vl. The selected
vertices fromVl are named the surviving vertices while
the unselected vertices are named non-surviving ver-
tices.

2. The connection of each non-surviving vertices to the
surviving vertices. This step defines a receptive field
and parent relationships between the corresponding
two levels of graph pyramid.

3. A definition of the adjacency relationships between el-
ements inVl+1 in order to defineEl+1.

Many algorithms following these steps have been pro-
posed. One of these is the adaptive pyramid introduced by
Jolion [1]. In this adaptive pyramid, a support set is first
defined for each pixel. The support setSij of pixel (i, j) is
the set of all the neighbors of (i, j).Sij is initialised as the
3 × 3 neighborhood centered on (i, j). Based on these sup-
port sets, an interest operator is introduced to determine sur-
vivor selection (step 1). This interest operator is not fixed.
Any image characteristics, global or local, can be incorpo-
rated into the interest operator. For example, Jolion used the
variance of the intensity values within receptive fields as the
interest operator [1].

Three variables are involved in selecting surviving ver-
tices; two binary state variablespij , qij , and the outcome
of the interest operator,vij . The selection process works in
two steps. In the first step, the state variablepij is set as

pij =
{

1 if vij = min{vmn : (m,n) ∈ Sij}
0 otherwise.

In the second step, the state variableqij is set and some of
thepij is updated by

qij =
{

1 if pmn = 0 ∀ (m,n) ∈ Sij

0 otherwise.
pij = 1 if vij = min{vmn : (m,n) ∈ Sij , qmn = 1}.

A pixel (i, j) is retained for the next level ifpij = 1.
To make the connection between the non-surviving pix-

els and the surviving pixels (step 2), a contrast operator is
used. A non-surviving pixel (i, j) will be connected to its
surviving neighbor (m, n), if and only if

|µij − µmn| = min
(k,l)∈Sij

{|µij − µkl| : pkl = 1},

whereµij , µmn andµkl are the mean intensities of the re-
ceptive fields ofvij , vmn andvmn.

Whenever a non-surviving pixel (i, j) is connected to a
surviving pixel (m, n),Smn is updated bySmn = Smn ∪
Sij . Thus the new adjacency relationships are formed.

In the adaptive pyramid, a root extraction process is also
introduced to detect the components of the original image
during the construction of the pyramid. A non-surviving
pixel (i, j) is called a root if and only if

|µij − µmn| > R(size(i, j)),

where functionR is defined by

R(x) =
{

min contrast ifx >min size

min contrast∗ eα(min size−x) otherwise

The value ofα was chosen so thatR(1) = 64 as was
done by Jolion [1]. The two parameters mincontrast and
min size will be discussed in section 3.1.

If a non-surviving pixelvij is identified as a root, it will
be retained to be a survivor and will appear in the high-
est level graph. The root extraction process prevents some
components of the original image from disappearing dur-
ing the construction of the graph pyramid and promises that
each component of the original image has a representative
pixel in the highest level graph.

The highest level graph is reached when no survivor can
be selected. All the remaining pixels are roots. Each pixel in
this level graph represents a component of the original im-
age. From the receptive fields of these representative pixels,
we can trace all the pixels within the corresponding compo-
nents.

3 Pectoral Muscle Extraction

3.1 Implementing Adaptive Pyramid

The adaptive pyramid segments the mammograms into
many components. The two parameters, mincontrast and
min size, involved in the root extraction process, affect the
number of the resulted components. A larger mincontrast
allows more pixels to be merged together and thus produces
fewer components. Conversely, a smaller mincontrast pre-
vents pixels from merging together and thus produces more
components. For segmenting the pectoral muscle, values
min contrast = 5 and minsize = 100 were used. These val-
ues were determined empirically.

With these values for mincontrast and minsize, the
non-breast region typically appears as 1 to 3 components
and the breast region, being more complex, appears as many
small components (Figure 1).



Figure 1. Some components of image mdb00
after the segmentation. (a) is the original im-
age, (b) is the non-breast component. (d) is
a component of the pectoral muscle, (f) is an
artifact, (c) and (e) are two components of the
breast

3.2 Adaptive Deformable Contour Model

After segmentation, the next task is to register the com-
ponents belonging to the pectoral muscle. To register these
components means to find their corresponding representa-
tive pixels in the highest graph. Three steps are used to do
this job. First the component containing the upper left pixel
(or right depending on left or right breast) is selected as
a seed for the pectoral muscle. In the second step, compo-
nents with intensities similar to the seed component and sat-
isfying a set of size and position criteria are included as part
of the pectoral muscle. These criteria are (1) the intensity
of the component is within 80 units (on a scale of 0 - 255)
of the intensity of the seed component, (2) the root of the
component lies above the diagonal line of the region of in-
terest (ROI) (the ROI is the smallest rectangle that includes
the entire breast), (3) the distance between the root of the

component and the root of the seed component is less than
half the length of the diagonal of the ROI. In the third step,
shape information is used to further edit the collection of
components assigned to the pectoral muscle. Components
are excluded if (1) the geometric centre of the component
is more than 30 pixels from the boundary of the seed com-
ponent, (2) the ratio of the dimensions of the smallest box
containing the component is less than 5, (3) the slope of ei-
ther the left or right boundary of the component is negative
for left breasts or positive for right breasts.

Experimental results show that these three steps identify
most of the pectoral muscle components correctly. How-
ever, it is difficult to find exactly all the pectoral muscle
components. Thus the boundary extracted from the iden-
tified components is often not precise. An adaptive de-
formable contour model was developed to refine the ex-
tracted pectoral muscle boundary.

Let V = v1, v2, ..., vN be the current pectoral mus-
cle boundary with the ordered pointsvi = (xi, yi), i =
1, 2, ..., N . The adaptive deformable contour model works
by moving the boundary through the spatial domain of the
image to minimise a measure of energy based on the fol-
lowing formulas.

Ei = αEin,i + βEex,i,

whereα, β are two weights controlling the internal and ex-
ternal energiesEin,i andEex,i. The internal and external
energies are given by

Ein,i = a1V
′(vi) + a2V

′′(vi)
Eex,i = − |Ix(vi)| / max

I
(Ix),

whereV ′(vi) andV ′′(vi) are the first and second derivatives
of the contourV atvi, I is the image, and

Ix =
∂I

∂x
.

The weightsa1 anda2 are used to control the relative contri-
butions ofV ′(vi) andV ′′(vi) and were fixed for this study
ata1 = 1 anda2 = 2.

The internal energy serves to reduce the curvature of the
contour. This is important since the pectoral muscle has a
general smooth straight shape. The external energy drives
the contour toward strong edges in the image. This is im-
portant since the pectoral muscle is generally appears much
brighter in the image than other tissue.

At every pointvi, the energies are computed on an asym-
metric neighbourhood,Ωi, of size1 × 9 (Figure 2). More
precisely,

Ωi = [(xi − 3, yi), . . . , (xi + 5, yi)] (right breast)
Ωi = [(xi − 5, yi), . . . , (xi + 3, yi)] (left breast).



Figure 2. An example of the domain Ω of vi, In
this case, the chest wall is left hand side po-
sitioned. The vi is modified to ej if the minEi

is reached in ej .

Asymmetric neighbourhoods are used since the initial pec-
toral muscle boundary usually appears closer to the chest
wall than the true boundary.

Unlike other deformable contour models, the weights for
internal and external energy,α andβ, are adjusted automat-
ically as follows.

α = |xi − xi−1|+ |xi+1 − xi| − 2 ∗ d

β = exp((max
Ωi

|Ix| −min
Ωi

|Ix|)/meanΩi
|Ix|)

d = (x1 − xN )/N.

When the pointvi is not close to the true pectoral muscle
boundary,β will become big, and thusEex,i will take more
weight inEi. When the boundary is not smooth enough,α
will raise, and thusEin,i will take more weight.

The elements ofΩi will be denoted byej , j = 1, 2, .., 9,
and the internal and external energies at these points will be
denoted byEj

in,i andEj
ex,i respectively. Thus

Ej
in,i = a1V

′
(ej) + a2V

′′
(ej)

Ej
ex,i = − |Ix(ej)| / max

I
(Ix),

where V
′
(ej) and V

′′
(ej) are the derivatives along the

curve obtained by replacingvi by ej .
To allow comparison between the different energy terms,

it is necessary to rescale them to the range[0, 1].

Êj
in,i =

Ej
in,i − Emin

in,i

Emax
in,i − Emin

in,i

,

Êj
ex,i =

Ej
ex,i − Emin

ex,i

Emax
ex,i − Emin

ex,i

,

where the superscripts min and max denote the minimum
and maximum of the respective quantities over the domain
Ωi. Thus the contour is driven to minimise

Êi = αÊin,i + βÊex,i.

The energy of the contour is minimised iteratively. Each
iteration consists of minimisinĝEi for i = 1, . . . , N con-
secutively. At a given step, the pointvi will be replaced to
the pointej , if

Êj
i = min Êk

i , k = 1, 2, ..., 9.

In this study the number of iteration was fixed at 30 al-
though experiments showed that a stable contour was gen-
erally reached in only a few iterations.

Figure 3. Results obtained for the image
mdb040. (a) Original image (b) Hand-drawn
pectoral muscle edge (c) and (d) Pectoral
muscle edge detected by AP method and
adaptive deformable contour model, respec-
tively.

4 Experiment and Results

4.1 Database

83 medio-lateral oblique (MLO) mammograms, were
chosen from the Mammographic Image Analysis Society
(Mini-MIAS) collection. The same images were used as
in the study by Ferrari, et al. [5]. All images are MLO
views with 200-µm sampling interval and 8-bit gray-level
quantisation and1024 × 1024 pixels in size. To reduce the
processing time, the images were down sampled to the size
of 256× 256 pixels.

4.2 Evaluation Protocol

The same protocol for evaluation as the one used in [5]
is employed in this paper to evaluate the results and to make
a comparison with other methods. The extraction results of
pectoral muscle boundaries of 83 images were compared
with the boundaries manually identified by two radiologists



Figure 4. Results obtained for the image
mdb110. (a) Original image (b) Hand-drawn
pectoral muscle edge (c) and (d) Pectoral
muscle edge detected by AP method and
adaptive deformable contour model, respec-
tively.

as reported in [5]. The pixel coordinates for the radi-
ologists drawn boundaries were kindly supplied by R. M.
Rangayyan. Since the manually identified boundaries were
obtained from the original full-size images (1024 × 1024
pixels), while the results of this paper were extracted from
the down-sampled images of size256 × 256, the detection
results were transferred back to the original size by inter-
polation. The evaluation was performed by measuring the
percentages of false-positive (FP) and false-negative pix-
els (FN). The false-positive pixels are the pixels outside
the manually drawn pectoral muscle boundary but inside
the boundary marked by our results; similarly, the false-
negative pixels are the pixels bounded by the manually
drawn boundaries but outside our extraction results. The
percentages of false-positive pixels and false-negative pix-
els are calculated by normalising the number of FP and FN
pixels by the total amount of pectoral muscle pixels. The to-
tal number of pectoral muscle pixels was obtained by count-
ing the pixels between the manually drawn boundary and
the edge of the image.

4.3 Results

The mean percentages of FP and FN pixels of 83 images
are3.23% and5.73%, respectively. For 50 images, both

Figure 5. Results obtained for the image
mdb033. (a) Original image (b) Hand-drawn
pectoral muscle edge (c) and (d) Pectoral
muscle edge detected by AP method and
adaptive deformable contour model, respec-
tively.

FP and FN percentages were less than5%. There are 18
images with both FP and FN percentages between5% and
10%; and the FP or FN percentages are greater than10% for
15 images. All the results are presented in Table 1. Table
1 also includes the results obtained by Hough and Gabor
methods [5] on the same 83 mammograms.

Three examples (mdb110, mdb040 and mdb033) are
shown in Figure 3, Figure 4 and Figure 5. The pectoral
muscles in mdb110 and mdb040 are complex because there
are many lines in the region that can be confused with the
true pectoral muscle boundary. In both cases, our method
works well. The pectoral muscle in mdb033 is complex and
the appearance is somewhat unusual. The method did not
perform particularly well on this example with percentages
of FP and FN at16% and13%, respectively.

The processing time to perform the whole process is
about 5 seconds, using a 2.8 GHz computer with 1 GB of
RAM memory.

5 Conclusion

The proposed method (AP) performs about equally well
as the method based on Gabor wavelets, both of which per-
form significantly better than the Hough transform method.



Methods FP(%) FN(%) < 5% 5%− 10% > 10%
Hough 1.98 25.19 10 8 65
Gabor 0.58 5.77 45 22 16

AP 3.23 5.73 50 18 15

Table 1. Comparison of pectoral muscle de-
tection results with Hough and Gabor [5].
The values of FP(%) and FN(%) are the aver-
age percentages of FN and FP pixels of 83 im-
ages. < 5% means the number of images with
both the percentages of FN and FP smaller
than 5%, 5% − 10% is the number of images
with both the percentages of FP and FN be-
tween 5% and 10%, > 10% means the number
of images with the percentages of FP or FN
bigger than 10%

The Hough transform models the pectoral muscle bound-
ary as a single straight line. Both the Gabor wavelet method
and the AP method allow for local deviations from a straight
line and so have the flexibility to conform to more complex
boundaries. In terms of the percentages of FN pixels and
number of images with both the percentages of FP and FN
< 5%, the method performed better than by Hough trans-
form and Gabor methods (Table 1). The combination of AP
and deformable contour described here is suitable for use in
CAD systems for mammography.
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