Development and Testing of a TeleoR agent

Keith L. Clark and Peter J. Robinson
May 19, 2015

This guide assumes you have installed the QuLog+TeleoR system in a
qulog directory. You need to have pre-installed the most recent Qu-Prolog
(staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html). You also need
to install Pedro (staff.itee.uq.edu.au/pjr/HomePages/PedroHome.html), an
inter-process communications server that supports addressed communication
using email style addresses for processes, as well as publish/subscribe com-
munication. Make sure the bin directories of the three installations are in
your path.

The bin directory of qulog directory has three Python programs to facil-
itate the development and debugging of a TeleoR agent application: a robot
shell, an agent shell, an agent /robot interaction logger.

The logger, logger.py, can be used independently of the two shells to
remotely monitor the BeliefStore states and rule firings of a running agent
controlling a robot or full robot/environment simulation.

The robot shell, robot_shell.py, is an interactive program that enables
you to test TeleoR procedures one at a time by taking on the role of a robot
and its sensors. The TeleoR procedures to be tested are each called as tasks
of a configurable agent, provided in the teleor extension of the QuLog in-
terpreter. The bin directory includes a small example TeleoR program for
you to use while familiarising yourself with the robot shell. To write your
own TeleoR programs you need to consult the tutorial book: Programming
Robotic Agents: A Multi- Tasking Teleo-Reactive Approach, the first six chap-
ters of which are down-loadable from www.teleoreactiveprograms.net.

The Python agent shell, agent_shell.py enables you to take on the role
of a simple agent interacting with a robot simulation or the interface process
of a robot. It allows you to send control actions to the interface, similar to
those that would be generated from a TeleoR agent, and to see what percepts
are sent back. It can be used to test the interface percept construction and
its supported actions, and to calibrate the robot. For example, you can use
it to determine how long it takes to turn through 90 degrees at a certain

speed.

You can also use the QuLog+TeleoR interpreter for this same purpose.
This can be the next step after using the Python agent shell. You can then
also consult a file of QuLog relation definitions, start up a TeleoR configurable
agent, and deductively query the percepts that are returned from the robot
or simulation before deciding on your action response. That way you may be
able to induce some guard~>actions TeleoR rules that you can later embed
in TeleoR procedures. We shall describe this interactive use of the QuLog
interpreter before we describe the use of the more restricted Python agent
shell tool.

The configurable TeleoR agent makes use of default percept and message
handlers, which can be changed by adding certain QuLog action definitions to
the consulted TeleoR agent program. The configuration options are described
in Sections 6 and 7, and summarised in Section 12. These three sections
assume familiarity with QuLog type declarations. To configure the agent you
need to be familiar with QuLog action programming.

There is a summary of the recommended use of the various tools in Section
11

1 Example use of the logger and robot shell

In qulog\examples\introduction is a very simple TeleoR program tr_eg.qlg.
We shall use this to describe how to use the robot shell. Look at the percept
and action declarations of this program.

To start an agent executing a task using the files tr procedure, using
both the logging tool and the interactive robot shell, you need 3 terminal
windows.

In terminal 1, start the Pedro inter-process comms server and the logger
process, naming it logger (or another name of your choice), with the two
OS commands:

pedro % Has no effect if Pedro already running on this host
logger.py logger

The name logger will be registered with pedro as the name of the Python
process allowing messages to be sent from the TeleoR agent.

In terminal 2, start the robot shell giving it a name robo (or some other
name) using:

robot_shell.py robo

The name robo will be registered with pedro for this process. There is an
optional -w flag that can be given in the command line. Its role is explained
in the next section.

In terminal 3, in the qulog/examples/introduction directory, execute
the following six commands:

qulog % Start the QuLog interpreter
| ?? teleor. % Enter the TeleoR extension, prompt changes
| ?~> consult tr_eg. % Consult the example program
success % System response

| ?~> start_agent ag robo all. % Start system provided TeleoR agent shell
success

| ?~> log logger. % Turn logging of task behaviour on
success

| ?~> start_task tsk tr. % Start the agent’s task executing call tr
success

The start_agent command starts a two thread agent process comprising
a percepts handler and a message handler. robotAg is the name of this agent
process and it will be registered with the pedro server. The second argument,
robo, links the agent to the robot shell process as the destination for actions
from its yet to be launched task thread. More usually this will be the name
of a full simulation process or an interface process to an actual robot (more
on this later). The last argument, all, is the convention used for sending
new precepts. The other convention is updates. Both are explained below.

The two procedure TeleoR program tr_eg.qlg has a mobile robot look
for, approach and get hold of an unspecified ‘thing’. It is a simplification of
the bottle collector program of Chapter 3 of the TeleoR book.

An agent task is started as a third thread, giving an architecture as
depicted in Figure 1, by the last command start_task tsk tr. For us the
source of the percepts and the destination for the control actions is the robot
shell process. The TeleoR agent assumes the percepts source and action
controls destination is always the one process named in the second argument
of the start_agent command.

tsk is the name of the started task and tr the TeleoR procedure call it
will execute. The procedure is in the consulted file tr_eg. You can use the
task name to later terminate the task using a kill task tsk command. If
testing a TeleoR program with several procedures you can now start another
task executing a different top level procedure call. A good strategy is to start
with procedure calls that are at the bottom of the call chain and to work
up testing procedures that call already tested procedures one at a time -
bottom up testing of your control program. If your consulted TeleoR program

BeliefStore
Dynamic and fixed facts +
rules

Atomic
A oo 4

Atomic\e-evaluation
of rule gyards after
atomic updates

— Percepts“ [Message || TeleoR

Sensor data ‘ Handler | | Handler ‘ Evaluator
| | |ag@host |

Action
control
messages

Outgoing Messages

Incoming Messages Other Ags

Pub/Sub and Addressed Message Router

Figure 1: Three Thread Communicating TeleoR Agent Architecture

allowed for multiple robotic resource use, then you can have more than one
task running at a time.

Immediately after executing start_agent, you will see an initialise_
message in the robot shell window. The message is sent by the percepts
handler thread. It is to tell a robot to ready itself to receive action controls
and to send back to the percepts handler a list containing a set of percept
facts, which are the application specific interpretation of sensor readings and
any camera image, at that time. If you do not respond to the initialise_
message within 5 seconds it will be sent again to remind you (or a robot
interface process) that the agent is waiting for its initial set of percepts.

The interaction between the agent, the robot shell and the logger is de-
picted in the upper configuration of Figure 2.

2 The percept refresh conventions all and
updates

all means that the robot interface will send all the percepts that hold at
the time that they are sent as a list of percept terms, repeating a percept
fact that might have been sent last time, if it still holds. The generic agent’s
percepts handler first removes from the BeliefStore any current percept belief
that is not on the received list of new percepts. It then adds each precept on
the received list that is not already in the BeliefStore.

Logging

./ process

pedro
/ \ logger
Robot All on same host
shell
\ robo ag j

Logging
process

robotl@robothost

Robot
interface

On aghost logger@aghost

ag@aghost

Figure 2: Emulating a robot and remote robot control

This corresponds to a simple sensor interface that does not remember
previously sent percepts and sends all the robot’s current perceptions of the
environment state each time new percepts need to be sent to its controlling
agent. If you have launched the robot shell without the -w flag this is what
you must do when entering percepts. You must enter all the percept facts
that you believe hold at the time you enter them.

updates corresponds to a sensor interface that remembers all the percepts
that should be in the agent’s BeliefStore as a result of percept information
it has previously sent. It only sends the updates that must be made to
these current BeliefStore percepts to record the latest perceptions. You use
updates as third argument when you have launched the robot shell with the
-w flag, or this is what your robot interface process does.

Using the robot shell with the -w flag you enter into the edit window only
new percept facts, not those that continue to hold, and explicitly indicate, by
prefixing with a - minus sign, those that must be deleted.

Suppose initially

see(left,3.1), holding

was the percept interpretation of sensor readings, and you have entered these
in the edit window. They are sent to the agent shell as the list

[see(left,3.1), holding]
or as a list of wrapped percepts
[r_(see(left,3.1)), r_(holding)]

if you used the -w (for wrap) flag.
Suppose you next wanted to indicate that

see(left,2.9), holding

is now the case. Using the all option on agent launch and no -w flag on
launch of the robot shell, you enter these two comma separated percepts in
the robot shell’s edit window. They will be sent to the agent as the list

[see(left,2.9), holding]

However, if the updates and -w flag combination, you record the the second
set of percepts by entering

-see(left,3.1), see(centre,2.9)
They will be sent as the list of wrapped percept facts
[f_(see(left,3.1)), r_(see(centre,2.9))]

You do not have to resend holding as that will continue to be believed. How-
ever, you must now indicate the explicit forgetting of the previous see (left,3.1)
percept belief.

A list of £_ (for forget) and r_ (for remember) wrapped percepts is easier
to process in the agent’s percepts handler by a single pass over the list. Also,
where most sensor readings will stay the same it is a more efficient way to
inform the agent of what it should now believe. The cost is that the robot
interface has to keep track of which of the previously sent percepts will still
be in the agent’s BeliefStore, i.e. those sent in a previous r_ wrapper that
have not been rescinded by being sent in a £_ wrapper.

3 Interacting with a TeleoR agent using the
Python robot shell

After you see the initialise_ message displayed in the robot shell win-
dow respond to it by entering some initial sequence of percepts, say just
see(4.7,left). To see what percept facts you can enter look at the per-
cepts declaration in the example program file.

You can see what the TeleoR agent believes after you have sent this single
percept by entering the command bs followed by < fullstop >< return >
or < return >< return > in the agent terminal 3. At this point you should
also see in the logger window that the task has fired the 3rd rule of the tr
call, which has called get_to. This call has then fired its 4th rule resulting in
the concurrent actions move (4) ,turn(left). The log will also display the
percepts and dynamic beliefs of the agent when the rules were fired, and the
time that these were last updated. There will be no beliefs displayed unless
you have sent the agent a message (see below).

You will get the control message

controls_([start_(move(4)),start_(turn(left))])

displayed in the robot shell window, indicating that these two durative ac-
tions should be started. These are what would be sent to a robot interface
process. After a short while you can enter something like see(4.1,centre).
Try to get the agent to steer you (the robot) towards an unspecified seen
thing until you are next to its centre at 0 distance. A history of entries into
the robot shell that will achieve this is given in the history_all.txt file of
the tools directory. You should then get back a

controls_([stop_(move(4)),exec_(grab)])

control messages response. In the logger window you will see that tr has
fired its second rule.

After this you can either respond with holding, see(0,centre), as in
the history, recording that the grab has been successful, or you can respond
with see(0.3,centre), recording that the thing that you were next to has
been pushed away by the grab action. You can also respond with no percepts
at all (just hit return), corresponding to the thing having been pushed out
of view of the camera.

The TeleoR procedure’s response to an empty list of new percepts, entered
at any time, will be action control messages to stop any forward move and
start or modify a turn action to turn(left), because it will fire the default
rule of the get_to procedure.

You might now like to start again, launching the agent with updates as
the last argument. First do a

| ?~> kill_agent.

In the robot shell you will see a finalise_ message. The finalise_is always
sent when you kill an agent.

You do not need to restart the logger, but before restarting the agent you
must relaunch the robot shell giving it a -w flag

7

robot_shell.py -w robo

This flag indicates that percept facts must be wrapped in r_ and f_ terms
and that you will indicate that a £_ wrapper should be used by prefixing the
percept with a - (minus) sign.

Then execute

?~> start_agent ag robo updates.

in the agent terminal.
In the tools directory the history updates.txt file gives a possible
sequence of entered percepts for the updates percept sending convention.

4 Use of a TeleoR agent with a robot interface
process

The first things you must do is decide on the percepts update convention
you will use, and on the action repertoire and percept fact generation you
will support in the robot interface process or the simulator. If the TeleoR
program already exists, the actions and percepts must be those declared in
that program. If it does not yet exist, these choices will depend upon the
action and sensor capabilities of the robot. The chosen updates convention
determines whether or not you interface always sends all the new sensor
readings as unwrapped percept facts, or whether it remembers sent percepts
not yet rescinded and just sends the percept updates as r_, f_ wrapped
percepts.

You can write the interface/simulator in Python, Java or C/C++. All
have Pedro interfaces. The Python simulation programs in the towers,
bottle_collector sub-directories of the examples directory exemplify how
to do this in Python. Both use the API in pedroclient.py. The Pedro
documentation may also be consulted. Your interface or simulator must reg-
ister a name with the same Pedro server with which the agent and logger
process (if used) will register their names. This name, say robotI, must be
given to the agent as its second argument when launched. If the interface
is running on a different host Host than the TeleoR control agent, the full
handle robotI@Host must be given as second argument to the start_agent
command.

The interface program you write must first wait for an initialise_ mes-
sage to be sent. This is the signal to gather sensor readings application
specific interpretations of which are marshalled into a string representation
of a QuLog list to be sent to the agent’s percept thread via Pedro. The Pedro

8

handle identifying the sender of the initialise_ message should be used.
The percepts should all be wrapped as r_(percept) terms if your agent will
be launched using the updates convention.

Thereafter, at application specific intervals, the interface collects new
interpretations of sensor readings sending the required string to the agent’s
percept handling thread.

The control actions that the interface process will receive from a TeleoR
task will be of the form

start_(durative), stop_(durative), mod_(durative), exec_(discrete)

where durative and discrete are ground durative or discrete actions de-
clared in your TeleoR program. mod will only be received if the robot is
already executing that durative action but with different parameters. For ex-
ample, if it had received start_(move(3.1), it might then get mod_(move (2.4)
indicating a slowing down.

The list of controls is sent wrapped in a controls_([..,c;,..) message,
where each c; is one of the above action control terms. This is what the
robot interface must be able to process and map them into whatever low
level behaviour calls needed to conform to the controls. The interface must
also be able to handle the initialise_and finalise_ messages sent when
an agent shell is started and terminated.

The Python code in the robot_shell.py file will help regarding the writ-
ing of such an interface. It contains the code to register a name with a Pedro
server, to get messages sent to it by an agent or any other process via Pedro,
and for marshalling percepts into a string representing lists of percept facts,
wrapped or unwrapped.

A possible configuration is shown in the lower part of Figure 2 in which
the agent, Pedro and the logger process are on one host, aghost, and the
interface is running on a host robot host in the robot. The interface process
must register its name robotI with the Pedro server on aghost.

5 Using an on-board TeleoR agent and a re-
mote logger

When you have a finished TeleoR control program, you might want to run a
Pedro server, the agent process and the robot interface process on a robot.
The agent and interface process then use the on-board Pedro server to com-
municate with each other. This configuration is depicted in Figure 3 where
Pedro is running on robot host.

/

robotl@robothost Logging
process

:* *\; logger@loggerhost
ag@robothost /

Robot
interface

Figure 3: Using a remote logger and an on-board agent

Typically the logger is located on another host, loggerhost. In that case
we must connect the logger with the Pedro server running on the robot’s
processor robothost by launching it with

logger.py logger -N robothost

robothost is the name or IP address of the robot’s on-board processor. The
-N switch causes the logger process to register with the Pedro server on this
host.

In addition, the log command executed in the agent process, must be

| ?~> log logger@loggerhost.

in order to have log information dispatched to the remote logger. The ad-
vantage of this configuration is that we can have several loggers, running
on the same remote host, each connected with a Pedro server on a different
robot, telling us what each robot control agent is doing and the state of its
BeliefStore.

10

6 Tailoring a TeleoR agent’s percept and ac-
tion handling

Sometimes, after all the new percepts have been added, and before any con-
trol message response is decided, it is useful to check the BeliefStore for
consistency regarding all its dynamic beliefs, perhaps deleting, adding or
modifying some of them. You can have this done by the shell agent’s percept
handling thread by defining a no argument QuLog action procedure procedure

checkBS_.

This can be used to ensure, for example, that there is only one see belief
when using the example program. This should, of course, always be the case,
but you can also check if you want. If this procedure is defined it will be
called by the percepts handler as the last thing it does during its atomic
transaction on the agent’s BeliefStore.

Finally, you can use your own format for sending new percept facts, and
your own convention indicating how the percepts in the agent’s BeliefStore
should be updated, by defining one or both of two QuLog action procedures

get_percepts_: ([term]?)
handle_percepts_: ([term])

If handle_percepts_ is defined in your TeleoR program, it will be called each
time a list or percepts has been received by the percepts hander. Neither
default handler for the all and updates conventions will not be used. If
you define handle_percepts_: ([term]) in your TeleoR program file you
must launch the agent using the user flag instead of an all or updates flag.
There is an example handle_percepts_ action procedure in the towers.qlg
TeleoR program file in the qulog/examples/towers directory.

If get_percepts_ is defined in your TeleoR program, it will be called
immediately after a list of percepts has been processed. It could poll for a new
batch of percepts sent in any string format you like, and suspend until they
are received. It should then use QuLog string processing to extract sub-strings
representing percept facts, or to extract sensor data and build the percept
facts using the QuLog @.. term builder and the primitive string_to_term
converter relation.

If your robot uses ROS, and you configure it so that there is a percepts
publisher that sends all the interpreted sensor readings as a string of the
same format as the strings you must enter into the robot_shell.py tool,
i.e. a string of the form "[P1,P2,..,Pk]", where the Pi are percept facts
as declared in your TeleoR control program, you can use the ros_pedro.py
example interface between ROS and Pedro to route this percept list to the

11

TeleoR agent. In that case you do not have to define get_percepts_, all

you need do is launch your agent using the name ros_pedro for the robot

interface process. This interface handles the initialise_message sent when

you start the agent and does not forward it as a control message to the robot.
The default of the TeleoR agent’s task evaluator is to send a

controls_([control_action_])

message in string form via Pedro to the robot interface process. The type
control _action_ has the definition

control_action_ ::= start_(durative) | stop_(durative) |
mod_(durative) | exec_(discrete)

where durative and discrete are the action types defined in the TeleoR
program.

You can change this default behaviour by defining a QuLog action proce-
dure

send_robot_message_: (robot_message_)

where

robot_message_ ::= hand_shake_ || controls_message_
hand_shake_ ::= initialise_ | finalise_
controls_message_ ::= controls_([control_action_])

in your TeleoR program file. This is then called by the task evaluator, passing
in the list of control actions that need to be converted into control messages
sent to the robot interface.

If your interface is the ros_pedro.py example interface and you have a
ROS process that has subscribed for controls publications and can han-
dle a string payload which represents a list of control actions, you need not
define send_robot_message_. All the robot messages sent by the agent
will be handled by this interface. However, if you do not want to have the
controls subscriber handle start, stop etc messages, you can can modify
the ros_pedro.py to convert to the controls publications you want to han-
dle, or you do this conversion in a send_robot_message_ action procedure
which ends with a message send of the form

YourControls to ros_pedro@localhost

12

If ROS is used on the robot and the Ros/Pedro Python example interface
is used for the agent/robot communication the appropriate configuration is
that of Figure 4.

Ros-Pedro
Interface

-~

robotl@robothost , Logging
_ process

logger@loggerhost

ag@aghost /

Figure 4: Using a ROS robot with a ROS/Pedro Interface Process

7 Receiving and handling messages

A TeleoR agent can be sent messages from other TeleoR agents, or processes
with a Pedro registered name, using the Pedro handle Agent@Host, where
Agent is the name given to the agent in the start_agent command, and
Host is the singly quoted name (e.g. ’zeus.doc.ic.ac.uk’) or IP address
(e.g. °192.168.1.727) of the host on which the agent was launched. Such
messages are handled by the agent’s message handling thread. A message
Mess is sent to the agent by execution of the QuLog action

Mess to Agent@Host

The default behaviour of the messages thread is to check that the message
Mess is ground, and if so to record its receipt, from its sender process (or
agent) with Pedro handle Nm@HostNm, by remembering a fact

message_(Mess,Nm@HostNm, Time)

13

Here, Time is the time of receipt of the message. The QuLog type of the
message_ relation is

belief message_: (term,agent_handle,num)

where an agent handle is a term of the form atom@atom.

You can directly query these message_ fact beliefs in your TeleoR rule
guards to find out what information has come from other sources. Or, these
beliefs can be processed by launching another thread inside the agent ex-
ecuting a QuLog action procedure which converts the message_ beliefs into
beliefs using application specific predicates that are declared as belief pred-
icates in the consulted TeleoR program. An example of such a conversion
might be the replacement of a message (tell(B),Ag,Time) belief, where
Ag is believed to be reliable, by a belief B, providing B is a ground fact for a
belief predicate tested by type(B, !belief). The ! signals that B must be
ground.

As an alternative, you can define a QuLog action procedure

handle_message_: (term?, !agent_handle)

in your TeleoR program file. If present, this will be called by the message
handler of the TeleoR agent shell each time a message is received, with first
argument the message term and second argument the Pedro handle of the
sender. The 7 postfix indicates that the message term may contain variables
- e,g. queries from other agents - and need not be ground by the call to
handle_message_.

The program file bottle.qlg, in the bottle_collector sub-directory of
the examples directory, has such an application specific handle message_
action procedure.

8 Driving a robot as with a remote control

You actually do not need to start an agent task thread executing a TeleoR
procedure call to have action control messages sent to the interface process
of a robot. You can act as the control program, just as you can act as the
robot using the robot shell tool. You should however have declarations of
the durative and discrete actions that the robot interface supports in a file
that you consult.

You do not even have to the robot interface support the sending of per-
cepts in order to drive a robot. You are then driving the robot as though
you were using a remote control to get it to perform different actions. You
are then the robot’s sensors.

14

To do this, using a control action supporting interface process on the
robot, execute a

| ?~> start_agent driver robotI@robothost none.

command. The none indicates that no percepts will be processed by the
agent and converted into percept facts even if sent from the robot interface.
So none need to be sent.

This will still send initialise_ to the interface process robotI@robothost,
which should be already running. You should also have consulted a file that
at least declares the durative and discrete actions, and their argument
types.

You can now send appropriate action control messages using an actions
command such as

| ?~> actions [move(2.5), turn(left,0,3)].
These will be mapped into a list of control actions, wrapped as a
controls_([start_(move(2.5)), start_(turn(left,0,3))])

term dispatched to the robot’s interface process for execution by the robot,
unless you have defined your own send robot message as described in Sec-
tion 6.

You watch what the robot does, just as you would a remote control device,
and at the appropriate moment you execute another actions command, for
example

| ?~> actions [move(3.0)].
mapped into the control message
controls_([mod_(move(3.0)), stop_(turn(left,0.3))])

You can use the up cursor key to display and then edit previous actions
inputs to speed up your responses.
Entering

| ?~> actions [].

will stop all executing durative actions.

You are step by step controlling the robot - real or simulated. This
user control is particularly useful when you are testing the interface and the
repertoire of actions it supports. You can also use it to calibrate actions. For
example, to find how long it takes for a robot to turn through 180 degrees
when instructed to turn at a certain speed.

15

The advantage of driving without percepts feedback is that you can first
implement the robot interface so that it just supports action controls. When
you are happy with that, you can add the percept gathering and dispatch.
You can use this minimal mode even if the interface does dispatch percepts.
The start_drive command does launch a thread that sends the initialise_
message, but it discards any percepts it receives.

When you want to stop driving the robot you can do a

kill_agent.

to send a finalise_ message to the robot interface process.

9 Driving a robot while getting and querying
its percepts

Suppose you do have an interface that will send percepts and accept action
controls. You can launch an agent shell in order to process the percepts that
will be returned from the interface. You should consult a file that minimally
declares the percept predicates and their argument types as well as the dura-
tive and discrete actions. If you have tailored the shell agent this file might
also contain QuLog action procedures for get_percepts_, handle percepts_,
checkBS_ and handle message._.

You can still drive the robot yourself using the actions command. It is
probably best to use a logger process as that will automatically keep you up
to date as to the agent’s changing BeliefStore, and keep a log of the actions
you will send.

After launching the agent shell, when you see in the logger window that
percepts have been sent to the agent in response to the initialise_ mes-
sage, you can decide what an appropriate action response(s) should be to
the dynamic beliefs now in the agent’s BeliefStore. These will have been
displayed in the logger window. You can also see them in the agent terminal
window using the command bs. If you have defined relations in the consulted
file, you can also query these relations to get inferred interpretations of the
current percept beliefs.

Each time you execute an actions command the interface process will re-
spond by executing the received controls. Independently, and probably quite
frequently, it will send percepts, which will be immediately displayed in the
logger window together with the new state of the BeliefStore. At any time,
you can respond to these changing beliefs, just as a TeleoR program would
respond, by sending back control actions by entering an actions command.

16

BeliefStore monitoring combined with action by action driving of a robot
is one way of finding out what an appropriate action response might be to
particular states of the agent’s BeliefStore, enabling you to induce some of
the TeleoR rules to be used to achieve certain goals.

10 Using the Python agent shell

The minimal way of driving a robot and testing its interface, when all that
you have implemented is an action repertoire, is to use the Python agent
shell agent_shell.py in the qulog/bin directory. You launch this with a
terminal command

agent_shell.py ag "robotI@robothost"

You will get a GUI similar to the robot shell window but in this case what
you will enter into the edit window are control actions for the robot interface
process robotI@robothost, not percepts.

The agent shell will have sent an initialise_ message to this process
and as you should have programmed it to respond to this message by sending
back a list of percepts these will be displayed in the GUI’s main window.

If you are using this Python tool preparatory to eventually using the
QuLog+TeleoRsystem, you should send the control actions that will be gen-
erated from a running TeleoR agent. That is you enter into the edit window
a comma separated sequence of control actions of the form

start_(durative), stop_(durative), mod_(durative), exec_(discrete)
preceded by the word controls. As an example,

controls start_(move(4.2)), stop_(turn(left,1.2)), exec_(beep)

might be entered into the edit field. With this entry in the edit field, the
term

controls_([start_(move(4.2)), stop_(turn(left,1.2)), exec_(beep)])

is actually sent, exactly as would be the case from a TeleoR agent that had
been turning on the spot but now had fired a rule with the parallel actions
move (4.2) ,beep when the previous action had been turn(left,1.2).

17

11 Summary of the tools

e The logger is a Python process that can be used to remotely spy on the
sequence of BeliefStore states of an agent, and to see the rule firings
and primitive actions response whenever these change.

e The Python agent shell enables you to test an interface to a robot with
respect to the percepts it sends and the actions it supports, before
developing any percept querying rules. You can use it even when the
interface supports only an action repertoire to test just this, and to
remotely control a robot. You can use it to time how long actions take
to achieve some goals where there is no percept that can be used to
determine the goal has been achieved (e.g. turning through 180 degrees
without a compass).

e The generic TeleoR agent enables you to do the same as the Python
agent shell, but also to query the returned precepts using QuLog Be-
liefStore rules. It also allows you to test, bottom up, a set of TeleoR
control procedures by launching each as the initial call of an agent
task, and then terminating it before the next procedure is tested. This
is when the logger should definitely be used to monitor the decision be-
haviour of each procedure. If the TeleoR program you are testing is for
a multi-tasking agent controlling several robotic resources you can run
several tasks concurrently. The logger will then tell you which tasks
are running, which resources they are using, which tasks are waiting,
and the resources they need. It will also tell you which rules have been
fired in each task wherever this changes, even in the waiting tasks.

e [f you want to do this incremental testing of a set to TeleoR procedures
when the robot interface or simulation is not available, you can simulate
the robot using the Python robot shell. You imagine what will happen
when certain action controls are received and, either immediately, or
after a suitable time interval, you send back the percepts that would be
generated from sensors. You do not have to do this realtime, it can be
slow motion unless you have time dependent behaviour in your TeleoR
procedures.

18

12

Summary of the application specific op-
tional action procedures

The supplied TeleoR agent can be specialised by defining all or some subset
of the following in your program file. None need be defined. If not there is a
default behaviour as described earlier.

get_percepts_: [term]? - an action called as soon as the agent is
launched and each time a returned list of terms has been processed
and converted into remembered percept facts.

handle_percepts_: [term] - an action called after a new list of terms
have been received from the robot interface, possible using a program
defined get_percepts_. It must be defined if the user option is given
when the agent is launched. It should check that each term P on the in-
put list is a correctly typed ground percept term using a percept (P)).
This test will use the program’s percept declarations.

handle_message_: (term?,agent_handle) - an action called when a
message term is received from an agent identified by its agent handle
agent@host. Any reply should be sent to agent@host. It will go the
messages thread of this agent, even if the message was sent from some
other thread within the agent.

checkBS_ - a no argument action procedure that can check the Belief-
Store for consistency and perhaps remember and forget certain beliefs.
It is called immediately after a program defined handle_percepts, or
one of the default percept handlers, has updated the BeliefStore.

mod_controls_: ([control_action_],?[control_action_]) - a re-
lation called when the list of control actions generated from the firing
of new TeleoR rules has been determined by comparing the new robotic
actions with the last robotic actions that were determined. This is an
opportunity to add or remove control action. The input first argument
are the program determined control actions, the second argument is the
possibly modified first argument. It is this output that is sent to the
robot interface process. The procedure should rarely alter the action
controls as the primary determiner of actions should be the TeleoR
procedures. There is an example of the need to occasional adding of
control action in the supplied two arm using block towers building pro-
gram in the qulog\examples\towers directory.

19

e send_robot_message_: robot_message_ - an action primarily called
in order to send control actions to the robotic interface as a controls_(CActs)
message. It must also handle the initialise_ and finalise_ mes-
sages, even if it just ignores them.

20

