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Abstract. For complex engineered systems, it is importamiotaduct technical risk assessment early
in the system development life-cycle, in orderdentify critical system requirements, such as gafet
requirements, that should be included in desigims Paper proposes a model-based approach to such
assessment, which can be applied from the systgnireenents analysis stage onwards.

The approach starts with the application of the &&@&ur Trees modelling notation to natural
language functional requirements. The BT model hent extended to include the events and
conditions that might contribute to hazards, antbraated model checking is used to identify the
mechanisms by which component or subsystem failcaeslead to hazardous system failures. The
approach is intended to be used iteratively in giesind analysis, to assist system designers in
assessing the effectiveness of system safety mergemts. A hypothetical bushfire-fighting
management system is used to illustrate the apiproac

1. INTRODUCTION
Overview and Scope

This paper introduces a formal process to assistesy analysts to identify system safety
requirements, and check their effectiveness, darthe system development life-cycle, on models
derived directly from natural language Functionpe@fications. The approach uses the Behaviour
Tree (BT) notation (Dromey 2003) to model systeguieements and automated model checking to
check the effectiveness of the proposed safetyrfesit

Behaviour Trees use a graphical notation that kas hown to be easy to understand by people who
are not formal methods experts (Powell 2010). TRenBtation is distinguished from other formal
modelling notations by its ability to capture fuocis, object states and multi-threaded behavioar in
single modelling language (Lindsay 2010).

Although the paper’s emphasis is on system satbty,approach is applicable to any risks that
concern system functionality and behaviour, inalgdiisks to security, reliability, maintainability,
and other system “-ilities”. We coin the tefunctional risk(by analogy to functional safety) to mean
system risk associated with what functions theesgsand its components perform — or do not
perform — and in what order, both when “all is Wwelhd when one or more of these functions has
failed. For example, in the case study below, sgdienctions include storing fire-fighting mission
data and calculating when and where to drop fiterdants. Safety risks associated with the system
include dropping retardants on the wrong placedangping retardants inadvertently.

The approach can be used on sets of functionalresgents of arbitrary detail — whether it is very
early in the life-cycle when functions are defiredy in broad abstract terms, or later when a ttai
system functional architecture is available. Nouag®ions are made about how the functionality is
implemented: it could be by hardware, softwareuwnan operators, or some combination of these, or



it need not even have been decided yet. At thigesthe approach is restricted to purely functional
behaviour (such as the order in which system fonstiare invoked and the conditions under which
they are invoked): performance issues — includedg-time timing issues — and data correctness are
not currently covered.

We assume that the main system hazards have altesaly identified: that is, the states that the
system and its functional components could get thet might lead to harm or other undesired
consequences. We adapt the BT method of develapingels to include component failures and
other events and conditions that might contribatedzards. We then use automated model checking
to identify the system behaviours that lead to s system failures.

We contend that this process leads to better urzaeimg of functional risk and helps system
designers to identify safety requirements for pn¢ivgy or mitigating the hazards. The approach is
intended to be used iteratively, to assist desgymerassessing the effectiveness of system safety
requirements and in assessing residual risk. Tpeoaph can be also used to improve understanding
of the consequences of functional requirementdaintg satisfied — whether the reason is component
failure-in-operation, design failure, or missinqutionality (for example, in preliminary builds @
spiral development, or while functions are unav@daluring maintenance).

Innovation and I mportance

Many other methods of system modelling and analiigige been developed, but typically using
specialist notations with difficult semantics. Thiskes them difficult to integrate into more gehera
systems engineering processes, which in turn méaeg quickly become sidelined as system
requirements change. Also, many of them do notesegd well, to handle analysis of large

requirements sets (Broy 2011). By contrast, ourr@ggh stays close to the natural language
requirements through the use of the BT notation, scales well to handle very large Functional
Specifications. We contend that these advantagad te improved understanding of system
requirements by all stakeholders, and closer iategr of safety analysis into standard systems
engineering processes.

The main innovation in this paper is to demonstha to integrate the results of Preliminary Hazard
Identification (PHI) into BT models and then usetcawated model checking to help identify
functional risk. Automation means that analyses lbanmepeated quickly after changes are made to
requirements.

Traditionally technical risk assessment is not greened until the system architecture and design are
well advanced. Many experts have pointed out howdkiat system developers need to start
considering safety aspects early in developmengnsure that adequate safeguards are incorporated
into the system concept, architecture and desigueson points out for example that it is better to
build safety into a system rather than to try td é&don later (Leveson 1995). Technigues such as
Functional Failure Analysis can be applied early lack tool support. This is the gap that our
approach addresses.

There are many other reasons for conducting fumaticisk assessment early in development. For
engineering organisations tendering for fixed-pdoatracts, it is particularly important to undarst
technical risks prior to tendering, since managiregn can have a significant impact on cost. It3e a
important during planning if development is to bend incrementally (such as when undertaking
spiral development), in order to decide which arefagunctionality to include in different builds.
Finally, it is important for the organization(s) iwh operate and maintain the system, so that thay c
develop Standard Operating Procedures that ensfetysis maintained during operation, and
fallback procedures in the event of system failures



Outline of the Paper

This paper reports the results of an applicatiorthef approach to a large case study supplied by
Raytheon. The case study concerns a hypothetistgdrayof systems for managing bushfire fighting.
The challenge was to extract functional requiremémt a particular system — an Aerial Fire-fighting
Management System (AFMS) — from a Functional Peréorce Specification consisting of thousands
of requirements, and then to identify some of ysesn hazards that could arise, use the approach to
help identify the system behaviours that could giise to such hazards, and identify the risk
remaining after safety features were added toykem design. The preliminary results on which this
paper is based are available on the wédtitpt//itee.ug.edu.au/~dccs/AFMS

Section 2 introduces the BT method and notation thiedtranslation to the SAL model checker.
Section 3 summarises the proposed approach to gimgpdunctional risk assessment. Section 4
describes the AFMS case study. Section 5 descal®$ model developed from the requirements
using the BT method. Section 6 describes the AF&aids that were chosen for study and shows
how to adapt the BT model to include componentufad and safety requirements. Section 7
illustrates the use of the SAL model checker teadbehaviours leading to system hazards. Section 8
repeats the analysis after certain safety requingsrieave been added to the system, to show that ris
has been reduced effectively. Section 9 descridlesed work and Section 10 describes conclusions
and future work.

2. BACKGROUND
The Behaviour Tree Notation

Our approach is based on the use of the Behavima (BT) notation for capturing requirements that
are given in natural language (Dromey 2003).

The strength of the BT approach is two-fold: Firsthe graphical nature of the notation provides th
user with an intuitive understanding of a BT modah important factor especially for use in indystr
Secondly, the process of capturing requiremenfeiformed in a stepwise fashion. That is, single
requirements are modeled as single BTs, calledvichaal requirements trees. In a second step these
individual requirement trees are composed into Biie called the integrated requirements tree.
Composition of requirements trees is done on tlaplgcal level: an individual requirements tree is
mergedwith a second tree (which can be another individeguirements tree or an already integrated
tree) if its root node matches one of the nodethefsecond tree. Intuitively, this merging step is
based on the matching node providing the pointtatiwthe preconditions of the merged requirement
trees are satisfied. This structured process pegvil successful solution for handling very large
requirements specifications (Powell 2010).

Concurrent Flow . :
Alternative Flow

Figure 1: Parallel vsalternative branching syntax

The BT notation is a graphical modelling notatiohiet represents a system'’s behaviour as a tree-
like structure consisting of nodes and edges. Fibaontrol starts at the root of the tree and foo
paths down the tree, with nodes representing coemgostate changes and message dispatch and
receipt. (In this paper “component” can mean a groufunctions a logical architecture as well as a
subsystem or physical component, including humagraiprs.) There are two kinds of branching:



parallel branching (LHS of Fig.1) whereby a newetd of control is forked for each branch; and
alternative branching (RHS of Fig.1) in which flaaentinues down at most one of the branches.
Generally threads are independent and proceed wently “at their own pace”, subject to
synchronization and other flow directives as expdibelow. The exception to this is when multiple
nodes are linkedtomicallyas a block with no edges between them: when femehes such a block,
all other threads wait until all of the nodes ie thlock have been “executed”.

The different kinds of BT nodes are shown in Fig.A2component might change its stattafe
realisatior), receive an input from another componentefnal input eventor from the environment
(external input eveptor similarly, send an output to another compor{gniérnal output eventor to

the environment (external output event). A speczae of a state realization is attribute assignment
written attrib:=value, whereby the value of one of the component’staitds is modified. If an input

is not available when control flow reaches an irgugnt node, the system has to wait until the event
is received. Similarly, when control flow reachegw@ard node, the system waits until the guard
condition becomes true before proceeding. If fl@aches a selection node, it continues on if the
selection condition is true and terminates if not.

tag | component flag tag | Ccomponent flag tag componentﬂ R
[state ] ? condition ? 777 condition 777
State Realisation Selection Guard
tag | component flag tag | component flag tag | component flag
> message < < message > >> message <<
Internal Input Event Internal Output Event External Input Event

Figure 2: Syntax of Behaviour Tree nodes

As shown in Fig. 2, a node may also contain tagkoara flag. Tags are used for tracing a (set of)
node(s) to the requirement(s) that gave rise tentHelags are control flow directives: When flow
reaches a leaf node withreferenceflag (=>), control jumps to a matching node: ttés be either an
explicitly named node, or — provided there is ndauity — a node elsewhere in the tree with the
same contents; this is essentially a device todadaplicating sub-trees in the model. When flow
reaches a leaf node withreversionflag (*) flow jumps back up to a matching nodeabthe current
node; moreover any other threads of control treatexd below the target node get terminated. The BT
notation also has flags for killing sibling threaatsd for synchronizing threads, but they are netlus
in this paper.

The BT notation includes other operators and ngged that are not introduced here. For a full
description of the syntax the reader is referredtite Behaviour Engineering web SitéThe
operational semantics, which is informally desdaliladove, is fully formalized in (Colvin & Hayes
2011). The BT notation supports relationships (ttat, why, where, etc of requirements) but at this
stage the SAL translation is fairly rudimentary andestricted to data relations.

M odel Checking Behaviour Trees

BTs can be interpreted as state transition systerdstranslated into the syntax of a model checker
such as SAL (de Moura et al. 2004f NuSMV (Cimatti et al. 1999). The translation38L is fully
automated and has been described elsewhere (Gr@08§ikg and SAL is freely available. But in
principle other model checkers could be used.

As input the model checker takes a model, whichuncase is a BT model translated into SAL code,
and a property to be checked. Paths through the Sdte model correspond one-to-one with system

! www.behaviourengineering.org
? http://sal.csl.sri.com/




behaviours in the BT model, in the sense of ingamt control flow in interleaved concurrent thread
as allowed by the BT model semantics given abo@é. iS able to check properties stated in linear
temporal logic (LTL) (Emerson 1990), which is ahri@nguage for talking about the order in which
things happen (or don’t happen). In Sections 648vbave make use of this capability to formulate
functional safety concerns — such as system hazaadd TL formulae.

LTL provides temporal operators to express assertabout paths through the SAL moda(P)
means that a propositidh holdsgenerally— i.e., at every step on the pal{P) means thaP holds
eventuallyon the pathX(P) means thaP holds at the next step on the path; 8d Q means thaP
holds untilQ holds (andQ does eventually hold).Formulae can be built using standard propositional
connectives (and, not, implies, etc). For the npast we use only G and standard propositional logic
below. Finally, atomic formulae correspond to estants about what state a component is in, the
current value of an attribute, or whether a paléicmessage is currently available.

When given a model and a property, SAL either retyroved (meaning it has shown that the
property holds true on all paths through the modeljes out (if it runs out of computing resourges)

or returns a counterexample. @dunterexamplds a path through the SAL model for which the
property does not hold. It is a simple matter axdra counterexample back to a sequence of steps
through the BT model illustrating a system behawbich violates the property. The path need not be
continuous, since different threads can progredgffarent rates, but in keeping with BT semantics

will represent one of the behaviours that is alldweder the (BT model of the) requirements. In
cases where the BT model has not constrained lintilaes of states or attributes, SAL is free to
choose its own values. At each step SAL can alsosd whether or not a particular external input
message is available. This ensures that all pessdgnarios are taken into account.

Although SAL only returns a single counterexampieadime, it is usually possible — by further
constraining the property to be proved — to elir@rfaom consideration the particular conditiong tha
gave rise to the counterexample, and then use 84ibhd more counterexamples (if they exist). This
process is illustrated in Section 7 below.

In this paper we use the “prioritised” version r@frislation to SAL, whereby internal steps get jagor
over external events. That is, when control floactees an external input message it waits theré unti
all other threads have finished or reached an mxteanput message. (We take care to ensure that
every loop in the BT model contains at least onreal input message, to avoid live-lock. This
sometimes entails inserting a dummy node.) Usingrtsation significantly speeds up model
checking while at the same time eliminating manyrgus counterexamples. In effect we are
assuming — for the purposes of analysis — thatrriatesystem processes run faster than the
environment is throwing new events at the systefichvis a reasonable assumption for our case
study. But the analyst can relax this assumptiombgrting dummy nodes at suitable “break points”
or alternatively simply use the non-prioritisedsien of translation.

3. THE FUNCTIONAL RISK ASSESSMENT PROCESS
In outline, the proposed process is as follows:

1. Start with a set of natural-language functionalrezgments for the system.

2. Conduct a Preliminary Hazard Identification (PHRdadetermine which functional failures
and system hazards are of interest.

Develop an initial BT model from the functional udgments at a suitable level of detail.

Adapt the BT model to include the functional fadlsrof interest and to make it suitable for
model checking: see below for more detail.

5. Express the system hazards as temporal logic girepand use the model checker to check if
they are reachable in the BT model.

® http://sal-wiki.csl.sri.com/index.php/FAQ#Semantics of the LTL operators




6. If hazards are reachable, check the counterexampkesned by the model checker to
determine which behaviours give rise to them. # tisk that such behaviours could occur is
unacceptable, add safety functions to the systesiguld@o try to eliminate the hazards or
mitigate the risk.

7. Repeat steps 5 and 6 until the remaining riskdgptable.
The process is illustrated on a case study below.

4. THE AFMS CASE STUDY

The case study concerns a hypothetical systemdiom@and and control of bushfire fighting from
aerial vehicles, called thierial Fire-fighting Management System (AFMBhe AFMS is part of a
larger system of systems called the Bushfire FnghtManagement System (BFMS), which
coordinates fire fighting across a coalition of feliént fire-fighting and emergency service
organisations.

The main task of the AFMS is to manage aerialfighting missions. Different missions can involve
different types of fire retardants being droppedifferent kinds of patterns — collectively callécbp
solutionshere. The AFMS is concerned with collecting antiationg the information that is required

to calculate a drop solution, and with passing érolpition instructions to the drop system on the
aircraft - called the drop bay here. The focushis tase study is on the on-board component of the
AFMS, called theAerial Fire-fighting Control SysterfAFCS). The BFMS Command and Control
(C2) units and other BFMS units will also contaifMS components but — apart from their logical
interfaces with AFCS — these are not being consitibere. Figure 3 shows the logical architecture of
the AFMS.

| I
| T Operator Nav Unit |
| I
| |
Command & | o Nav Data - _ '
Control Lo Voice Link | | .| Drop Solution
| Calculator |
Forward | Drop Mllssmn L] L _ :
Observers | Profile . lrt:ip orop Bay | |
—= Data Link | olution |
Met sources [— ¥ MetData —
I AFCS |
| Aircraft |

Figure3: AFM S Logical Architecture

In Figure 3, a solid box labeled AFCS represengstibundary for the main focus of our case study.
The AFCS interacts via voice link or data link wilommand and Control (C2), Forward Observers
(FO) and Meteorology (Met) data sources. The ARGSIf physically resides on an aircraft
(represented by a dashed box in figure 3) and iatevacts with an operator, a Navigation (Nav)
system and a Drop bay, all of which are aboardhtferaft. Pieces of information that are needed to
calculate a drop solution include:

» Drop Mission Profile (DMP): the main piece of inflaaition specifying mission data such as

target, retardant type, volume, and (for schedalessions) time of drop.
» Navigation (Nav) data: indicating the position, tlieg and speed of the aircraft.
* Meteorology (Met) data which include temperaturd aind conditions.

The Drop Solution Calculator is an off-the-shelfrgonent that produces a drop solution for the drop
bay to execute.



Requirements

The requirements for the AFMS are given in a natarsguage functional performance specification
(FPS). There are 58 requirements in the FPS ®AFRMS taken from a larger set of requirements
(approximately 1700 requirements) for the BFMS. Wik not give the entire set of requirements for
the AFMS in this paper. The following key requirethgives a flavour of the natural language
requirements:

AFCS-51 The AFCS shall be able to automatically carrytbetfollowing sequence:
a. receive a call for drop/drop mission from the vdio& or data link;
b. calculate the drop solution;
c. prepare drop (for those variants with automateg dnechanisms only); and
d. display the drop solution to the user for confinmatand execution.

The set of requirements in its entirety is avagatnh the web at http://itee.uq.edu.au/~dccs/AFMS/.

5.INITIAL MODEL
Additional Client I nformation

We constructed an initial model of the AFCS usimg BT notation which we called BT Model 1. The
initial model tries to faithfully capture the regaiments and tries to avoid the forcing of design
decisions as much as possible. However, we hagledaihto our model the handling of 3 different
types of missions based on how they are initiasetieduled, operator initiated or on call. The 3
different types of missions were not mentionedhia tequirements but were suggested by our client.
We have added them to our model because of thabpitgsof risks specific to how a mission is
initiated.

Simplificationsfor Modelling and Analysis

While the addition of 3 different types of missicadds complexity to the model, we have also taken
steps to simplify the model to an appropriate I@fedbstraction for our analysis:
* FOs are not in our model since their behavioundksitinguishable from C2 for our purposes.
e C2 is not modelled in detail beyond the abilitysend Drop Mission Profiles (DMPs) and
other messages.
* Internal details of the Navigation System and Datd communications are omitted.
» External sources of Met Data have been reduce@tio C
* Although implicitly the different fields in a DMPan be modified individually, in the model
we simply pass or modify whole DMPs.
» We focus on risks associated with a single DMP .orily our model, the AFCS stores only
one DMP at a time.
» Situational awareness data (mentioned in the reaugnts) are omitted.
» Details of inputs required for calculation of theoPp Solution have been reduced to the DMP,
Met Data and Nav Data.

Note however that such details could be modelledTn notation if desired. (Modelling of the
handling of multiple DMPs requires the use of patars and quantification in BTs, which were not
explained in Section 2 above.)

Overview of the Initial Model

The initial model of the AFMS has 4 main threads:

e Athread that handles the updating of Met Data.

» Athread that handles the updating of Nav Data.

» A thread that handles the management of the DMighnitself has 3 sub-threads: for DMP
reception from C2, for DMP creation by the operatmd for DMP modification by the
operator.

» Athread for preparing and executing a drop sofugehich consumes the DMP).



In the requirements, data can be sent from C2dA#CS via a data link or a voice link. Although

not specified in the requirements, we have intégor¢his to mean that the data link is the preterre
channel of communication, with the voice link agtias a backup. This is reflected in our model in
the sending of Met Data from C2 to the AFCS anthensending of a DMP from C2 to the AFCS.

Figure 4 shows the fragment of the BT for our alitnodel that deals with the sending of a DMP
from C2 to the AFCS. There is an alternative bramghat node 6.1. If the data link is down
(represented by componebatalink havingdown as the value of its attributgatushere), then the
branch headed by selection node 6.2 is taken: M 3 sent via the voice link, the operator thea ha
to explicitly enter the details of the communicaeiP into the AFCS (represented by the state
updateDMB, and the DMP status is setready If the data link is up, then the DMP is sent the
data link, and there is no operator involvement. either case, the thread reverts back to the node
ManageDMP(start] which is at the start of the thread that hantliescreation and updating of DMPs
(the third thread).

6.1 c2

== sendDM ==

[1]

/\

6.2 DataLink 6.7 DatalLink
? status=down 7? ? status=up 7?
A J A
6.3 VoiceLink 6.8 DataLink
[ sendDM ] [ sendDM ]
A J A
6. 4 Operatar 6.9 DM P
[ updateDMP ] [ ready ]
A 4 Y
6.5 D P 6.10 ManageDM P "
[ ready ] [ start ]
A 4
6.6 M anageDM P "
[ start ]

Figure4: Sending of aDMP from C2to the AFCS

Figure 5 shows fragments of the BT for the AFC®aldrcorresponding to preparation and execution
of a drop solution for a scheduled mission. Thedl first waits until the condition that DMP is
NOT(none)s satisfied: i.e., a DMP has been received agredtinto AFCS by the operator. After the
condition is satisfied, then there are 3 altermativanches corresponding to the 3 ways that a drop
mission can be initiated. Only the case where tiop dhission is scheduled is shown. An operator-
initiated mission is handled similarly but with thperator entering an execute command acting as the
trigger instead of having a time trigger. An otl-eaission is slightly more involved because the
trigger is sent by C2 and may go through the dakadr the voice link depending on the status ef th
data link. All 3 cases have nodes 9.4 through $hlebmmon. Nodes 9.4 through 9.8 represent the
preparation of the drop solution. After the dropuson has been prepared, the operator has to
confirm the drop solution. Once confirmed, thepsmlution is sent to the drop bay, the states of
several components are modified, and the threagtt®eto node 9, all within a single atomic action.



Note that in the BT model, we introduced auxilifumctional components that are not in the AFMS
logical architecture diagram. For example, the Bd3gments in Fig. 5 contain the auxiliary
component&xecuteDMandPrepareDS Some of these auxiliary components were creatdedrgets

of reversions and references, ekxecuteDM Others were created to indicate the stages tussts of
processes, e.gRrepareDS The use of auxiliary components is often impdrtan enabling the
specification of temporal (LTL) properties and marpreting model checking results.

9.6 DropSolution
9 ExecuteDM [ computed ]
[ start ]
y
v 9.7 Calculator
91 DMP [ idle ]
+ ??? NCT(none) 277
[1 y
\ 98 PrepareDS
4 [ end ]
9.2 DMP 9.15 DMP 9.18 DM P
+ ? Type=Scheduled ? + ?Type=opTriggered ? + ? Type=OnCall ? v
9.9 Operator
y [ confirmDS ]
9.3 AFCS
+ =>timeTrigger <<
y
910 AFCS
r
=< sendDS ==
9.4 PrepareDS
+ [ start ] 9.1 DropSolution
[ executed ]
h J 912 PrepareDS
9.5 Calculator [ end
[ calculateDS ]
913 DM P
[ none ]
h 4
96 DropSolution 9.14 ExecuteDM
[ computed ] [ start ]

Figure5: Preparing and Executing a Drop Solution for a scheduled mission

We have not shown portions of the BT for Met Dapalate, Nav Data update and the rest of DMP
management. The BT in its entirety is availablér@nweb ahttp://itee.uq.edu.au/~dccs/AFMS/

6. PRELIMINARY HAZARD IDENTIFICATION AND MODELLING

The PHI identified the following main types of hadaus incidents associated with the AFMS:
* Retardants are dropped on people or areas whersibeld not be
* An inappropriate type of retardant is dropped
* Retardants are dropped inadvertently

To a large degree the system failures that cowe gse to such incidents relate to the details geq
put into the DMP (data correctness and data irtieggsues). Another class of system failures rdlate
timing issues, such as the drop mission beingeduwiut too early or too late. The system functional
failures that give rise to such incidents werendd tnain types:

e Inputs to the drop solution were out of date

« The DMP was incomplete at the time the drop satutvas calculated

With respect to “reasonably foreseeable circum&sihche following component failure modes were



considered most likely:
* The data link is down
* The interface to the Nav unit fails
* The operator fails to enter data in a timely manner

To enable automated analysis we extended theliBifianodel to cover the events and conditions of
interest for safety analysis. This included addio®aviours corresponding to the data link going
down and the Nav system failing. (For simplicity wensidered only irrecoverable failure in both
cases, although in principle other failure modeslatde included.) We also converted all operator
actionsOperator[doesX]to external input messages of the fo@perator>>doesX<<so that the
model checker would check all possible orderinfyjeperator actions. (This is simply a modelling
trick, without functional implications.)

Because BT models do not handle timing performaweehad to address the out-of-date calculator
inputs failure indirectly. Upon closer investigatid became apparent that the main way that such
failures could arise because of AFCS-related beluawvould be in the case where the data link is
down and the system is relying on the operatornterethe details. To address this we introduced
notion of data being “pending”. This correspondshi® state of the system whereby the operator has
received new data by voice link but has not yeemt it into the AFCS. At this point no new
functionality is implied: the new statel§letData[pending] and NavData[pending] are simply
placeholders for point in the update-data threddebaviour which we want to refer to in analysis.

To address the system failure whereby a solutiocalsulated based on an incomplete DMP, we
introduced the notion of a DMP being “ready” or tneeady”, and changed the guard in the
ExecuteDMthread to wait until the DMP is ready before emahkexecution. In effect, we are adding

a set of safety requirements to the AFCS alondadlh@ving lines:

AFCS safety requirement SR-1: The AFCS shall store the status of the DMP as@either ready

or not-ready. This field shall be updatable by GRomatically over the data link. The operator

shall be able to edit the field in the AFCS. Thepdsolution execution sequence shall not proceed

until the DMP has ready status.
In the original model the operator needed to canér drop solution before it got passed to the Drop
Bay, but the requirements said nothing about whatildv happen if the drop solution was not
satisfactory. We assumed that the effectiveneghisfconfirmation step would be enhanced from a
safety perspective if the operator had the optiomadifying the DMP (or waiting until other input
data had been updated) before re-invoking RmepareDS functionality, so added a branching
behaviour after rejection.

The resulting model is called Model 2 on the welle Tiew nodes are identified in white.
Hazard Formulation

We chose two particular hazards to illustrate qapraach in this paper. The initial properties to be
checked are as follows:

H1 The drop solution is calculated with out-of-datetrdata.

This is formulated as the condition that the Caltarl component is in sta@alculateDSwhile
MetData is in stat@ending (The formalization and treatment of the out-ofedaav data hazard is
very similar and so has been omitted for reasospace.)

H2 The drop solution is calculated before the Droggitin Profile is ready:

This is formulated as the condition that the Caltard component is in stat@alculateDSwhile DMP
is in statenotReady



7. FIRST ROUND OF MODEL CHECKING RESULTS

This subsection reports results of model checksiggithe prioritized version of the translationtiod
model above. Full results are available on the aiéittp://itee.ug.edu.au/~dccs/AFMS/

H1 Analysis Results and Derived Safety Requirements
To check whether hazard H1 is reachable we fiydiotproveG(NOT(H1)).

SAL finds the following counterexample: SAL staltg assuming the data link is down, and then
selects a sequence of steps corresponding to #ratop creating a DMP and setting itready. SAL
then selects the operator-triggered DM case ukdecuteDM In parallel under th&pdateMetData
area of functionality it sets up the conditions kbetDatato reach the staggending It does this by
having C2 send new Met Data, which is received tivewoice link but not immediately entered into
AFCS by the operator. Instead the operator triggeepareDShy entering the execution command,
which leads in turn to the Calculator being invokegten though met data is still pending (the
hazardous condition!).

The analyst would step through the counterexampudereflect on how likely such behavior would be.
In fact this particular case would be relativeljikely to occur if the operator is well trainednse it
requires the operator to trigger DS preparationualiyn while knowing that met data needs updating.
(We are assuming the AFCS has a single operataoch & situation could largely be prevented by
training the operator of the importance of having-tordate met data before triggering DS
preparation. This requirement should be written BOPs and training manuals.

To check if there are other system behavioursdbald lead to H1 we can eliminate the previous case
from consideration by adding to the property tochecked the constraint that the operator does not
trigger DS preparation. The new property to modedo& isG(NOT(P)) => G(NOT(H1))whereP
represents the eveahterExCmd

Now SAL returns a counterexample consisting ofteedaled DM which gets triggered by the AFCS
clock while met data is still pending. This casenisch more likely than the previous case. In Sactio
8 below we propose safety requirements to addrabgesisk and use model checking to evaluate
their effectiveness form a functional risk viewpoin

To eliminate this second case from consideratiah@mtinue to investigate other ways the systems
hazard could arise, it became apparent that ogimatiformulation of the H1 was too simplistic: SAL
kept coming back with examples where the Calculgtdinvoked but new met data arrived later. We
remedied this by reformulating H1 more specifically being that met data is pending at the time
when the Calculator gets invoked. This can be ftated in LTL as follows:

NOT(Calculator = calculateDS) AND X(calculator =IcalateDS) AND metData = pending

The analysis reveals some other interesting caseb, as a loop where the operator keeps rejecting
the drop solution while met data is pending. Butsiapped the analysis once we knew enough about
how H1 can arise to propose a suitable preventiechianism (see Section 8).

H2 Analysis Results and Derived Safety Requirements

The analysis of H2 proceeds in a similar fashiopotJ being givenG(NOT(H2))to check, SAL
returns a counterexample very similar to the fnsé returned for H1 above, except in this case the
operator modifies the DMP aftéxecuteDMhas been invoked but before the Calculator iskado

This is an example of a whole group of cases wihyebsh calculation gets triggered without operator
intervention, while the operator is making somed hamute adjustments to the DMP. In Section 8
below we investigate the addition of a safety femtnhereby AFCS checks again that DMP is still
ready before triggering the Calculator.



8. RE-ASSESSMENT AFTER ADDING SAFETY REQUIREMENTS

In the previous section we used the insights ddrfvem model checking to identify mechanisms by
which the hazards could arise in Model 2. In thest®n we propose safety features that could be
added to AFCS to try to eliminate such behavioansl then reapply the analysis to check what effect
they have on functional risk.

To address the first case, where the operatoreirgggrop solution preparation while met data is
pending, we propose adding system safety requirenadong the following lines:

AFCS safety requirement SR-2: Before a drop solution is calculated, if the dditak has been
down for some time, the AFCS shall prompt the dper@ confirm that any pending met data
updates have been entered into the system.

See Fig. 6 below for the behaviours that were adol¢ide BT model corresponding to SR-2.

To address the second case, where the DMP is ipreess of being modified after once having
been ready but is not currently ready to be implgtet we propose adding a new safety feature
along the following lines:

AFCS safety requirement SR-3: Immediately before a drop solution is calculatdte AFCS shall
recheck that the DMP status is still “ready”. If hdhe execution sequence shall be interrupted
until the DMP status is “ready” again.

The result of adding SR-2 and SR-3 to the BT mexigiven as Model 3 on the web.

When SAL is applied to the revised model, bothhaf properties come back poved This shows
that, at this level of abstraction, much of thé& has been eliminated by the new safety requiresnent

We undertook some experiments using the non-pgedtversion of SAL translation. In this case the
model checker returned counterexamples correspgrdimace conditions, such as where new met
data arrives over the voice link just after therap@ has confirmed there is no pending met dath an
just before the Calculator starts. (Recall thatthe prioritized version such behaviour is not
considered, since AFCS internal action get prioadtyer external events.) Such “windows of
opportunity” are relatively small and could be degith by building safety margins into calculations
(a data issue rather than a functional issue, irfems). We leave it for future work to examinegé
cases more closely.

9. RELATED WORK

Model checking has been widely used in supportoosequence analysis technigues such as Failure
Modes and Effects Analysis (FMEA), in which faulie injected into a system design model and a
model checker is used to see if they might lealdaizardous situations (Grunske et al. 2005), (Reese
and Leveson 1997), (Heimdahl et al. 2005), (Cichetkl. 2001), (Bozzano and Villafiorita 2003).

It has also been used, with more limited successypport of causal analysis techniques such ds Fau
Tree Analysis (FTA). Some FTA approaches focus woraating construction of the fault tree from
the design model (Papadopoulos and Maruhn 2001k witers focus on formal modelling of fault
trees and verification of their correctness and mleteness (Ortmeier and Schellhorn 2007).
Typically the top event being analyzed is an undés system state or combination of component
states, whereas our approach deals more geneiighhamy hazard that can be expressed in LTL. (Rae
and Lindsay 2004) use the FDR model checker torgenéault trees from process-algebraic models
for hazards that are formalized in temporal logic(Lindsay et al. 2011) Behaviour Trees and model
checking are used to support Cut Set Analysis (C&#) automatically generate minimal cut sets
from the model.
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Figure 6: New safety feature SR-2: prompt operator to update pending met data

More recently, (Avrunin et al. 2010) outline a pges modelling and analysis environment called

Little-JIL and describe its application to improvem of healthcare processes. In (Simidchieva et al.
2010) they apply the approach to identify hazardan election process. Their approach has many
similarities to ours, including use of model chackio support FMEA and CSA. But development of

models from natural languages specifications isasditraightforward as for Behaviour Trees.

10. SUMMARY AND CONCLUSIONS

Summary

In summary, the paper explores the use of Behavibees and model checking to automate
identification of system behaviours that can leatidzardous system failures. A case study was used
to illustrate the approach. The starting point waet of 58 requirements for the AFMS system, taken
directly from a much larger System-of-Systems Fometl Performance Specification. The purely
functional aspects of the requirements (as opptseathta requirements and performance aspects)
were modeled in a Behaviour Tree. The BT model exiended with component failures, and
conditions and events that could lead to unsafeoouts, and system hazards were formulated within
the new model. The SAL model checker was then tsédientify system behaviours that could lead
to the system hazards. System safety requiremeete \wroposed to address some of these
behaviours, and the method was reapplied to shaty ithdeed, the hazardous behaviours would no
longer result.

Conclusions and Future Work

The case study illustrates that the BT method cacessfully be extended to aid understanding of
system technical risk early in the development-difele. Moreover, the models stay close to the
natural language requirements specifications aadtfalysis is fully automated, which should enable
the approach to be integrated more closely witmdsied systems engineering processes. This
circumvents the criticisms often levelled at otHermal methods and model-based systems
engineering methods: namely, that they do not sealé and that tracing back to natural language
specifications is difficult.

In future work we intend to extend the method teerodata relationships, which will broaden the
range of technical risks that can be analysed.fifsteauthor is involved in another project whehe t



method is being applied to assist the developméiat safety case for new HMI functionality in a
safety-critical system, where the method will bediso check the effectiveness of safety control
mechanisms. The third author is undertaking a Rhestigate application of analysis techniques
directly to BT models, rather than needing to tiatesto another formalism and use model checking
to find a single counterexample at a time, in otdemake analysis more efficient and to improve the
utility of the analysis results.
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