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Abstract.  For complex engineered systems, it is important to conduct technical risk assessment early 
in the system development life-cycle, in order to identify critical system requirements, such as safety 
requirements, that should be included in design. This paper proposes a model-based approach to such 
assessment, which can be applied from the system requirements analysis stage onwards.  

The approach starts with the application of the Behaviour Trees modelling notation to natural 
language functional requirements. The BT model is then extended to include the events and 
conditions that might contribute to hazards, and automated model checking is used to identify the 
mechanisms by which component or subsystem failures can lead to hazardous system failures. The 
approach is intended to be used iteratively in design and analysis, to assist system designers in 
assessing the effectiveness of system safety requirements. A hypothetical bushfire-fighting 
management system is used to illustrate the approach.  

 

1. INTRODUCTION 

Overview and Scope 

This paper introduces a formal process to assist system analysts to identify system safety 
requirements, and check their effectiveness, early in the system development life-cycle, on models 
derived directly from natural language Functional Specifications. The approach uses the Behaviour 
Tree (BT) notation (Dromey 2003) to model system requirements and automated model checking to 
check the effectiveness of the proposed safety features.  

Behaviour Trees use a graphical notation that has been shown to be easy to understand by people who 
are not formal methods experts (Powell 2010). The BT notation is distinguished from other formal 
modelling notations by its ability to capture functions, object states and multi-threaded behaviour in a 
single modelling language (Lindsay 2010). 

Although the paper’s emphasis is on system safety, the approach is applicable to any risks that 
concern system functionality and behaviour, including risks to security, reliability, maintainability, 
and other system “-ilities”. We coin the term functional risk (by analogy to functional safety) to mean 
system risk associated with what functions the system and its components perform – or do not 
perform – and in what order, both when “all is well” and when one or more of these functions has 
failed. For example, in the case study below, system functions include storing fire-fighting mission 
data and calculating when and where to drop fire retardants. Safety risks associated with the system   
include dropping retardants on the wrong place and dropping retardants inadvertently.  

The approach can be used on sets of functional requirements of arbitrary detail – whether it is very 
early in the life-cycle when functions are defined only in broad abstract terms, or later when a detailed 
system functional architecture is available. No assumptions are made about how the functionality is 
implemented: it could be by hardware, software or human operators, or some combination of these, or 



  

it need not even have been decided yet. At this stage the approach is restricted to purely functional 
behaviour (such as the order in which system functions are invoked and the conditions under which 
they are invoked): performance issues – including real-time timing issues – and data correctness are 
not currently covered.  

We assume that the main system hazards have already been identified: that is, the states that the 
system and its functional components could get into that might lead to harm or other undesired 
consequences. We adapt the BT method of developing models to include component failures and 
other events and conditions that might contribute to hazards. We then use automated model checking 
to identify the system behaviours that lead to hazardous system failures.  

We contend that this process leads to better understanding of functional risk and helps system 
designers to identify safety requirements for preventing or mitigating the hazards. The approach is 
intended to be used iteratively, to assist designers in assessing the effectiveness of system safety 
requirements and in assessing residual risk. The approach can be also used to improve understanding 
of the consequences of functional requirements not being satisfied – whether the reason is component 
failure-in-operation, design failure, or missing functionality (for example, in preliminary builds in a 
spiral development, or while functions are unavailable during maintenance). 

Innovation and Importance  

Many other methods of system modelling and analysis have been developed, but typically using 
specialist notations with difficult semantics. This makes them difficult to integrate into more general 
systems engineering processes, which in turn means they quickly become sidelined as system 
requirements change. Also, many of them do not scale up well, to handle analysis of large 
requirements sets (Broy 2011). By contrast, our approach stays close to the natural language 
requirements through the use of the BT notation, and scales well to handle very large Functional 
Specifications. We contend that these advantages lead to improved understanding of system 
requirements by all stakeholders, and closer integration of safety analysis into standard systems 
engineering processes.  

The main innovation in this paper is to demonstrate how to integrate the results of Preliminary Hazard 
Identification (PHI) into BT models and then use automated model checking to help identify 
functional risk. Automation means that analyses can be repeated quickly after changes are made to 
requirements.  

Traditionally technical risk assessment is not performed until the system architecture and design are 
well advanced. Many experts have pointed out however that system developers need to start 
considering safety aspects early in development, to ensure that adequate safeguards are incorporated 
into the system concept, architecture and design. Leveson points out for example that it is better to 
build safety into a system rather than to try to add it on later (Leveson 1995). Techniques such as 
Functional Failure Analysis can be applied early but lack tool support. This is the gap that our 
approach addresses. 

There are many other reasons for conducting functional risk assessment early in development. For 
engineering organisations tendering for fixed-price contracts, it is particularly important to understand 
technical risks prior to tendering, since managing them can have a significant impact on cost. It is also 
important during planning if development is to be done incrementally (such as when undertaking 
spiral development), in order to decide which areas of functionality to include in different builds. 
Finally, it is important for the organization(s) which operate and maintain the system, so that they can 
develop Standard Operating Procedures that ensure safety is maintained during operation, and 
fallback procedures in the event of system failures.  

  



 

  

Outline of the Paper 

This paper reports the results of an application of the approach to a large case study supplied by 
Raytheon. The case study concerns a hypothetical system of systems for managing bushfire fighting. 
The challenge was to extract functional requirements for a particular system – an Aerial Fire-fighting 
Management System (AFMS) – from a Functional Performance Specification consisting of thousands 
of requirements, and then to identify some of the system hazards that could arise, use the approach to 
help identify the system behaviours that could give rise to such hazards, and identify the risk 
remaining after safety features were added to the system design. The preliminary results on which this 
paper is based are available on the web at http://itee.uq.edu.au/~dccs/AFMS.  

Section 2 introduces the BT method and notation and the translation to the SAL model checker. 
Section 3 summarises the proposed approach to supporting functional risk assessment. Section 4 
describes the AFMS case study. Section 5 describes a BT model developed from the requirements 
using the BT method. Section 6 describes the AFMS hazards that were chosen for study and shows 
how to adapt the BT model to include component failures and safety requirements. Section 7 
illustrates the use of the SAL model checker to reveal behaviours leading to system hazards. Section 8 
repeats the analysis after certain safety requirements have been added to the system, to show that risk 
has been reduced effectively. Section 9 describes related work and Section 10 describes conclusions 
and future work.   

2. BACKGROUND 

The Behaviour Tree Notation 

Our approach is based on the use of the Behaviour Tree (BT) notation for capturing requirements that 
are given in natural language (Dromey 2003). 

The strength of the BT approach is two-fold: Firstly, the graphical nature of the notation provides the 
user with an intuitive understanding of a BT model - an important factor especially for use in industry. 
Secondly, the process of capturing requirements is performed in a stepwise fashion. That is, single 
requirements are modeled as single BTs, called individual requirements trees. In a second step these 
individual requirement trees are composed into one BT, called the integrated requirements tree. 
Composition of requirements trees is done on the graphical level: an individual requirements tree is 
merged with a second tree (which can be another individual requirements tree or an already integrated 
tree) if its root node matches one of the nodes of the second tree. Intuitively, this merging step is 
based on the matching node providing the point at which the preconditions of the merged requirement 
trees are satisfied. This structured process provides a successful solution for handling very large 
requirements specifications (Powell 2010). 

 

 

Figure 1: Parallel vs alternative branching syntax  

The BT notation is a graphical modelling notation which represents a system’s behaviour as a tree-
like structure consisting of nodes and edges. Flow of control starts at the root of the tree and follows 
paths down the tree, with nodes representing component state changes and message dispatch and 
receipt. (In this paper “component” can mean a group of functions a logical architecture as well as a 
subsystem or physical component, including human operators.) There are two kinds of branching: 



  

parallel branching (LHS of Fig.1) whereby a new thread of control is forked for each branch; and 
alternative branching (RHS of Fig.1) in which flow continues down at most one of the branches. 
Generally threads are independent and proceed concurrently “at their own pace”, subject to 
synchronization and other flow directives as explained below. The exception to this is when multiple 
nodes are linked atomically as a block with no edges between them: when flow reaches such a block, 
all other threads wait until all of the nodes in the block have been “executed”.  

The different kinds of BT nodes are shown in Fig. 2. A component might change its state (state 
realisation), receive an input from another component (internal input event) or from the environment 
(external input event) or similarly, send an output to another component (internal output event) or to 
the environment (external output event). A special case of a state realization is attribute assignment, 
written attrib:=value, whereby the value of one of the component’s attributes is modified. If an input 
is not available when control flow reaches an input event node, the system has to wait until the event 
is received. Similarly, when control flow reaches a guard node, the system waits until the guard 
condition becomes true before proceeding. If flow reaches a selection node, it continues on if the 
selection condition is true and terminates if not. 

 

 

Figure 2: Syntax of Behaviour Tree nodes 

As shown in Fig. 2, a node may also contain tags and/or a flag. Tags are used for tracing a (set of) 
node(s) to the requirement(s) that gave rise to them. Flags are control flow directives: When flow 
reaches a leaf node with a reference flag (=>), control jumps to a matching node: this can be either an 
explicitly named node, or – provided there is no ambiguity – a node elsewhere in the tree with the 
same contents; this is essentially a device to avoid duplicating sub-trees in the model. When flow 
reaches a leaf node with a reversion flag (^) flow jumps back up to a matching node above the current 
node; moreover any other threads of control that started below the target node get terminated. The BT 
notation also has flags for killing sibling threads and for synchronizing threads, but they are not used 
in this paper.  

The BT notation includes other operators and node types that are not introduced here. For a full 
description of the syntax the reader is referred to the Behaviour Engineering web site1. The 
operational semantics, which is informally described above, is fully formalized in (Colvin & Hayes 
2011). The BT notation supports relationships (the what, why, where, etc of requirements) but at this 
stage the SAL translation is fairly rudimentary and is restricted to data relations.  

Model Checking Behaviour Trees 

BTs can be interpreted as state transition systems and translated into the syntax of a model checker 
such as SAL (de Moura et al. 2004)2 or NuSMV (Cimatti et al. 1999). The translation to SAL is fully 
automated and has been described elsewhere (Grunske 2005) and SAL is freely available. But in 
principle other model checkers could be used.  

As input the model checker takes a model, which in our case is a BT model translated into SAL code, 
and a property to be checked. Paths through the SAL state model correspond one-to-one with system 
                                                           

1
 www.behaviourengineering.org 

2
 http://sal.csl.sri.com/  



 

  

behaviours in the BT model, in the sense of instances of control flow in interleaved concurrent threads 
as allowed by the BT model semantics given above. SAL is able to check properties stated in linear 
temporal logic (LTL) (Emerson 1990), which is a rich language for talking about the order in which 
things happen (or don’t happen). In Sections 6-8 below we make use of this capability to formulate 
functional safety concerns – such as system hazards – as LTL formulae.     

LTL provides temporal operators to express assertions about paths through the SAL model: G(P) 
means that a proposition P holds generally – i.e., at every step on the path; F(P) means that P holds 
eventually on the path; X(P) means that P holds at the next step on the path; and P U Q means that P 
holds until Q holds (and Q does eventually hold). 3 Formulae can be built using standard propositional 
connectives (and, not, implies, etc). For the most part we use only G and standard propositional logic 
below.  Finally, atomic formulae correspond to statements about what state a component is in, the 
current value of an attribute, or whether a particular message is currently available.  

When given a model and a property, SAL either returns proved (meaning it has shown that the 
property holds true on all paths through the model), times out (if it runs out of computing resources), 
or returns a counterexample. A counterexample is a path through the SAL model for which the 
property does not hold. It is a simple matter to trace a counterexample back to a sequence of steps 
through the BT model illustrating a system behavior which violates the property. The path need not be 
continuous, since different threads can  progress at different rates, but in keeping with BT semantics it 
will represent one of the behaviours that is allowed under the (BT model of the) requirements. In 
cases where the BT model has not constrained initial values of states or attributes, SAL is free to 
choose its own values. At each step SAL can also choose whether or not a particular external input 
message is available. This ensures that all possible scenarios are taken into account.  

Although SAL only returns a single counterexample at a time, it is usually possible – by further 
constraining the property to be proved – to eliminate from consideration the particular conditions that 
gave rise to the counterexample, and then use SAL to find more counterexamples (if they exist). This 
process is illustrated in Section 7 below. 

In this paper we use the “prioritised” version of translation to SAL, whereby internal steps get priority 
over external events. That is, when control flow reaches an external input message it waits there until 
all other threads have finished or reached an external input message. (We take care to ensure that 
every loop in the BT model contains at least one external input message, to avoid live-lock. This 
sometimes entails inserting a dummy node.) Using priortisation significantly speeds up model 
checking while at the same time eliminating many spurious counterexamples. In effect we are 
assuming – for the purposes of analysis – that internal system processes run faster than the 
environment is throwing new events at the system, which is a reasonable assumption for our case 
study. But the analyst can relax this assumption by inserting dummy nodes at suitable “break points” 
or alternatively simply use the non-prioritised version of translation. 

3. THE FUNCTIONAL RISK ASSESSMENT PROCESS 

In outline, the proposed process is as follows: 

1. Start with a set of natural-language functional requirements for the system.  

2. Conduct a Preliminary Hazard Identification (PHI) and determine which functional failures 
and system hazards are of interest.  

3. Develop an initial BT model from the functional requirements at a suitable level of detail. 

4. Adapt the BT model to include the functional failures of interest and to make it suitable for 
model checking: see below for more detail.  

5. Express the system hazards as temporal logic properties and use the model checker to check if 
they are reachable in the BT model.  

                                                           

3
 http://sal-wiki.csl.sri.com/index.php/FAQ#Semantics_of_the_LTL_operators 



  

6. If hazards are reachable, check the counterexamples returned by the model checker to 
determine which behaviours give rise to them. If the risk that such behaviours could occur is 
unacceptable, add safety functions to the system design to try to eliminate the hazards or 
mitigate the risk.  

7. Repeat steps 5 and 6 until the remaining risk is acceptable.  

The process is illustrated on a case study below. 

4. THE AFMS CASE STUDY 

The case study concerns a hypothetical system for command and control of bushfire fighting from 
aerial vehicles, called the Aerial Fire-fighting Management System (AFMS). The AFMS is part of a 
larger system of systems called the Bushfire Fighting Management System (BFMS), which 
coordinates fire fighting across a coalition of different fire-fighting and emergency service 
organisations. 

The main task of the AFMS is to manage aerial fire-fighting missions. Different missions can involve 
different types of fire retardants being dropped in different kinds of patterns – collectively called drop 
solutions here. The AFMS is concerned with collecting and collating the information that is required 
to calculate a drop solution, and with passing drop-solution instructions to the drop system on the 
aircraft - called the drop bay here. The focus in this case study is on the on-board component of the 
AFMS, called the Aerial Fire-fighting Control System (AFCS). The BFMS Command and Control 
(C2) units and other BFMS units will also contain AFMS components but – apart from their logical 
interfaces with AFCS – these are not being considered here. Figure 3 shows the logical architecture of 
the AFMS. 
 

 

Figure 3: AFMS Logical Architecture 

 
In Figure 3, a solid box labeled AFCS represents the boundary for the main focus of our case study.  
The AFCS interacts via voice link or data link with Command and Control (C2), Forward Observers 
(FO) and Meteorology (Met) data sources.  The AFCS itself physically resides on an aircraft 
(represented by a dashed box in figure 3) and also interacts with an operator, a Navigation (Nav) 
system and a Drop bay, all of which are aboard the aircraft.  Pieces of information that are needed to 
calculate a drop solution include: 

• Drop Mission Profile (DMP): the main piece of information specifying mission data such as 
target, retardant type, volume, and (for scheduled missions) time of drop. 

• Navigation (Nav) data: indicating the position, heading and speed of the aircraft. 
• Meteorology (Met) data which include temperature and wind conditions. 

The Drop Solution Calculator is an off-the-shelf component that produces a drop solution for the drop 
bay to execute.  



 

  

 

Requirements 

The requirements for the AFMS are given in a natural language functional performance specification 
(FPS).  There are 58 requirements in the FPS for the AFMS taken from a larger set of requirements 
(approximately 1700 requirements) for the BFMS. We will not give the entire set of requirements for 
the AFMS in this paper. The following key requirement gives a flavour of the natural language 
requirements: 

AFCS-51 The AFCS shall be able to automatically carry out the following sequence: 
a. receive a call for drop/drop mission from the voice link or data link; 
b. calculate the drop solution; 
c. prepare drop (for those variants with automated drop mechanisms only); and 
d. display the drop solution to the user for confirmation and execution. 

The set of requirements in its entirety is available on the web at http://itee.uq.edu.au/~dccs/AFMS/. 

5. INITIAL MODEL 

Additional Client Information 

We constructed an initial model of the AFCS using the BT notation which we called BT Model 1. The 
initial model tries to faithfully capture the requirements and tries to avoid the forcing of design 
decisions as much as possible.  However, we have added into our model the handling of 3 different 
types of missions based on how they are initiated: scheduled, operator initiated or on call.  The 3 
different types of missions were not mentioned in the requirements but were suggested by our client.  
We have added them to our model because of the possibility of risks specific to how a mission is 
initiated. 

Simplifications for Modelling and Analysis 

While the addition of 3 different types of missions adds complexity to the model, we have also taken 
steps to simplify the model to an appropriate level of abstraction for our analysis: 

• FOs are not in our model since their behaviour is indistinguishable from C2 for our purposes. 
• C2 is not modelled in detail beyond the ability to send Drop Mission Profiles (DMPs) and 

other messages. 
• Internal details of the Navigation System and Data Link communications are omitted. 
• External sources of Met Data have been reduced to C2. 
• Although implicitly the different fields in a DMP can be modified individually, in the model 

we simply pass or modify whole DMPs. 
• We focus on risks associated with a single DMP only.  In our model, the AFCS stores only 

one DMP at a time. 
• Situational awareness data (mentioned in the requirements) are omitted. 
• Details of inputs required for calculation of the Drop Solution have been reduced to the DMP, 

Met Data and Nav Data. 

Note however that such details could be modelled in BT notation if desired. (Modelling of the 
handling of multiple DMPs requires the use of parameters and quantification in BTs, which were not 
explained in Section 2 above.) 

Overview of the Initial Model 

The initial model of the AFMS has 4 main threads: 
• A thread that handles the updating of Met Data. 
• A thread that handles the updating of Nav Data. 
• A thread that handles the management of the DMP, which itself has 3 sub-threads: for DMP 

reception from C2, for DMP creation by the operator, and for DMP modification by the 
operator. 

• A thread for preparing and executing a drop solution (which consumes the DMP). 



  

In the requirements, data can be sent from C2 to the AFCS via a data link or a voice link.  Although 
not specified in the requirements, we have interpreted this to mean that the data link is the preferred 
channel of communication, with the voice link acting as a backup.  This is reflected in our model in 
the sending of Met Data from C2 to the AFCS and in the sending of a DMP from C2 to the AFCS. 

Figure 4 shows the fragment of the BT for our initial model that deals with the sending of a DMP 
from C2 to the AFCS. There is an alternative branching at node 6.1. If the data link is down 
(represented by component DataLink having down as the value of its attribute status here), then the 
branch headed by selection node 6.2 is taken: the DMP is sent via the voice link, the operator then has 
to explicitly enter the details of the communicated DMP into the AFCS (represented by the state 
updateDMP), and the DMP status is set to ready.  If the data link is up, then the DMP is sent via the 
data link, and there is no operator involvement.  In either case, the thread reverts back to the node 
ManageDMP[start], which is at the start of the thread that handles the creation and updating of DMPs 
(the third thread). 

 

Figure 4: Sending of a DMP from C2 to the AFCS 

Figure 5 shows fragments of the BT for the AFCS thread corresponding to preparation and execution 
of a drop solution for a scheduled mission.  The thread first waits until the condition that DMP is 
NOT(none) is satisfied: i.e., a DMP has been received or entered into AFCS by the operator. After the 
condition is satisfied, then there are 3 alternative branches corresponding to the 3 ways that a drop 
mission can be initiated. Only the case where the drop mission is scheduled is shown.  An operator-
initiated mission is handled similarly but with the operator entering an execute command acting as the 
trigger instead of having a time trigger.  An on-call mission is slightly more involved because the 
trigger is sent by C2 and may go through the data link or the voice link depending on the status of the 
data link. All 3 cases have nodes 9.4 through 9.14 in common.  Nodes 9.4 through 9.8 represent the 
preparation of the drop solution. After the drop solution has been prepared, the operator has to 
confirm the drop solution.  Once confirmed, the drop solution is sent to the drop bay, the states of 
several components are modified, and the thread reverts to node 9, all within a single atomic action. 



 

  

Note that in the BT model, we introduced auxiliary functional components that are not in the AFMS 
logical architecture diagram.  For example, the BT fragments in Fig. 5 contain the auxiliary 
components ExecuteDM and PrepareDS. Some of these auxiliary components were created as targets 
of reversions and references, e.g., ExecuteDM. Others were created to indicate the stages or statuses of 
processes, e.g., PrepareDS. The use of auxiliary components is often important in enabling the 
specification of temporal (LTL) properties and in interpreting model checking results. 
 

 

Figure 5: Preparing and Executing a Drop Solution for a scheduled mission 

We have not shown portions of the BT for Met Data update, Nav Data update and the rest of DMP 
management. The BT in its entirety is available on the web at http://itee.uq.edu.au/~dccs/AFMS/. 

6. PRELIMINARY HAZARD IDENTIFICATION AND MODELLING 

The PHI identified the following main types of hazardous incidents associated with the AFMS: 
• Retardants are dropped on people or areas where they should not be 
• An inappropriate type of retardant is dropped 
• Retardants are dropped inadvertently 

To a large degree the system failures that could give rise to such incidents relate to the details that get 
put into the DMP (data correctness and data integrity issues). Another class of system failures relate to 
timing issues, such as the drop mission being carried out too early or too late. The system functional 
failures that give rise to such incidents were of two main types: 

• Inputs to the drop solution were out of date 
• The DMP was incomplete at the time the drop solution was calculated 

With respect to “reasonably foreseeable circumstances”, the following component failure modes were 



  

considered most likely: 
• The data link is down 
• The interface to the Nav unit fails 
• The operator fails to enter data in a timely manner 

To enable automated analysis we extended the initial BT model to cover the events and conditions of 
interest for safety analysis. This included adding behaviours corresponding to the data link going 
down and the Nav system failing. (For simplicity we considered only irrecoverable failure in both 
cases, although in principle other failure modes could be included.) We also converted all operator 
actions Operator[doesX] to external input messages of the form Operator>>doesX<< so that the 
model checker would check all  possible orderings of operator actions. (This is simply a modelling 
trick, without functional implications.) 

Because BT models do not handle timing performance, we had to address the out-of-date calculator 
inputs failure indirectly. Upon closer investigation it became apparent that the main way that such 
failures could arise because of AFCS-related behaviour would be in the case where the data link is 
down and the system is relying on the operator to enter the details. To address this we introduced 
notion of data being “pending”. This corresponds to the state of the system whereby the operator has 
received new data by voice link but has not yet entered it into the AFCS. At this point no new 
functionality is implied: the new states MetData[pending] and NavData[pending] are simply 
placeholders for point in the update-data threads of behaviour which we want to refer to in analysis. 

To address the system failure whereby a solution is calculated based on an incomplete DMP, we 
introduced the notion of a DMP being “ready” or “not ready”, and changed the guard in the 
ExecuteDM thread to wait until the DMP is ready before enabling execution. In effect, we are adding 
a set of safety requirements to the AFCS along the following lines: 

AFCS safety requirement SR-1: The AFCS shall store the status of the DMP as being either ready 
or not-ready. This field shall be updatable by C2 automatically over the data link. The operator 
shall be able to edit the field in the AFCS. The drop solution execution sequence shall not proceed 
until the DMP has ready status.  

In the original model the operator needed to confirm a drop solution before it got passed to the Drop 
Bay, but the requirements said nothing about what would happen if the drop solution was not 
satisfactory. We assumed that the effectiveness of this confirmation step would be enhanced from a 
safety perspective if the operator had the option of modifying the DMP (or waiting until other input 
data had been updated) before re-invoking the PrepareDS functionality, so added a branching 
behaviour after rejection.   

The resulting model is called Model 2 on the web. The new nodes are identified in white.  

Hazard Formulation 

We chose two particular hazards to illustrate our approach in this paper. The initial properties to be 
checked are as follows:  

H1 The drop solution is calculated with out-of-date met data. 

This is formulated as the condition that the Calculator component is in state CalculateDS while 
MetData is in state pending. (The formalization and treatment of the out-of-date nav data hazard is 
very similar and so has been omitted for reasons of space.) 

H2 The drop solution is calculated before the Drop Mission Profile is ready: 

This is formulated as the condition that the Calculator component is in state CalculateDS while DMP 
is in state notReady. 
  



 

  

7. FIRST ROUND OF MODEL CHECKING RESULTS 

This subsection reports results of model checking using the prioritized version of the translation of the 
model above. Full results are available on the web at http://itee.uq.edu.au/~dccs/AFMS/. 

H1 Analysis Results and Derived Safety Requirements 

To check whether hazard H1 is reachable we first try to prove G(NOT(H1)). 

SAL finds the following counterexample: SAL starts by assuming the data link is down, and then 
selects a sequence of steps corresponding to the operator creating a DMP and setting it to ready. SAL 
then selects the operator-triggered DM case under ExecuteDM. In parallel under the UpdateMetData 
area of functionality it sets up the conditions for MetData to reach the state pending. It does this by 
having C2 send new Met Data, which is received over the voice link but not immediately entered into 
AFCS by the operator. Instead the operator triggers PrepareDS by entering the execution command, 
which leads in turn to the Calculator being invoked, even though met data is still pending (the 
hazardous condition!).  

The analyst would step through the counterexample and reflect on how likely such behavior would be. 
In fact this particular case would be relatively unlikely to occur if the operator is well trained, since it 
requires the operator to trigger DS preparation manually while knowing that met data needs updating. 
(We are assuming the AFCS has a single operator.) Such a situation could largely be prevented by 
training the operator of the importance of having up-to-date met data before triggering DS 
preparation. This requirement should be written into SOPs and training manuals.  

To check if there are other system behaviours that could lead to H1 we can eliminate the previous case 
from consideration by adding to the property to be checked the constraint that the operator does not 
trigger DS preparation. The new property to model check is G(NOT(P)) => G(NOT(H1)), where P 
represents the event enterExCmd.  

Now SAL returns a counterexample consisting of a scheduled DM which gets triggered by the AFCS 
clock while met data is still pending. This case is much more likely than the previous case. In Section 
8 below we propose safety requirements to addresses this risk and use model checking to evaluate 
their effectiveness form a functional risk viewpoint. 

To eliminate this second case from consideration and continue to investigate other ways the systems 
hazard could arise, it became apparent that our original formulation of the H1 was too simplistic: SAL 
kept coming back with examples where the Calculator got invoked but new met data arrived later. We 
remedied this by reformulating H1 more specifically as being that met data is pending at the time 
when the Calculator gets invoked. This can be formulated in LTL as follows: 

NOT(Calculator = calculateDS) AND X(calculator = calculateDS) AND metData = pending 

The analysis reveals some other interesting cases, such as a loop where the operator keeps rejecting 
the drop solution while met data is pending. But we stopped the analysis once we knew enough about 
how H1 can arise to propose a suitable prevention mechanism (see Section 8). 

H2 Analysis Results and Derived Safety Requirements 

The analysis of H2 proceeds in a similar fashion. Upon being given G(NOT(H2)) to check, SAL 
returns a counterexample very similar to the first one returned for H1 above, except in this case the 
operator modifies the DMP after ExecuteDM has been invoked but before the Calculator is invoked.  

This is an example of a whole group of cases whereby DS calculation gets triggered without operator 
intervention, while the operator is making some last minute adjustments to the DMP. In Section 8 
below we investigate the addition of a safety feature whereby AFCS checks again that DMP is still 
ready before triggering the Calculator.  
  



  

8. RE-ASSESSMENT AFTER ADDING SAFETY REQUIREMENTS 

In the previous section we used the insights derived from model checking to identify mechanisms by 
which the hazards could arise in Model 2. In this section we propose safety features that could be 
added to AFCS to try to eliminate such behaviours, and then reapply the analysis to check what effect 
they have on functional risk.   

To address the first case, where the operator triggers drop solution preparation while met data is 
pending, we propose adding system safety requirements along the following lines: 

AFCS safety requirement SR-2: Before a drop solution is calculated, if the data link has been 
down for some time, the AFCS shall prompt the operator to confirm that any pending met data 
updates have been entered into the system. 

See Fig. 6 below for the behaviours that were added to the BT model corresponding to SR-2. 

To address the second case, where the DMP is in the process of being modified after once having 
been ready but is not currently ready to be implemented, we propose adding a new safety feature 
along the following lines: 

AFCS safety requirement SR-3: Immediately before a drop solution is calculated, the AFCS shall 
recheck that the DMP status is still “ready”. If not, the execution sequence shall be interrupted 
until the DMP status is “ready” again. 

The result of adding SR-2 and SR-3 to the BT model is given as Model 3 on the web.   

When SAL is applied to the revised model, both of the properties come back as proved. This shows 
that, at this level of abstraction, much of the risk has been eliminated by the new safety requirements. 

We undertook some experiments using the non-prioritised version of SAL translation. In this case the 
model checker returned counterexamples corresponding to race conditions, such as where new met 
data arrives over the voice link just after the operator has confirmed there is no pending met data and 
just before the Calculator starts. (Recall that in the prioritized version such behaviour is not 
considered, since AFCS internal action get priority over external events.) Such “windows of 
opportunity” are relatively small and could be dealt with by building safety margins into calculations 
(a data issue rather than a functional issue, in our terms). We leave it for future work to examine these 
cases more closely. 

9. RELATED WORK 

Model checking has been widely used in support of consequence analysis techniques such as Failure 
Modes and Effects Analysis (FMEA), in which faults are injected into a system design model and a 
model checker is used to see if they might lead to hazardous situations (Grunske et al. 2005), (Reese 
and Leveson 1997), (Heimdahl et al. 2005), (Cichocki et al. 2001), (Bozzano and Villafiorita 2003). 

It has also been used, with more limited success, in support of causal analysis techniques such as Fault 
Tree Analysis (FTA). Some FTA approaches focus on automating construction of the fault tree from 
the design model (Papadopoulos and Maruhn 2001) while others focus on formal modelling of fault 
trees and verification of their correctness and completeness (Ortmeier and Schellhorn 2007). 
Typically the top event being analyzed is an undesirable system state or combination of component 
states, whereas our approach deals more generally with any hazard that can be expressed in LTL. (Rae 
and Lindsay 2004) use the FDR model checker to generate fault trees from process-algebraic models 
for hazards that are formalized in temporal logic. In (Lindsay et al. 2011) Behaviour Trees and model 
checking are used to support Cut Set Analysis (CSA) and automatically generate minimal cut sets 
from the model. 



 

  

 
Figure 6: New safety feature SR-2: prompt operator to update pending met data 

More recently, (Avrunin et al. 2010) outline a process modelling and analysis environment called 
Little-JIL and describe its application to improvement of healthcare processes. In (Simidchieva et al. 
2010) they apply the approach to identify hazards in an election process. Their approach has many 
similarities to ours, including use of model checking to support FMEA and CSA. But development of 
models from natural languages specifications is not as straightforward as for Behaviour Trees.  

10. SUMMARY AND CONCLUSIONS 

Summary 

In summary, the paper explores the use of Behaviour Trees and model checking to automate 
identification of system behaviours that can lead to hazardous system failures. A case study was used 
to illustrate the approach. The starting point was a set of 58 requirements for the AFMS system, taken 
directly from a much larger System-of-Systems Functional Performance Specification. The purely 
functional aspects of the requirements (as opposed to data requirements and performance aspects) 
were modeled in a Behaviour Tree. The BT model was extended with component failures, and 
conditions and events that could lead to unsafe outcomes, and system hazards were formulated within 
the new model. The SAL model checker was then used to identify system behaviours that could lead 
to the system hazards. System safety requirements were proposed to address some of these 
behaviours, and the method was reapplied to show that, indeed, the hazardous behaviours would no 
longer result.  

Conclusions and Future Work 

The case study illustrates that the BT method can successfully be extended to aid understanding of 
system technical risk early in the development life-cycle. Moreover, the models stay close to the 
natural language requirements specifications and the analysis is fully automated, which should enable 
the approach to be integrated more closely with standard systems engineering processes. This 
circumvents the criticisms often levelled at other formal methods and model-based systems 
engineering methods: namely, that they do not scale well and that tracing back to natural language 
specifications is difficult.  

In future work we intend to extend the method to cover data relationships, which will broaden the 
range of technical risks that can be analysed. The first author is involved in another project where the 



  

method is being applied to assist the development of a safety case for new HMI functionality in a 
safety-critical system, where the method will be used to check the effectiveness of safety control 
mechanisms. The third author is undertaking a PhD to investigate application of analysis techniques 
directly to BT models, rather than needing to translate to another formalism and use model checking 
to find a single counterexample at a time, in order to make analysis more efficient and to improve the 
utility of the analysis results.  
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