
QuLog: A flexibly typed logic and functional

programming language with action rules -

the declarative subset

Keith L. Clark and Peter J. Robinson

May 19, 2015

1 Introduction

QuLog is a declarative hybrid logic, functional, string processing language
with an imperative action language sitting on top. Its declarative kernel
was developed to complement our guard→ action rule based robotic agent
programming language TeleoR. The latter is a major extension of Nils-
son’s Teleo-Reactive robotic agent language. The primary use of declarative
QuLog is to ‘program’ the agent’s BeliefStore and to inference evaluate the
TeleoR rule guards, which are restricted QuLog queries. Its action layer is
used to extend TeleoR rule actions with atomic BeliefStore update actions
and inter-agent communication actions routed via our Pedro communica-
tions server. The multi-threaded agent architecture that concurrently exe-
cutes TeleoR programmed tasks is implemented in imperative QuLog. This
draft paper, which currently lacks references, describes the declarative sub-
set of QuLog. A companion draft paper describes the layer of action rules
and illustrates their use for communicating agent applications.

QuLog relations are typed and moded, like Mercury. Its functions are
just typed as all their arguments must be given as ground terms (terms
with no unbound variables). The types and modes are so that we can guar-
antee at compile time that there will be no runtime failures or errors due to
wrongly typed arguments of relation or function calls, or due to arguments
that must be given not having been computed before the call, particularly
calls to QuLog primitives. They also enable us to guarantee at compile time
that TeleoR rule actions will be fully ground and correctly typed when sent
to a robotic resource. We need this to make TeleoR a serious robotic pro-
gramming language. The result of these constraints is that all but a handful

1

of primitives of QuLog, and most program defined relations, ground all their
arguments if they succeed. Functions always return ground term values.

To retain some of the flexility of use of Prolog we have union (aka dis-
junctive) types. These allow us to say that a relation accepts either integers
or atoms in some input argument position, with run-time tests to allow
different rules to be given depending on which type of value is given in a
particular call, as in Prolog. However in Prolog such run-time tests are lim-
ited to a small range of sub-types of the generic term type, such as integer
and atomic. In QuLog run-time type tests can be done for all primitive
types, any program defined type, as well as higher order types.

In QuLog sub-type values are also considered as valid values of all their
super-types. This means that a sub-type value may be given as an argument
where a super-type is specified, and returned as a value in lieu of a super-
type value. The type checker ensures that all function calls are given ground
arguments of their declared argument types, and will return a ground value
of the declared value type. It checks that each relation call will have each
argument an unbound variable, or a term of the declared type. It also
checks that the argument will be a ground term before the call if moded !

(ground input), and will be ground after the successful evaluation of the call,
if moded ? (ground output). Only if moded with a postfix ? (non-ground
output) is there no check beyond the type check.

There is a sub-type lattice that includes every data value in QuLog, cov-
ered in Section 6.5. Relations and actions (defined by one or more action
rules) have a sub-type relationship based on this data sub-type relation-
ships and their modes of use, specified by their moded argument types. For
functions the sub-type relation just depends on argument and value types
as there is only one mode of use - all arguments ground and ground value
returned. The sub-type relationship for functions and relations is covered
in Section 9. As an example of the role of modes, suppose the higher order
argument type specifies the relation given as an argument will only be used
to check integer values. We can pass in a relation that checks or gener-
ates number values. A more flexible check or generate relation that handles
numbers can be used where only integer values will be tested.

QuLog also has support for meta-level programming. Compound terms
representing relation calls can be constructed from and mapped into lists,
as in Prolog. These call terms can be passed around as data terms and then
evaluated as the relation calls that they denote. But unlike Prolog, this is
done in a type and mode safe way. No meta-call is allowed in QuLog that
does not satisfy the type and mode constraints of the relation being called.
This is discussed in Section 7.4.

2

QuLog is a fully integrated LP/FP language in that function calls can
appear as or inside arguments to relation calls, and relational queries can be
used as tests in function rules, and in set expression arguments of function
calls.

The compiler does type checking of function and relation definitions,
assisted by type inference for data terms and variables. We believe that
type declarations, linked with mode of use declarations for relations and
action procedures, are very useful active documentation of the program.
Also, because we have union types and sub-types, type inference on code
could be very complex in some cases. Type inference on data terms will
assign the term the minimum type in the sub-type lattice.

This introduction to declarative QuLog assumes familiarity with Prolog
and higher order functional programming, as in languages such as Haskell or
Scala. Sections 2, 3, 4 introduce its use as a typed relational programming,
with its pattern match string processing support being covered in Section
4. Sections 5 and 8 deal with the functional subset and higher order pro-
gramming. Sections 6, 9 and 10 deal with types, modes, the compile-time
type/mode checking, and the need for auxiliary run-time type testing to
filter out sub-type values. Section 7 introduces program defined types and
illustrates their use. Type declarations for types with finite extensions dou-
ble as both testers and generators for instances of the type. We exemplify
QuLog’s debugging support in Section 3, and give a glimpse of its imperative
action rules in Section 7.

2 QuLog Relational Subset

2.1 Python influenced syntax

QuLog does not have an operator precedence syntax and its syntax is not
extensible. As in Prolog, a functor or predicate is written immediately next
to its tuple of arguments as in p(...).

There is no need to use a full stop followed by a white space character,
as in Prolog, to separate the relation rules (aka clauses), function and action
rules, type definitions and type declarations. Instead we borrowed an idea
from Python and made what is a normal program layout format for a Prolog
program - each clause starting on a new line - a syntax requirement.

All the above program statements must begin at the left end of a new
line. Each can be continued over several lines where all but the first line
is indented by at least one space or tab. Starting rules at the left end
of a newline, and indenting a continuation of a rule by several spaces, or

3

one tab, is normal Prolog program layout. Our indentation indicator for
continuation of a rule encourages this, making programs more readable.
However, as a gesture towards Prolog programmers, including ourselves, a
full stop followed by a newline, or spaces and a newline, may also be used at
the end of a statement. It is ignored by the QuLog parser. Even if you use
fullstops as terminators, you cannot put two clauses or rules on the same
line of the program file.

Apart from requiring a predicate or functor to be adjacent to its (...)

bracketed arguments, and treating a space or tab at the beginning of a new
line as a continuation marker, QuLog is tolerant of spaces. They should be
used to aid readability of the program.

As in Prolog, alphanumeric names beginning with an upper case letter
or underscore , or underscore on its own, are variables. To make such a
name an atom (aka symbol), or the name of a relation or function, it can be
singly quoted as in ‘Peter’, ‘Father of’, ‘Fact’.

In contrast, an alphanumeric name that begins with a lower case letter,
which can contain under-scores, is an atom and is used to denote individual
things or names of relations, functions or actions. Surrounding such a name
with single quotes has no effect at all, and they will be dropped when the
atom is displayed. However if we want to use the atom name of a relation,
function or actions as an atomic data value, it must be preceded by a single
back-quote.

2.1.1 Need for back quoting

In the main, it is advisable to keep the atoms used for function, relation and
action names disjoint from the names of things, like people. The use of the
name of a program defined relation or function as an argument of a call or
inside some term data structure such as a list, is assumed to denote that
function of relation. It is not of type atom. To use such a name as an atom it
must be back-quoted using `. So, suppose we have a definition in our QuLog
program of the parent:(atom,atom) relation. [parent] is a list of type
[(atom,atom)<=] (the <= indicates that we have a relation over pairs of
atoms), and its single element is the parent relation. However, [`parent]
is a list of type [atom], and its single element is the atom `parent.

This back quoting to map the name of a relation, denoting that relation,
into an atom data value is also needed to map a QuLog type name into
an atom data value. This is because type names, indeed any ground type
expression, is a valid data value in QuLog. The type of the data value
nat, is typeE(nat) and in general the type of any type expression term

4

TE is typeE(TE). The list [`int,`num] has type [atom] - list of atoms.
[int,num] has type [typeE(int) || typeE(num)] - a list of specific type
expressions. || is the type union operator.

There is no need to back quote a parameterised type name like the
tree(T) type of Section 6.2, as tree without a type argument is not a type
expression, tree(int) is. Similarly, typeE does not need to be quoted to
be used as an atom. This also applies to the constructor functors of a type.
The tree(T) type has two constructors named empty and tr. Both can be
used as atoms without back quoting.

To summarise, all relation, function and action names need to be prefixed
with a ` to be used as atoms. All non-parameterised type names need to be
prefixed with a ` to be used as atoms. The sets of relation names, function
names, action names, type names, and type constructor names need to be
disjoint. A name cannot be overloaded and used, say, for two relations
differing with respect to their number of arguments.

2.2 Moded type declarations

All relations (other than those with no argument), and all functions should
have their types declared. If not declared, a default declaration is assumed
where all arguments have term type, and for a function the value has term
type. term is the top of the QuLog data type lattice (there is a separate
type lattice for relation, action and function types). If an argument has
type term, run-time type tests then have to be inserted in clauses and rules,
before any QuLog primitive is used that requires a value of particular type,
such as the arithmetic inequalities <, > etc. We exemplify this in Section
6.6.

The default mode for each argument of an undeclared relation is ground
input, so an undeclared relation will be assumed to be a test only relation
that needs to be called with ground arguments (terms not containing vari-
ables) but of unconstrained type. For Prolog relations, the default moded
type of each argument relation would be specified using the QuLog moded
type term?.

term says that the argument can be any Prolog term: a variable, atomic
value - a nat (non-negative integer), an int (integer), a num (decimal num-
ber), an atom or a string (a double quoted sequence of any characters),
or a c(...) compound term , which may contain variables. A postfix ?,
says a successful evaluation of the call may not result in a ground value for
the argument term - may not generate any value, or may not fully instan-
tiate a given compound term. Compound terms that may contain variables

5

in argument terms we call template terms. A QuLog primitive template:

term? will test for being a template term.
This contrasts with use of a prefix ?. This tells us that the argument,

even if given as an unbound variable, or template term, will be fully in-
stantiated to a ground term on success of the call. You should use the ?

mode whenever a ground value is guaranteed to be returned if not given as
the argument value. Use of a variable in such an argument position, allows
the variable to be later passed into a function call - for all function call
arguments must be ground - or to be used as the value of an argument of a
relation or action call that requires a ground value. If used as an argument
of a robotic action of a TeleoR rule, it guarantees this action argument will
be ground. If you want to emphasise that an argument for a call to a relation
or action must be ground, you can use the prefix annotation !. If you mode
an argument with a prefix ?, the QuLog type/mode checker will ensure that
a ground value will be returned and gives an error message if this is not the
case.

To summarise, a 3-argument relation rel that does not have a type
declaration will have an assumed, test only use, type declaration

rel: (!term,!term,!term) <=

The <= tells us rel is a relation. To indicate that a relation rel2 has
arguments of type term where the first must be given as a ground term, the
second can be a variable or any term, but will become ground on success of
the call, and the third may likewise be a variable or any term and may not
be ground on success of the call, you can use a declaration

rel2: (!,?,term?) <=

Finally, to indicate that a relation rel3, had to be given a number as first
argument, could be given but may also return an atomic value as second ar-
gument, and may be given a variable or list term containing only strings and
variables and which may not become ground on success, use the declaration

rel3: (!num,?atomic,[string]?) <=

An unannotated type is implicitly ! annotated - ground argument only. We
could therefore drop the prefix ! from the num type. Surrounding a type
expression with [...] indicates a list of terms of that type.

A relation can have more than one type declaration. For example, sup-
pose we know that when rely is called with an integer as first argument, and
is given an integer second argument, it will always ground its last argument,
we can use the disjunctive type declaration

6

rel3: (num,?atomic,[string]?) | (int,int,?[string]) <=

Here we have used the equivalent [string]?, with a ? after the type, to
indicate the list of strings argument may still contain variables after the call
succeeds. We have also dropped the prefix ! mode on num and int as this
is the default for an un-moded argument.

2.3 Relation definitions

child_of: (?atom,?atom)<= % Type and mode declaration
child_of(mary, peter)

child_of(bill,peter)

child_of(peter,john)

.

.

age_is: (?atom,?atom)<=

age_is(peter,40)

age_is(mary,12)

.

.

male: (?atom)<=

male(peter)

.

.

female: (?atom)<=

female(mary)

.

.

descendant_is: (!atom,?atom)<= % First arg. of a call must be a given
descendant_is(A,D) <= child_of(D,A)

descendant_is(A,D) <= child_of(C,A) & descendant_is(C,D)

ancestor_of: (?atom,?atom)<= % Test or generate use of both arguments
ancestor_of(A,D) <= child_of(D,A)

ancestor_of(A,D) <= child_of(D,P) & ancestor_of(A,P)

The input (!) mode annotation for the first argument of the type/mode
declaration for descendant is is because when the name of the ancestor A

is given it is more efficient than the ancestor of definition. It is worse than
the other definition if D is given and A is to be found. The descendant is

recursive rule ’walks’ down the child of links starting at the given A. In

7

contrast, the ancestor of recursive rule ’walks’ up the child of links from
a given descendant D. If D is not given then it finds some child/parent pair
D,P and then walks up from that P. This is acceptable if A is not given
as well, and all ancestor of pairs need to be found, but if A is given the
logically equivalent descendant is relation should be queried.

If the programmer forgets and calls the less efficient descendant is re-
lation in a position where the first argument will not be given, the mode
checker will give a mode use error so that the programmer can change the
called relation. However, it will not object if ancestor of is used where A

will be given with D to be found, where decendant is is more efficient. We
are considering adding an optional equiv declaration to QuLog. Then, in
the presence of

equiv ancestor_of, descendant_is

the mode checker would replace a call to descendant of, where the first
augment is not given, by a mode correct call to the equivalent ancestor of,
rather than raise a mode error. Conversely, it would replace a call to
ancestor of by a call to the more mode constrained equivalent relation
descendant of, when the mode analysis has determined that the first argu-
ment will be known at the time of the call. It would issue an advisory when
either kind of replacement is made.

A simple list processing example is

doubleL: (![num],?[num])<= % [num] is type of a list of numbers
doubleL([],[])

doubleL([N,..Nums], [DN,..DNums]) <=

DN =! N*N & doubleL(Nums,DNums)

The [num] type expression for both arguments indicates this is a relation
over lists of floating point numbers. The ! mode annotation on the first
argument indicates that in any call this argument must be a ground (variable
free) list of numbers or integers. It can contain integers, as int is a sub-type
of num. The lack of an annotation on the second argument indicates this
may be an unbound variable in the call, for generate use, or that it can be a
ground list of numbers for test use, or even a list of numbers and variables
for mixed test/generate use of the numbers on the list. For example, a call

The ,.. should be read as followed by. [N,..Nums] is read as N followed
by list Nums, which may be the empty list []. After the ,.. we usually have a
variable which denotes the tail list of terms following the number of elements
that precede the ,... A list pattern that does not have a variable after the

8

,.. can be rewritten as one that does. [X1,X2,..[X3,..L]] can be written
[X1,X2,X3,..L]. [X1,X2,X3,..] is equivalent to [X1,X2,X3,..]. We can
use the Prolog infix | instead of ,.. except that [X1,X2,X3|] cannot be
used as shorthand for [X1,X2,X3|]

=! is QuLog’s generalisation of the Prolog is, and is explained in Sec-
tion 5.6. It is also the structure pattern match operator that will evaluate
function calls in both the pattern expression and the value expression, and
it is the operator for non-deterministic pattern matching against string and
list values. This last use is to split strings into sub-strings and lists into
sub-lists satisfying certain constraints. It is illustrated in Section 4. =! is
multi-purpose operator but is always used for some variant of matching with
the right hand side a ground value. Even the above use is a simple match
of an variable, that may or may not have a number value, against a number
value N*N. For unification we must use =, discussed in Section 2.6.

It will be a match against a number value if N is a number. If it were
not, or is an unbound variable, we would have a run-time error when the
multiplication N*N is attempted. This is why we have type and mode of
use declarations in QuLog, checked against the source program, so such a
run-time error will not occur. All uses of double will be checked by the
mode analyser to ensure that for every call the first argument will always
be an ground list of numbers, or integers.

The postfix <= after a relation type declaration can be dropped when
the relation is defined in the same program file. From now on we shall drop
this optional <= from relation type declarations. We shall also drop the !

annotation from input argument types unless no type is given - meaning
term type. However, when a program clause is displayed using the show

command which we will exemplify in Section 3, the default ! annotations
and postfix <= will be displayed on the type declaration.

2.4 General form of relation rules

The ‘if’ operator for a QuLog conditional rule is <=. The ‘and’ operator is
&. We choose to use <= as it is often used as the ’if’ of predicate logic, and
we believe that comma is overloaded in Prolog. Its use as the associative
‘and’ for conjunction also means that tuples are not fully supported as a
data term in Prolog, as explained in Section 6.1.

Typically, a conditional rule for a relation is written

Head <= Cond1 & Cond2 & ... & Condn

where Head is a predication of the form rel(Arg1,...,Argk), k ≥ 0, and each

9

Condi is a predication, or a negated predication using the negation-as-failure
operator not.

In QuLog not is restricted to a single positive condition, as in Datalog. In
a negated condition all but the variables starting with an must have ground
values by the time it is evaluated. The relation modes are used to check this
will be the case at compile time. If not, a mode error is signalled. If the
programmer wants a negated test that requires a conjunction, an auxiliary
relation must be defined with body that conjunction. The negation is then
applied to a call to the auxiliary relation.

2.5 General form of moded type declarations

QuLog’s relation that have arguments must all be mode and type declared.
A type+mode declaration for a k argument declarative relation has the form

rel: (mt1,...,mtk) <=

Here each mti is a type expression ti (often just a type name) with an
optional ! or ? prefix and an optional ? postfix. The absence of a mode
annotation is equivalent to having given a prefix ! annotation. Clauses
defining a no argument relation rel do not need a type declared, but may
be declared as rel:()<=. When several relations have the same type we can
use rel1,rel2,rel3:(mt1,...,mtk)<=.

The <= postfix operator indicates that rel is a declarative relation, as
against a QuLog action procedure declaration (or a TeleoR procedure decla-
ration when used with TeleoR). It is intentionally the ‘if’ connective used in
relation definitions so it is easy to remember. As already mentioned, extra
information that is not needed for a relation defined in the same program
file. That rel is a declarative relation can be inferred from the form of its
rules. However, it does no harm and is useful ‘documentation’ if you want
to separate the type declaration from the relation defining rules, say having
all the type information at the beginning of a program file. The : is to
signal this is a type declaration not a fact about rel. It allows the <= to be
optional without risk of confusing the compiler.

The <= is needed if you want to specify that the type of an argument of
a higher order relation or function is a relation value. In that case you must
use an <= annotated type expression (mt1,...,mtk)<=. If the relation type
for an argument has no arguments, ()<= is used. So,

test: (()<=,atom)<=

tells us that test is a relation with a no-argument relation as its first argu-
ment and an atom as its second, both of which need to be given.

10

2.6 Non-grounding mode

A postfix ? is a relaxation of the prefix ? mode, most useful when the
argument type covers non-atomic terms. As for a ? prefix moded argument,
an unbound variable, or a non-ground term, may be passed as an argument
value for a postfix ? moded argument, but the call may not ground that
argument. It can return the same template term argument, or another
template that is a partial instantiation of the given template argument, or
a ground instantiation. If an unbound variable is given as the argument in
the call, it may still be an unbound variable (perhaps a different one) after
the call.

If for some particular call C, of a rel, with a ? postfix moded argument A,
it is important that the call returns a ground value because A will be passed
as a ! moded argument to a later call, then the primitive ground(A) test
should be used after C to force backtracking until C returns a ground value
for A. Without such a ground(A) test, the mode checker will raise an error.
If it is just required that A be bound to a term of the form con(...), then
the primitive template(A) can be used after the call C, to force backtracking
to generate such a partial structure.

The postfix ? mode is not often used for user programs. We have an
example in Section 4.2. The unification primitive has moded type term? =

term?. = takes any pair of terms trm1 and trm2, and succeeds if it can in-
stantiate each to single term trm by binding variables, providing no variable
is bound to a term that contains that variable (the occurs check of unifica-
tion). The trm result of unification may not be ground, it will be trm1 or
trm2 if the other is a variable. trm is always a least instantiated common
instance of trm1 and trm2.

As an example, f(X,g(Y,a))=f(h(U),g(V,U)) instantiates both to the
non-ground f(h(a),g(V,a)), or the non-ground f(h(a),g(Y,a)).

The ability to return and pass to a later call a template term, that the
later call either grounds or just further instantiates leaving as a non-ground
term, is a powerful programming technique unique to logic programming
which is preserved in QuLog. It comes at the cost of having to support
unification rather than just pattern matching, and having to treat variables
as first class values. However, because of the mode information in QuLog we
can, for the most part, safely avoid the costly occurs check. We discuss such
implementation issues further in the companion QuLog paper on its action
rules. The retention of unification, and the consequent need to have variables
as first class values, is a major difference between QuLog and Mercury.

11

2.7 Iteration over all solutions to a query

Rule bodies can contain forall conditions which have explicitly quantified
variables. Their simple form is

forall(V1,...,Vj)(exists EVars1 Conditions1 =>

exists EVars2 Conditions2)

with j≥1. The spaces before and after the tuple of quantified variables, and
the implication, are not essential. The (...) brackets around the implication
are essential but can be dropped around the sequence of quantified variables.
The variables V1,...,Vj are said to be universally quantified.

Each variable of V1,...,Vj must appear in Conditions1 and Conditions2.
They must be variables not used anywhere else in the query or rule body
in which the forall appears, and all other variables of the forall, except
the explicitly existentially quantified variables EVars1 and EVars1, and
variables, must have ground values when it is evaluated. If there are no
existentially quantified variable for either the antecedent or consequent, the
exists is dropped.

Each existentially quantified variable must have a name different from
that of any other variable in the query or clause body in which the forall

appears. Nested existentially quantifications are not allowed. They are not
necessary as all the inner existential quantified variables can be put into a
single outermost existential quantification.

(exists X (g(X) & exists Y h(X,Y,Y)) => . . .)

is equivalent to

(exists X,Y g(X) & h(X,Y,Y) => . . .)

The forall holds if for all bindings for its UVars quantified variables, given
by a solution θ to Conditions1, in which the explicit existential quantifica-
tions are ignored, then Conditions2θ has at least one inferable answer for its
existentially quantified variables1.

1If there is an explicitly existentially quantified consequent exists

EV ars2 Conditions2 this will only have the variables in EV ars2 unbound by the
time Conditions2 is checked, that is the existential quantification is being used as a test.
The compiler always transforms the consequent to once Conditions2 (see Section 2.10)

12

2.7.1 Example uses of forall

only_has_adult_sons: ?atom % arg. can be a var or given as an atom
only_has_adult_sons(P) <=

person(P,_,_) & % This checks P is a male or female, or finds one
forall C (child_of(C,P) =>

exists A male(C) & age_is(C,A) & A>20)

person: (?atom,?atom,?nat)<=

person(P,male,A) <= male(P) & age_is(P,A)

person(P,female,A) <= female(P) & age_is(P,A)

We need two rules for person as QuLog has no disjunction.

2.8 Commitment to a rule

The infamous Prolog ! cut primitive is not allowed in QuLog rules or queries,
but commitment to a rule can be expressed using a :: commitment test
before the <=, as in:

� Head ::Commit <= Body - do not use any later rule if Commit holds
even if Body fails.

� Head::Commit - ditto, rule has no preconditions except Commit.

� Head:: - do not use any later rule if the Call matches Head

Commit is a conjunction of predications and negated predications. It often
only has one solution, and as such it is a query test extension of the head
unification with a call. If it happens to have more than one solution only the
first solution will be found. It may generate values for variables in non-input
arguments of the Head, which may be used in Body

The recommended style in defining a relation Rel is to have mutually
exclusive Commit conditions or rule Heads with perhaps a last default rule
that implicitly has an initial negated call not above Rel(...) to an auxil-
iary (but undefined) relation above Rel. The above Rel definition has a rule
above RellR constructed from the head term arguments and Commit tests
of each rule R above the last rule, such that the use of the above RellR
rule would succeed exactly when the head unification and Commit test of
R would succeed. The implicit negated condition not above Rel(...) tests
that none of the head term match/commit tests of the rules above can be
inferred. We give an example below.

13

:: can be read as such that and the Commit test following it is a ‘case’
condition for use of the rule augmenting the term matching tests given by
any non-variable terms in the input and in/out argument positions in the
rule head. Ideally the ‘case’ conditions are non-overlapping, but in practice
they often are not.

Disjunction and if ... then ... else ... conditionals are not
supported. Their purpose must be achieved by defining auxiliary relations
with commit tests.

2.9 Example use of commit

max_of: num,num,?num % First 2 args implicitly ! moded
max_of(M,N,Max)::M=<N <= Max=N

max_of(M,N,Max)::M>N <= Max=M

The rules treat disjoint cases. As in Prolog the commit test of the second
rule can be dropped and we would get the same behaviour. Implicitly the
second rule then has the test not above max of(M,N,Max) where

above_max_of(M,N,Max) <= M =< N

i.e. in this case the implicit negated test is the equivalent of the given test
M>N.

Note that the modes mean that the max of relation will only be called
if the first two arguments are given, thus preventing a runtime error on use
of the arithmetic comparison tests. An attempt to use it when they will not
both be number values - checked by the type and mode analyser - results in
a compile time error.

2.10 Restricting a query to a single solution

QuLog has a once operator that can be used as a prefix to a single call or a
bracketed conjunction of predications or negated predications (so no nested
once calls or foralls), as in

once (Conditions)

When it is used only the first successful inference of Conditions is found.
After is has been found, there is no backtracking inside the Conditions con-
junction to find alternative inferences/solutions. Brackets are not needed if
there is only one condition.

14

It is particularly useful if Conditions are being used to test and not to
generate values. For example, the once in the body of a rule of the test only
relation has son.

has_son : ?atom

has_son(P) <= person(P,_,_) & once (child_of(C,P) & male(C))

If a call to the relation succeeds backtracking does not look for alternative
proofs that the found P has an adult child.

2.11 Generating lists and sets from query conjunctions

QuLog has a list comprehension expressions that generate lists of terms, each
one being the instantiation of a template term corresponding to a solution
to a conjunction of conditions. It also has a set comprehension expression.
Sets contain no duplicate terms. Sets and lists are distinct types in QuLog.

To generate a list of instances of some Term corresponding to solutions
of some conjunction of conditions we can use an expression

[Term :: exists Vars Conditions]

Vars are all the variables in Conditions that do not appear in Term, or
elsewhere in the clause or query in which the list expression appears. They
are the local variables of Conditions. If there are no such variables, exists
Vars is dropped.

All variables in Conditions, not in Vars or Term, must appear earlier in
the clause or query and be such that they will have a ground binding by the
time the expression is evaluated. This also applies to variables in Term not
appearing in Conditions.

Conditions is a conjunction of predications and negated predications with
the usual contraints on the negated predications. The predications may have
list comprehension expressions and function call arguments. Finally, any
variable in Term that will not have a ground value when the set expression is
evaluated must appear in a grounding condition in Conditions. This ensures
the generated list will only contain ground values.

The list comprehension expression denotes the list of all instances of
Term such that Conditions, as found. That is, the instances of Term are
generated by finding all the different inferences of Conditions, ordered as
found by the backtracking search for all the different inferences. It can
contain duplicates. It is like the Prolog findall.

15

2.11.1 Set comprehension

The set comprehension expression is very similar in structure but uses {..}
braces instead of [..] brackets. The generated set will not contain any
duplicates. However its internal representation is such that operations of
union, diiff and inter (set uniion, difference and intersection) are effi-
ciently implemented. Also a set will be displayed surrounded with {..}
braces, with its elements ordered using the standard QuLog term ordering
relation @<, which is the same as Prolog’s.

A set expression has the form

{Term :: exists Vars Conditions}

and is subject to the same constraints regarding variable bindings as list
comprehension expressions.

2.11.2 Conversion between lists and sets

To covert a list to a set we use the built in function {}. {}([3,2,-6,3,-4])
is the set {-6,-4,2,3}. To convert a set to a list, that can be processed
using list patterns, we use the built in function []. So, []({2,9,2,-2,-4})
is the list [-4,-2,2,9].

We can use in to access elements of both lists and sets. Used to access
elements of a set the elements will be returned starting at the least element
in size order. So, E in {2,-3,7,2,0} will successively bind E to -3, 0, 2
and 7. So we can think of a set as being ordered.

The set comprehension expression can be viewed as shorthand for

{}([Term :: exists Vars Conditions])

2.12 Example uses of comprehension expressions

children_are: ?atom,?{atom} % {atom} is type for a set of atoms
children_are(P,L) <= person(P,_,_) & L =! {C :: child_of(C,P)}

% L will be a set of children of P

The expression queries

| ?? {}([C1 :: child_of(C1,peter)] <> [C2 :: child_of(C2,mary)])

| ?? {C1 :: child_of(C1,peter)} union {C2 :: child_of(C2,mary)}

16

will both return the set of the children of either peter or mary. The set
will be displayed with its elements ordered using the term order relation
@<. Also, when the elements of a set S are accessed using E in S then E is
bound to successive elements in @< term order.

For this example we could also have used the query

| ?? {C :: child_of_either(C,peter,mary)}

where child_of_either has been defined as

child_of_either: ?atom,?atom,?atom

child_of_either(C,P,_) <= child_of(C,P)

child_of_either(C,_,P) <= child_of(C,P)

<> is the list concatenation function of QuLog. It can be used for ‘glue-
ing’ ground lists together, no matter how constructed. It can be used to
concatenate lists of different types [T1], [T2]. The result is a list of the
union type of [T1], [T2], i.e. it is list of type [(T1 || T2)]. || is the
type union operator. We will say more about union types in Sections 6.4,
6.9.

<> can also be used for splitting a given ground list subject to constraints.
This is when used in the left hand side pattern of the =! operator, as
illustrated in Section 4.2.

There is also an append relation primitive in QuLog. Its use covers both
the appending and splitting use of <>, and more. It must be used, not <>, to
concatenate or split lists containing variables or template terms. We shall
illustrate its use in Section 4.2.

Here is an example that uses a necessary existential quantification.

adult_children_are: ?atom,?{atom}
adult_children_are(P,L) <=

person(P,_,_) &

L =! {C :: exists A child_of(C,P) & age_is(C,A) & A>17}
% L will be a set of name ordered adult children of P

children_in_age_order: (?atom,?{(int,atom)})
children_in_age_order(P,L) <=

person(P,_,_) &

L =! {(A,C) :: child_of(C,P) & age_is(C,A)}
% L will be a set of pairs ordered by increasing age

17

children_as_recorded: ?atom, ?[atom]

children_as_recorded(P,L) <=

person(P,_,_) & L =! [C :: child_of(C,P)]

Note the change from {..} brackets to [..] brackets. L will be a list of
names of children of P in the order that they are found by the findall

Prolog primitive, i.e. in the fact order.

2.12.1 Ordering lists

The simplest way to order a list is to use the converter functions {}, [] in
succession. The function

order: [T] -> [T]

order(L) -> []({}(L))

will convert L in to list ordered by increasing value with all duplicates re-
moved.

2.13 Relational queries

You have probably inferred by now that | ?? is the QuLog interpreter
prompt to enter a query or command. In Section 3 we shall illustrate the
entering of commands such as those needed to consult a program file, to
show particular definitions, and to watch calls to a particular relation. Here
we say something about QuLog’s relation queries. These are quite different
in QuLog from Prolog.

| ?? person(P,male,_) & child_of(C,P)

% <fullstop><return> or <return><return> is query end

P=bill:atom % type of each answer binding is given
C=mary:atom

... % the ... indicates backtracking to find next solution

. % more answers

.

...

P=cheryl:atom % The 5th answer
C=jake:atom

18

If the response is to enter ..<return> after the 5 answers have been dis-
played, up to 5 more will be displayed. If ..3 is entered, up to 3 more
answers are displayed and you must respond again to get more. In general,
if the response is ..n, where n is an integer, n more answers are displayed
if there are n more.

For the above query we could use (underscore) for the age argument of
person to suppress seeing its bindings. However, if we had a minimum age
condition we could not do this. The query

| ?? person(P,male,A) & A>40 & child_of(C,P)

will display the A answer bindings as well as those for P and C. To see just
the P, C bindings, we can prefix the query with these variables.

| ?? P,C ? person(P,male,A) & A>40 & child_of(C,P)

This will give us up to 5 pairs of bindings for P and C in the first instance.
Notice that this is very like a list comprehension. If we did put a pair of
the list comprehension brackets around the query, and wrapped P, C into a
single term such as (P,C), we would get all the answers displayed as a single
list.

| ?? [(P,C):: exists A person(P,male,A) & A>40 & child_of(C,P)]

will display a list of pairs [(bill,mary),...,(cheryl,jake),...]. We
have had to explicitly existentially quantify A which is implicitly existentially
quantified in the relational query.

If we only wanted to see 3 answers of a query in the first instance we
can prefix the query with that number. We can also use an existential
quantification for the variables for which we do not want to see answer
bindings instead of enumerating the ones for which we want to see answer
bindings.

| ?? 3 ? exists A (person(P,male,A) & A>40) & child_of(C,P)

After the first 3 answers have been displayed we must enter a .. to see the
next 3, or a .. n, with n an integer, to see the next n. We can also prefix
a query with an integer greater than the default up to 5 answers displayed.
We can also change this default using a command, as given in Section 3.

We can just give the number of solutions bindings we want to see in the
first instance without giving a sequence of variables. The query

| ?? 1 ? person(P,male,A) & A>40 & child_of(C,P)

19

behaves exactly like a Prolog query. You will need to enter .. to see each
successive answer.

With all the query forms, if you enter <return> when able to enter ..

to see more answers (if any), the query evaluation will terminate. You will
again get the top level prompt | ?? for a new expression, relation query or
command to be entered. Expression queries and commands are discussed
further in Sections 5.2 and 3, respectively.

| ?? child_of(_,P). % <fullstop><return> used to mark query end

C=peter:atom

...

C=peter:atom

...

C=john:atom

...

. % More answers

.

Notice that we get the answer C=peter:atom twice as there are two ways
of inferring that peter is a child of someone using the facts of Section 2.3.
QuLog also attaches its minimal type of each answer binding.

3 Query line commands and debugging

| ?? consult file % Double return used to mark end of command

success

will read in and type and mode check the QuLog program in file giving
useful syntax, mode and type error messages, and perhaps suggestions for
re-programming. [file] cannot be used as that is just a list expression to
QuLog and will generate the answer [file]:[atom].

| ?? show BeginName. % For example show chi.

will complete the BeginName to names of defined functions and relations
that start with BeginName and display them with their type declarations.
show on its own will display them all. Unlike most Prologs they will have
their programmer given variable names of the source file.

20

| ?? types.

will display all the type definitions and type declarations. You can also dis-
play a specific type definition using type TypeNm.

| ?? set num answers n.

will change the default number of answers displayed before a continue input
.. is required from 5 to n. n must be a positive integer.

| ?? watch relation.

will display every call to relation, say which rule it unifies with, and give
the bindings for the variables of the call and the rule head. The rule head
variables with be of the form var i where var is the variable name used in the
relation rule and i is an integer. If the call is retried this is also displayed
along with the same information for the next rule with which the call unifies,
if any.

A variant watchC relation will also display the partially instantiated
body of the rule being tried. unwatch relation will turn the watching of
relation off. Any number of relations can be watched at the same time.
Watching a relation in QuLog is a little like the spying feature of Prolog
except Prolog’s spy invokes the interactive tracer at the first call of a spied
relation. The QuLog watch is not interactive. It is a substitute for inserting
write statements in Prolog rules that most Prolog programmers actually use
for debugging. This is what watch and watchC do under the covers. It
cannot be done at the source level as writing terms is an action and can
only be done inside an action rule of QuLog.

We give an example use of watch and watchC. For this we assume we
have a program defined relation

app: ([T]?,[T]?,[T]?) | ([T],[T],?[T]) | (?[T],?[T],[T])

app([],L,L)

app([U|L1],L2,[U|L3]) <= app(L1,L2,L3)

that has the same rules as the builtin append, which cannot be watched.
This is a polymorphic relation that can be used to append or split lists
of any type T. The most general type declaration is the first. It tells us
the relation will handle list terms containing variables and that it may not
instantiate all these variables. The second two give extra information to the

21

mode checker. The first says that if the first two arguments are ground in
a call, the third will be ground after a successful evaluation. The last says
that the first two arguments will be ground after a successful call, if the
third argument is given as a ground list.

| ?? watch app.

success % app is now being watched

| ?? app([1,2,3],[4],L).

1:app([1, 2, 3], [4], L)

Call 1 unifies clause 2

input U_0=1 L1_0=[2,3] L2_0=[4] output L=[1,..L3_0]

2:app([2, 3], [4], L3_0)

Call 2 unifies clause 2

input U_1=2 L1_1=[3] L2_1=[4] output L3_0=[2,..L3_1]

3:app([3], [4], L3_1)

Call 3 unifies clause 2

input U_2=3 L1_2=[] L2_2=[4] output L3_1=[3,..L3_2]

4:app([], [4], L3_2)

Call 4 unifies clause 1

input L2_3=[4] output L3_2=[4]

4:app([], [4], [4]) succeeded

3:app([3], [4], [3, 4]) succeeded

2:app([2, 3], [4], [2, 3, 4]) succeeded

1:app([1, 2, 3], [4], [1, 2, 3, 4]) succeeded

L = [1, 2, 3, 4]:[nat]

... % Backtracking to look for more answers
1:app([1, 2, 3], [4], L) seeking another proof

2:app([2, 3], [4], L3_0) seeking another proof

3:app([3], [4], L3_1) seeking another proof

4:app([], [4], L3_2) seeking another proof

checking clauses after 1 for call 4

4:app([], [4], L3_2) no (more) proofs

checking clauses after 2 for call 3

3:app([3], [4], L3_1) no (more) proofs

checking clauses after 2 for call 2

2:app([2, 3], [4], L3_0) no (more) proofs

checking clauses after 2 for call 1

1:app([1, 2, 3], [4], L) no (more) proofs

22

| ?? watchC app.

success % Next level of watching turned on for app

| ?? app([U,2,V],[9],[1,W,3,..L]).

1:app([U, 2, V], [9], [1, W, 3,..L])

Call 1 unifies clause 2

input U_0=1 L1_0=[2, V] L2_0=[9] L3_0=[W,3,..L] output U=1

Clause body is: app([2, V], [9], [W,3,..L])

2:app([2, V], [9], [W, 3|L])

Call 2 unifies clause 2

input U_1=2 L1_1=[V] L2_1=[9] L3_1=[3,..L] output W=2

Clause body is: app([V], [9], [3,..L])

3:app([V], [9], [3,..L])

Call 3 unifies clause 2

input U_2=3 L1_2=[] L2_2=[9] output V=3

Clause body is: app([], [9], L)

4:app([], [9], L)

Call 4 unifies clause 1

input L2_3=[9] output L=[9]

No clause body

4:app([], [9], [9]) succeeded

3:app([3], [9], [3, 9]) succeeded

2:app([2, 3], [9], [2, 3, 9]) succeeded

1:app([1, 2, 3], [9], [1, 2, 3, 9]) succeeded

U = 1:nat

V = 3:nat

W = 2:nat

L = 9:[nat]

... % Backtracking to look for more answers
1:app([U, 2, V], [9], [1,W,3,..L]) seeking another proof

2:app([2, V], [9], [W,3,..L]) seeking another proof

3:app([V], [9], [3,..L]) seeking another proof

4:app([], [9], L) seeking another proof

checking clauses after 1 for call 4

4:app([], [9], L) no more proofs

checking clauses after 2 for call 3

3:app([V], [9], [3,..L]) no more proofs

checking clauses after 2 for call 2

2:app([2, V], [9], [W,3,..L]) no more proofs

checking clauses after 2 for call 1

23

1:app([U, 2, V], [9], [1,W,3,..L]) no more proofs

| ?? unwatch app.

success % Watching of app is turned off

A watched relation does not need to be called at the query level. It could
be called deep inside some query evaluation.

3.1 Fact updating commands

QuLog action rules can update facts for relations defined solely by a sequence
of facts for relations declared to be belief relations. This is similar to
the Prolog dynamic except that belief relations can only be defined by a
sequence of ground facts.

Suppose we had type declared the child of, male, female and age

relations using

belief child_of:(atom,atom), female:(atom), male:(atom)

The belief keyword tells the QuLog system that these four relations
can be updated after the program file has been consulted. They can be
updated both in action rules and command queries to the QuLog interpreter.
Since belief relations always comprise a sequence of fact, the mode for each
argument is ? so does not have to be given in the type declaration.

The belief updaters are

remember Fact % Add Fact as new last fact for its rel. if not present

rememberA Fact % Add Fact as new first fact for its rel. if not present

forget FactPtn % Remove first Fact matching FactPtn if present

replace FactPtn by Fact % Remove first Fact matching FactPtn and
% add Fact as a new last fact for its relation

% Fact and FactPtn can share variables

replaceA FactPtn by Fact % Remove first Fact matching FactPtn and
% add Fact as a new first fact for its relation

For both replace actions the replacing fact will not be added if already
present.

We can enter query commands such as

24

| ?? remember child_of(olive,sammy); remember female(sammy);

remember female(olive)

to add three new dynamic facts. We have used ; to separate the actions of
the command as this is what must be used in QuLog action rules.

Suppose we also had facts for the relation spouse:(atom,atom)<=. We
could do an update recording a divorce and re-marriage using

| ?? replace married(bill,_) by married(bill,mary)

4 Non-deterministic String and List Pattern Match-
ing

Strings in QuLog are the same as C strings - packed sequences of bytes.
They are not lists of byte codes as in most Prologs.

=! can also be used as a string or a list pattern match operator to split
strings into substrings, or lists into and sublists, satisfying certain condi-
tions. Its uses are

StringPattern =! StringExpression

ListPattern =! ListExpression

4.1 String matching

For string matching we use ++ for string concatenation and splitting. We
use <> for list appending and splitting. When one or more ++ or <> op-
erators appear at the top level of the left hand side of =! it acts as a
non-deterministic or multi-valued match operator. There may be several
bindings of variables appearing in the left hand side pattern that make both
the pattern and the expression have identical string or list values. As a
simple example,

S1 ++ S2 =! "hello"

has seven different possible solutions for S1 and S2 starting with S1="",
S2="hello", then S1="h", S2="ello", and ending with S1="hello", S2="".

In the pattern we can have

Var?Test(..,Var,..)

25

components that restrict the values assigned to Var to those that satisfy
Test. Failure of the test will cause backtracking to find an alternative value
for Var. When there are no more alternatives it causes an attempt to find
alternative values for variables appearing to the left of this condition in the
pattern, ultimately resulting in a failure of the entire =! non-deterministic
pattern match. For list matching the variable Var can be replaced by a list
pattern such as [E] or [E|L] where the associated Test can contain all the
variables of the pattern. As an example, the pattern match

S1?S1\="" ++ S2?S2\="" =! "hello"

excludes the first and last solutions we gave above.
We will eventually have full regular expression pattern components of

the form

V∼"RegExp"?Test(..,V,..)

where RegExp is a regular expression filtering out the allowed string values
of V before the Test(..,V,..) is applied.

For example V∼"(a | b)*c" only allows V to match a string beginning
with any length sequence of a’s and b’s, including none, followed by a c.

Here are some uses of string patterns to ‘parse’ strings representing sen-
tences into lists of string words. Such string processing can be a precursor
to Definite Clause Grammar (DCG) parsing of lists of string words.

spaces: string

spaces(S) :: " " ++ RS?spaces(RS) =! S % S has more than 1 space
spaces(" ") % We have a single space string

sepchar,endchar,sep_endchar: ?string

sepchar(" ")

sepchar(",")

sepchar(";")

endchar(".")

endchar("?")

endchar("!")

sep_endchar(C) <= sepchar(C)

sep_endchar(C) <= endchar(C)

26

wordchar,word,seps: string % Test only use
wordchar(S) :: 1 =:= #S & not sep_endchar(S)

% ie a single character string which does not contain a sep or end character

word(S) :: C?wordchar(C) ++ RS?word(RS) =! S

word(S) :: wordchar(S) % Single char alternative for a string being a word

seps(Seps) :: O?sepchar(O) ++ RSeps?seps(RSeps) =! Seps

seps(Sep) <= sepchar(Sep)

words: !string,[string]

words(Str,[W]) :: W?word(W) ++ E?endchar(E) =! Str

words(Str,[W,..Words]) ::

W?word(W) ++ Seps?seps(Seps) ++ RStr?words(RStr,Words) =! Str

words converts a string sentence beginning with a word terminated with an
end char, and with spaces and/or any number of sep chars between each
word, into a list of word strings. An example use is

| ?? words("Hello Keith,, how are you?", Ws).

Ws = ["Hello","Keith","how","are","you"]:[string]

4.2 List pattern matching

| ?? L1<>L2 =! [1,2,3].

L1 = []:[T] % [] is a list of unspecified type T
L2 = [1,2,3]:[nat]

...

L1 = [1]:[nat]

L2 = [2,3]:[nat]

...

L1 = [1,2]:[nat]

L2 = [3]:[nat]

...

L1 = [1,2,3]:[nat]

L2 = []:[T]

27

% or we can use
| ?? [U1,..L1]<>[U2,..L2] =! [1,2,3].

U1= 1:[nat]

L1 = []:[T]

U2 = 2:nat

L2 = [3]:[nat]

...

U1=1:nat

L1 = [2]:[nat]

U2 = 3:nat

L2 = []:[T]

| ?? [1,U]<>[3|L] =! [1,2,3,4].

U = 2:nat

L = [4]:[nat]

splitsAroundE: [T],[T],T,?[T],?[T]

splitsAroundE(L1,L2,E,OL1,OL2) <= OL1<>[E]<>OL2 =! L1<>L2

| ?? splitsAroundE([1,5,3],[8,5,7],5,OL1,OL2).

OL1 = [1]:[nat]

OL2 = [3,8,5,7]:[nat]

...

OL1 = [1,5,3,8]:[nat]

OL2 = [7]:[nat]

The right hand side of a list match can use set expressions to denote the
component lists, e.g. list pattern =! [E|cond(E)]<>L.

We could also code the above examples using the built in append relation
to split lists as in Prolog. We think the above are more transparent. Here is
the rule for splitsAroundE using the QuLog builtin concatenation relation
append.

splitsAroundE(L1,L2,E,OL1,OL2) <=

append(L1,L2,L12) &

append(OL1,[E|OL2],L12)

In this case it is not too difficult to decipher but it is less clear than the use of
the split pattern using <>. You have to look at the use of the variables quite

28

closely to determine what it is doing. It does not wear its ‘semantics’ on its
sleeve unless you are well practiced at the use of append for list splitting.

append’s library definition is the same as the earlier app.

append: ([T]?,[T]?,[T]?) | ([T],[T],?[T]) | (?[T],?[T],[T])

append([],L,L)

append([U|L1],L2,[U|L3]) <= append(L1,L2,L3)

Here is a query we cannot express using <> as it uses a template term
for the appending result.

append([1,U],[3],[V,2|L]).

U=2:nat

V=1:nat

L=[3]:[nat]

5 QuLog Functional Subset

5.1 Example function definitions

fact: nat -> nat % The factorial function
fact(0) -> 1

fact(N)::N1 =! N-1 & type(N1,‘nat) -> N * fact(N1)

Note we have the rather indirect way of testing N>0 in the second rule. This
is because use of the test N>0 would not enable to type checker to infer that
the value of the argument of the recursive call N-1 was a natural number as
required. However, the presence of the run-time test type(N1,nat) gives
it this assurance. Input arguments of functions do not need to be moded.
They are all implicitly ! mode. That is, they must always be ground terms
when the function is called.

type: (top?,typeE(T))<= is a primitive of QuLog that allows the run-
time type checking of any QuLog data value, or defined relation, function or
action. It tests it the first argument belongs to the sub-type T of type top,
denoted by the typeE(T) argument - the back quoted name of type T.

max: (num,num)->num

max(M,N)::M>=N -> M

max(M,N) -> N % implicitly when not M>=N, i.e. when M<N

29

appBetween: ([E],E,[E]) -> [E]% E is a variable, a polymorphic function
appBetween(L1,X,L2) -> L1<>[X]<>L

father_of: atom -> atom

father_of(C)::child_of(C,P) & male(P) -> P

father_of(C)::not child_of(C,_) -> no_father_

number_of_children: atom -> nat % nat is type of non-negative integers
number_of_children(P) -> #{C :: child_of(C,P)}

a_child_of: atom -> atom

a_child_of(P):: child_of(_,P) & Children=[C:: child_of(C,P)] ->

memberAt(choose_int(1,#Children),Children)

a_child_of(P):: not child_of(_,P) -> no_child_

memberAt: (int,[T]) -> T

memberAt(1,[E|_]) -> E

memberAt(Pos,[_|L])::Pos>1 -> memberAt(Pos-1,L)

memberAt(_,_) -> bottom_ % Only value of the bottom builtin type

now:() -> int

now()::realtime(Now) -> Now

is a QuLog operator for finding the length of a list or string.
Auxiliary functions such as father of can be defined for any use pattern

of a relation that returns a single value, or a single tuple of values for some
of its arguments, when certain other arguments are given. When there
are several output values for a relation for a given input we can define a
function such as a child of that will randomly choose a child from the
recorded children of a parent P. choose int is a QuLog non-deterministic
primitive function which returns an integer somewhere in the inclusive range
of integers given by its two integer arguments.

Notice that memberAt returns a special value bottom_ when the position
is either given as a negative integer or it is greater than the length of the
list first argument. bottom_ is the sole atom of the bottom primitive enu-
merated type, which the type checker knows is a sub-type of every other
type. It is the default value that should be used for polymorphic functions.
For non-polymorphic functions, like fact, father of and a child of, we
can use a more meaningful default value for a function that is a legitimate
value of the functions value type: integer 0 for fact, atoms no father and

30

no child for the other two. The application then deals with these function
‘completion’ values. Of course, bottom_ can also be used as a default value
instead.

realtime: int <= is a QuLog relation primitive that accesses the host’s
clock and returns the current time as an integer valued Unix epoch time
in seconds. The now function is a non-deterministic function that allows
this varying time value to be found using a function call. This may make
functional programmers aghast, but is useful for robotic applications where
time is important and the result from an expression evaluation pertinent to
a robot’s behaviour may well be time dependent. Like choose int, now is
a QuLog primitive function.

At the other extreme, QuLog has two primitive fixed value functions,
e :()->num and pi :()=num. The first returns a numeric value for the
constant e, the second a numeric value for π.

5.2 Expression queries

| ?? 1+2.

3:nat

| ?? {1,-5,6} union {apple,1,4}. % union is the set union
{-5,1,4,6,apple}:{int||atom} % A set of ints or atoms

We have sets as a separate type from list with union, diff (first set minus
the elements in the second) and inter (set intersection) for combining sets,
and the in membership test for accessing their elements. Because of the
way they are stored, testing whether a given term is in a set is more efficient
than testing if its in a list of the same elements.

5.3 General form of a function rule

Functions are defined by sequences of condition/expression rules of the form

Head :: Commit -> Expression

The ::Commit is optional. As with relation definitions it is a simple
conjunctive query that augments the head/call pattern match to determine
if that rule should be used. Unlike in most functional languages Commit
may generate values for variables in Expression making the returned function
value partly depend on current facts. Even without a Commit test, there is
an implicit commit at the -> of each function rule.

31

Note the similarity between the form of conditional rules for relations
and the form of a function rule. The difference is just whether <= or -> is
used followed by a conjunction or an expression.

5.4 General form of function type declaration

Every function must have its type declared. A function declaration has the
form

fun: (t1,...,tk) -> t

where t is the value type. The arguments are always unannotated. Unlike
relations, function arguments must always be given as ground values. The
brackets around the sequence of argument types can be dropped when there
will be no ambiguity (the last type tk is not a function type).

Zero argument functions have a type ()->t and must be defined and
called using f(). This is different from no argument relations. They are not
type declared and must be defined and called using just their name, as in
Prolog. E.g. no_args_rel <=

If a function f of type

f: t1,...,tk -> t

was instead defined as a k+1 relation fr, its type declaration would be

fr: !t1,...,!tk,t <=

For example, if we defined fact as a binary relation factr, which we would
need to do in Prolog, its type would be factr: !int,int and could be used
to find or check factorial values for given integers.

There is a comprehensive set of primitive functions: the usual arith-
metic operators of Prolog, trigonometric functions, integer division, integer
division remainder, sqrt, exp etc. All these can be called inside or as ar-
guments to relation calls reducing the need for =! calls to find the value of
expressions.

5.5 Expression use, implicit and explicit evaluation

Set expressions, list and string concatenation expressions, arithmetic expres-
sions and any function calls can appear as or inside the term arguments of
relation calls in queries and rule bodies, but not in rule heads. They are
fully evaluated before the relation call is made. There is no lazy evaluation
in QuLog.

As an example, we could have a call of the form

32

rel([X::q(X,fact(Y)+2)])

where Y is a variable that must have been given an numeric value before
the rel call. q will have a moded type such as q:(?int,int) and rel a
moded type rel:([int]). Suppose Y=3 at the time the rel call is made
and fact(3) will return 6. rel is called with argument the integer list value
of [X::q(X,8)].

We can also explicitly evaluate expressions. Two expressions can be
evaluated and checked for identical values using Exp1=:=Exp2, providing
they have the same type. The complement test Exp1 =\= Exp2 is subject
to the same type constraint. It can only be used to test non identity of values
for primitive and program defined types. The argument expressions for =:=
and =\= must both be ground before the comparison test will be evaluated,
a constraint checked by the compiler. After evaluation of all function calls
=:= and =\= respectively reduce to identity and non identity tests for the
computed ground term values.

5.6 Expression patterns

A call Exp1 =! Exp2 can be used to evaluate and match any pair of expres-
sions in the language with the constraint that Exp2 will be ground (variable
free) when the =! condition is evaluated. If both expressions are ground,
their values must be identical for the =! test to succeed so the call is then
equivalent to Exp1=:=Exp2, which should be used instead.

However, the intended use of =! is when Exp1 has variables that will
not be given values by the time that Exp1 =! Exp2 is called, where such
variables are not arguments to function calls inside Exp1. If they are this
is a mode error. The intended pattern match use of =!, where only the
left hand side can be a template term or unbound variable and the right
hand side must be ground, is indicated by the !, the ground argument mode
annotation, on the right side of the =. The two expression must have the
same type. The compiler will give an error message if this is not the case.

When called, function calls in both argument expressions are evaluated
and replaced by their ground values. An exception is calls to functions that
return a higher order value such as curry and curryr, which are left as
function call expressions. The other exception is top level calls to ++ string
concatenation or <> list concatenation in the left hand side expression Exp1.
Their occurrence at the top level signals that the =! call is being used for
non-deterministic string or list pattern matching as discussed in Section 4.
In that case only function calls inside test conditions in Exp1 are evaluated.

33

After the function call evaluation, the =! call becomes the pattern match
call

match (Exp1′,Exp2′)

where Exp1′,Exp2′ are the evaluated expressions. It succeeds if the result-
ing template value of Exp1′ matches the computed ground value of Exp2′,
instantiating all unbound variables in Exp1 with ground terms from Exp2.

=! significantly generalises the is expression evaluator of Prolog. An
example use is

g(X,mod(U,V)) =! f(W)

where U, V, W will all have been given ground values before the call and
f(W) is a function call that will return a g term structure. mod is the QuLog
primitive for the modulus of an integer divide. Let us say we have U=4,

V=3, W=5 at the time the =! call is evaluated and that f(5) will return
g(5,1). The =! test becomes match (g(X,1),g(5,1)) resulting in X=5.

The unification primitives = and \= do no prior evaluation and there
must be no function calls in the arguments. Function calls in arguments of
the unification primitives is often a programmer error in that they should
have used =! instead. Whenever the mode analyser comes across a = or \=

with a function call in either argument, it gives an error message identifying
the suspect unification with a suggestion that =! or not ..=!.. be used.

If there are higher order values in either of Exp1′,Exp2′ that need to be
matched against one another they must be denoted by identical expressions.
Usually each expression is just the program given name of the definition of
the higher order value such as child of or fact. But if one expression is
a function call that returns a higher order value and the other is the name
of that higher order value the match will fail. As an example, one expres-
sion could be uncurryr(curryr(child of))) and the other child of. The
match will fail even though both expressions denote the same relation. So
beware.

6 Primitive and Defined Types

6.1 Primitive Types

The primitive QuLog types are:

bottom atom nat int num string atomic

34

[T] {T} (T1,..,Tk) term top

The Ts are any type expression or a variable (for parameterised types). [T] is
the list of terms of type T. {T} is the set of terms of type T, i.e. no duplicate
identical terms. (T1,..,Tk), k>1 is a tuple of k terms of the given, possibly
mixed types. bottom is the special enumerated type that has one data value
bottom_ which can be used when a polymorphic function is undefined for
some subset of values of its input type, as in Section 5.1. top covers every
value that can be passed as an argument or returned as a value in QuLog. It
includes every data term and every higher order value - functions, relations
and actions. nat is the natural number (non-negative) sub-type of int, the
integer type.

There are problems using tuples in Prolog because of associativity of ’,’.
This is needed because it is also used as the ‘and’ connective in rules. Prolog
converts what should be a three element tuple (2,big,(4.7,"hello")),
containing a last element that is a pair, into (2,big,4.7,"hello"), a four
element tuple. But (2,big,(4.7,"hello")) remains a three element tuple
in QuLog, with a two element tuple as last component.

If we have a relation or function that has one argument, that is a tuple,
in its type declaration we use ((T1,..,Tk)). ((atom,int))<= is the type
expression for a unary relation with argument a pair that can be given or
generated by a call to the relation. The type expression ((atom,int))->int

is for a function of one argument that is a pair.
term is the type of every data structure, including those of program

defined types. top also includes higher order values: functions, relations
and actions. These are the sub-type relationships

bottom < nat < int < num < atomic < term < top

bottom < atom < atomic

bottom < string < atomic

[T] ≤ [T′] if T ≤ T′

{T} ≤ {T′} if T ≤ T′

bottom < [T] < term

bottom < {T} < term

bottom < (T1,..,Tk) < term

(T1,..,Tk) ≤ (T′1,..,T
′
k) if T1 ≤ T′1 & ... & Tk ≤ T′k

If term is used as the only data type, the QuLog program is essentially
untyped like Prolog. In fact, as mentioned in Section 2.2, a mode annotation
m with no type is an abbreviation for m term. The programmer must then

35

do run-time type checking using the type primitive, as described in Section
6.5, before calling any builtin relation or function such as an arithmetic
primitive that requires a more specific type.

6.2 Program defined types

The primitive types can be extended with program defined types including
parameterised and recursive constructor types, enumerated types (sets of
atoms), range types (sets of successive integers), union or disjunctive types
(the values can be from any one of a set of alternative types). All defined
types are sub-types of term. Examples are given below.

Different enumerated types must either be disjoint, or one must be a
subset, hence a sub-type, of the other. Different range types must either
be disjoint, or one must be a subset, hence a sub-type, of the other. The
constraint regarding not being partially overlapping is checked by the type
checker and it issues an error message if flaunted. This is because in QuLog
every term must belong to just one minimal type in the sub-type lattice.

tree(T)::= empty() | tr(tree(T),T,tree(T))

This defines a new type parameterised constructor type tree(T), with labels
which are any primitive or program defined data type T. [T] denoting the
type of a list of elements of type T, is the only primitive parameterised
constructor type. empty is a 0 argument constructor of tree terms, and tr

is a 3 argument constructor.

gender::= male | female

% enumerated type gender of two atoms, is a sub-type of atom
% it is not a constructor type as the alternatives are atoms

age::= 0..110

% defines age type as a range of nat values, is a sub-type of nat
digit::= 0..9 % is a sub-type of age, hence of nat, int, atomic, term
genage::= gender || age

% defines genage as a union type of age nats and gender atoms
% [male,67,female,89] has type [genage], a list of genage terms

% whereas [(male,57),(female,89)] has type [(gender,age)]

We use | to separate the alternatives of an enumerated type and a con-
structor type as both are alternatives between data values. We use || for
separating the alternatives of a type union as they are alternative data types.

36

6.3 Data constructors do not have a function type

We do not view tr as a function of type (tree(T),T,tree(T))->tree(T)

which Haskell does, nor do we view empty as a function of type ()->tree(T).
tr is not a function in the normal sense of returning a value different from
the call term. tr is what is termed a free function. Its role is just to wrap
its name around its arguments. We do not want tr to be passed as an
argument value where what is required is a non-wrapper function of type
(tree(T),T,tree(T))->tree(T). In QuLog tr has type atom.

There is another more important reason for not assigning any type to
names of data constructors. In order to do meta-programming in QuLog we
need to have data terms ‘naming’ relation and action procedure calls. We
can do this in a type safe way by having a double role for the program given
names of the relations and action procedures as constructors of two special
meta-types relcall and actcall. If constructors had function types, this
simple way of ‘naming’ calls with template data terms that use the relation
and action procedure names as data constructors would not be possible.
Section 7.4, shows a use of the relcall type to program a very simple
query evaluator that evaluates a list of relcall terms. It is example of
what might be used inside an agent, with its behaviour programmed using
QuLog action rules, to answer queries from other agents, as will be shown
in the companion paper.

As an example, since children are is the name of a relation of type
(?atom,?{atom}), there will a constructor chid is(atom,{atom}) of the
special meta-type relcall. If, because of this, children are had to have
the type (atom,{atom})->relcall we would have a clash with its already
declared program type as a relation of moded type (?atom,?{atom}). By
not assigning a function type to each of a constructor type’s constructor
functors we avoid this clash. Since relation and action names automatically
become constructors of the compiler generated relcall, actcall types re-
spectively, their names must not be used in any programmer defined types.
If used, there will be a type error.

6.4 Sub-type relation for defined types

For a parameterised type such as tree we have

tree(T) < term tree(T) < tree(T′) if T < T′

The general sub-type relationships for defined types Type, Type′ is

Type(T) ≤ Type(T′) if T ≤ T′

37

Type ≤ Type′ if Type::= atom1 | ... | atomm &

Type′::= atom′
1 | ... | atom′

n &

{atom1,...,atomm} ⊆ {atom′
1,...,atom′

n}

Type < atom if Type::= atom1 | ... | atomm

Type ≤ Type′ if Type::= I..J & Type′::= M..N & M ≤ I & J ≤ N

Type < int if Type::= M..N

Type ≤ Type′ if Type::= T1||...||Tm &

Type′::= T ′
1||...||T

′
n &

∀i(1≤i≤m)∃j(1≤j≤n) Ti ≤ T ′
j

In the first rule Type is the name of a parameterised constructor type with
n argument types.

6.5 Run-time type checking

A run-time type checking primitive can be used to check if an expression,
which could be a variable, has a ground value of a specific type - either
primitive or programmer defined. It is useful for checking if a value is a
particular sub-type of an expected argument type.

type(Exp,!Type)

in a program clause or function rule will check that the Exp has a ground
value of type Type, where Type is a ground type expression - so no type
variables.

One extreme of QuLog programming has no user defined types and makes
much use of the term type and run-time type checks. This style is not
recommended as it trades run-time failures of type testing conditions for
compile time indications of a type error. If term is used as a catch all
type, the programmer must insert type tests before the use of any QuLog
primitive that requires a specific type, such as a num. For example, any
call to an arithmetic function or arithmetic comparison relation must be
preceded by runtime tests that ensure that the arguments will be numbers.

The type checker will take into account the occurrence of the run-time
type tests acting as filters of all values that are not of the tested type to make

38

sure that QuLog primitives can only be passed arguments of their required
types. If they are not present it will give a type error. This trades the com-
pile time checking of programs that use more constrained type declarations,
for run-time checks that will fail if an incorrect type of value would have
been passed into a call to a primitive. The programmer then has to have
extra rules that handle these run-time failures of clauses due to type test
failures. Far better to let the compiler do all the work of type validation.
The best approach is to declare as constrained a type as possible for each
relation and function argument, and to avoid uses of run-time type tests
except to select out sub-types of declared argument types, either before a
call that requires a sub-type, or after a call that might generate a super-type
of the type that must be returned from a clause. These type filtering uses
of run-time type tests are discussed in Section 10. A test

type(Exp,Type)

without the prefix ! on Type, will succeed even if the Exp argument is
not ground providing its variables can be assigned types consistent with the
given Type.

If type is used in a single condition top level query in the interpreter,
Type may be a variable which will be bound to the inferred type of Exp.
This is useful for learning about the type system.

There is also a three argument typeC, which can only be used as a single
condition interpreter query. This will tell us the types that any variables in
Exp must have for Exp to have type T. The third argument of a typeC call
must be a variable. It will be bound to a list of type constraints for any
variables in Exp, as exemplified below.

6.6 Some example uses of run-time type checks

As an example, this is the program for the factorial function defined as a
relation factr, where we do not use the nat type in its declaration. By
giving no type the default type term for both arguments us assumed.

factr: !,?

factr(0,1)::

factr(N,FN)::type(N,nat) & N1 =! N-1 & type(N1,nat) <=

factr(N1,FN1) & FN =! FN1*N

factr(N,0) % The rule for N not a non-negative integer

39

Without the run-time type(N,nat) test, the type checker will reject this
definition as not being type safe. Note the last rule returns the value
0 for any non-nat first argument. If we had used the type declaration
factr:!nat,?nat the relation would never be called with a non-nat value
as that would be a type error picked up at compile time. We then only need
the type(N1,nat) type test as for the fact function definition.

If a relation has no type declaration at all, it is assumed to have been
declared with term as each argument type with implicit mode ?. Typically
the programmer must then also use the type primitive with a ! prefixed
type that checks that the argument is ground as well as of the given type.

Using run-time type tests is similar to what one would do in Prolog
before using a primitive to do addition, if the argument might not be a
number. However, in the case of QuLog the use of the type check is not
optional. It has to be in the rule else a type error will be flagged. The type
checker must know that a variable holds a number value before arithmetic
can be done using its value. The presence of the explicit type(N,num) test
in the second rule below enables it to infer that N will have the num sub-type
required for addition operation of this second rule.

add_nums_of_list_of_any_term: [term],?num

% term is any data term so first arg can be a list of very mixed types
add_nums_of_list_of_any_term([],0)

add_nums_of_list_of_any_term([N|Rest],Total) ::

type(N,num) <= % run-time check that N is a number
add_nums_of_list_of_any_term(Rest,RTotal) &

Total =! RTotal+N

add_nums_of_list_of_any_term([NonN|Rest],Total) <=

not type(N,num) &

add_nums_of_list_of_any_term(Rest,Total)

The use of the :: test in the second rule does not affect the logical correct-
ness of the last rule because it has the complement to the commit test of
the second rule as a precondition. Of course, as in Prolog, one is tempted
to drop complement tests in rules following a commit rule if these would
require significant search to show they are not inferable.

An example query is

| ?? add_nums_of_list_of_any_term(

[3,bill,"sally",[2,-19],0.6,empty()], Sum).

Sum = -16.6:num

40

Here the given list will have inferred type

[atomic||string||[int]||tree(T)]

as a list of any of the above types of terms. This is a sub-type of [term] so
the call is type correct.

6.7 Type expressions as first class values

As QuLog has the built-in meta-type typeExp, we can pass in the type
expression to be used for a run-time type test as an argument. Here is an
example of a filter function that removes all but values of some given type
from a list of terms.

filter: (typeE(T),[term]) -> [T]

filter(_TypeE,[]) -> []

filter(Type,[Trm,..Trms]) :: type(Trm,Type) ->

[Trm,..filter(Type,Trms)]

filter(Type,[_,..Trms] -> filter(Type,Trms)

| ?? filter(int,[3.4,hello,-6,"happy",2]).

[-6,2]:[int]

The role of the parameter T of the type expression typeE(T) is to allow us
to inform the type checker that the value returned by the function will be a
list of the type given as the first argument of a call to the function.

We give more examples of the use of run-time type checks in Section
10.1.

6.8 Generating instances of finite types

digit and gender are special program defined data types in that they each
comprise a finite set of data values. In the case of gender it is the set of
atoms {male, female} and in the case of digit it is the set {0,1,...,9}.
For enumerated and range types, and any other types that have a finite
set of values, for example unions of enumerated types, we can use another
primitive isa(E,T). It will generate, one at a time as successive bindings for
an unbound variable E, all the values of the type T, in the order that they
appear in the enumerated or range type definition of T. If E is given, it will
also test that it is a value of type T.

41

For example,

[D | isa(D,digit)] evaluates to [0,...,9]

[G | isa(G,gender] evaluates to [male,female].
[G | isa(G,genage] evaluates to [male,female,0,...,110].

If L=[23,8,-4,5,61],

[D | D in L & isa(D,digit)] evaluates to [8,5].

In the last expression, isa(D,digit) could be replaced by type(D,digit).
isa can be used for testing or generating instances of finite types. type can
only be used for testing but it can test for any type, including higher order
types.

6.9 Example type queries

| ?? type((tr(empty(),-3,empty()),!tree(int)).

yes

| ?? type(tr(empty(),-3,empty()),T).

T = tree(int)

| ?? typeC(tr(L,a,R),T,Cs).

T = tree(atom),

Cs = [L:tree(atom),R:tree(atom)]

| ?? type([1,2,male,11],T).

T = [genage]

We get genage rather than [int||atom] as all the given integers are in
the age range of values, male is an atom of the gender type and genage is
defined as union type gender||age.

However, a type checking query will confirm that [1,2,male,11] has
type [age||atom], [int||atom], [num||atom], [atomic], [term]. A sub-
type can always be passed into a function or relation requiring a more cov-
ering type.

42

We can also use a type query to find or check the type of a function or
relation

| ?? type(fact,T).

T = (int->int)

| ?? type(fact,T). % fact is back-quoted making it an atom
T = atom

| ?? type(child_of,((atom,atom)<=)).

yes

| ?? type(child_of(C,mary),T).

T = relcall % we get the meta-type relcall as type of this call term

| ?? type(child_of(C,mary),!relcall). % Is it a ground relcall term
no

7 Relations and functions over defined types

7.1 Relations defined by type validated fact sequences

Range types and enumerated types are useful for data checking. They allow
us to declare a tight schema for data facts that is checked as the facts are
read in from a consulted file.

Suppose that instead of defining the person relation in terms of male,
female and age of relations, it was instead an updateable belief relation.
We can use the more the enumerated type gender and the range type age

to have these facts data validated.

belief person:(atom,gender,age)

person(bill,male,58)

person(johnny,male,25)

person(cheryl,female,23)

...

A fact person(bill,mle,34) or person(john,male,120) will be rejected
when the QuLog program file is consulted. mle is not a gender atom and
120 is outside the defined range for age.

If we query this relation the answers will be annotated with these new
types.

43

| ?? 2 ? person(P,G,A) & A>=25.

P=bill:atom

G=male:gender

A=58:age

...

P=johnny:atom

G=male:gender

A=25:age

Suppose we also try to update a fact for this belief relation to record
a birthday.

| ?? replace person(bill,male,Age) by person(bill,male,Age+1)

On the surface this looks fine but it will produce a type error. The reason
is that the last argument of the person relation must be of type age which
is a range type with maximum value 110. The type/mode checker cannot
know the value of Age stored in the person fact for bill, and this could be
the maximum age 110. If it were then Age+1 is not a valid age integer.

We must use a runtime type test and enter the update command in a
more verbose way.

| ?? person(bill,_,Age) & NewAge =! Age+1 & type(Age,age) ;

replace person(bill,male,Age) by person(bill,male,NewAge)

To give you a taste of the use of action rules to define new actions, here
are two action rules that will define a new action for updating the age of a
person as recorded by a person fact.

update_age: atom

update_age(P) :: person(P,G,A) & NewA =! A+1 & type(Age,age) ∼>>
replace person(P,G,_) by person(P,G,NewA)

update_age(P) ∼>>
writeLine([P,’ has no recorded age or has maximum age’)

∼>> can be read as do. The commit test of the first rule checks if the given
P has a recorded age that can be incremented to a valid age. Only if that
test fails will the second rule be used.

7.2 Recursion over a defined recursive data type

The label membership relation for the recursive tree(T) data type is the
parameterised recursive relation

44

on_tree: ?T,tree(T)

on_tree(E,tr(_,E,_))

on_tree(E,tr(Left,_,_)) <= on_tree(E,Left)

on_tree(E,tr(_,_,Right)) <= on_tree(E,Right)

Note that the variable E of the first rule that appears in an ? argument
position also appears in the term tr(,E,) in the ground input argument
position. This enables the mode checker to confirm that any variable given
as the first argument of a call will be bound to a ground value - the root
label of some sub-tree of the ground tree argument - if the call succeeds.

flatten: tree(T) -> [T]

flatten(empty()) -> []

flatten(tr(Left,E,Right)) -> flatten(Left)<>[E]<>flatten(Right)

Remember <> is the list concatenation function.

7.3 Complete skeleton structures containing variables

In Section 2.3 we defined the doubleL relation with type ([num],?[num])

and gave the example use

doubleL([1,3.5,-2.1,4], [2,N2,N3,..R])

producing the bindings N2=7.0, N3=-4, R=[8].
If we wanted to insist that the second argument was always a complete

list of variables or numbers, such as [2,N2,N3,8], we can type the relation
using

doubleL: ([num],[?num])

[?num] (implicitly ![?num]) is the moded type expression for a complete
list of numbers, or variables, of type num. We can have this sort of qualified
grounded mode for any parameterised type. Where the type is a recursive
type as here, the implicit outer ! tells us that the recursive structure - the
skeleton of the term - is fully given. If the type of its components - elements
on a list or labels on a tree - is unannotated then they must all be given
as ground values. The element type is also implicitly ! moded. However,
the element type may be ? prefixed, or, if it is also a structure type, it
can be have a postfix ? mode. So, [?tree(int)] allows the argument to
be a complete list of variables or partially given tree terms, all of which
will become ground by a call to the relation. [tree(int)?] allows the call
argument to be the same, and says it may remain a list of partial integer
tree terms even after a successful evaluation of the call.

45

7.4 Meta-programming with lists of relcall terms

Another use of a skeleton list of non-ground terms is a list of moded type
[relcall]?. This is a list of relcall terms denoting calls to program
defined and primitive relations that may contain and share variables. An
example is

[person(F,male,_), child_of(C,F), child_of(C,M),

person(M,female,_)]

Here is a recursive definition of an interpreter for such a list of relcall

terms. It is what might be used by an agent implemented using QuLog
action rules that has received such a list in a query message. We will give
an example of such an agent in the companion paper on QuLog action rules.

eval: [relcall?]

eval([])

eval([Cond,..Conds]) <=

call Cond & eval(Conds)

call:relcall? is a meta-call primitive of QuLog very similar to Prolog’s
call primitive. The difference is that the QuLog call only accepts argu-
ments of type relcall, which guarantees that each term denoted call has
type correct arguments, and will only attempt to evaluate the call if the
argument values satisfy the mode constraints of the relation’s type decla-
ration, which are retained after a QuLog program has been compiled. If it
does not, the meta-call fails.

As the evaluator recurses down the above list of recall terms if will
first bind F to the name some male, then check if there is a recorded child
of the male, binding C to the child’s name, and so on. If any meta-call fails
it will back-track to find an alternative solution to an earlier meta-call. It
behaves like the QuLog query evaluator. The difference is that it will fail a
meta-call that does not have its required ground arguments (if any), whereas
the QuLog query evaluator will raise a mode error, and not even start the
query evaluation.

7.4.1 Constructing relcall terms

There is a template term constructor operator @ in QuLog that may be
used to map between lists and template terms. It is similar to Prolog’s =..
primitive. As a function its type is atom@[term] -> term. But it can also
be used on the left hand side of =! to decompose a term into its constructor

46

functor and arguments, as a list. @ is like <> and ++ in being useable as a
function and a pattern operator.

| ?? f@[2,3].

f(2,3)

| ?? F@Args =! g(1,X,"hello",X)

F = g

Args = [1,X,"hello",X]

This primitive can be used to construct relcall terms before using the call
meta-call primitive. However, a type test will need to be used to check that
the constructed template term is of type recall.

Here is a definition of a relation evalListCall:[term?] that will con-
struct a template term from the list argument and evaluate it, if the result
is a valid relcall term.

evalListCall: [term?]

evalListCall([Rel,..Args] <=

type(R,atom) & Call =! Rel@Args &

type(Call,relcall) & call Call

Here is an example use

| ?? evalListCall([`age_of,peter,A]).

A = 40

Note we have had to back-quote the relation name age of to ensure the type
checker views it as an atom rather than a relation in the list argument of
evalListCall.

8 Higher order functions and relations

Here are the QuLog definitions of mapF, curry and uncurry for functional
programming enthusiasts with example expression queries. As -> is right
associative not all the brackets are necessary in the type declarations, but
using them resolves any ambiguity.

47

mapF: ((T1->T2), [T1]) -> [T2]

mapF(F,[]) -> []

mapF(F,[U|L]) -> [F(U)|mapF(F,L)]

curry: ((T1,T2)->T3) -> (T1->(T2->T3))

curry(F)(A)(B) -> F(A,B)

uncurry: (T1->(T2->T3)) -> (T1,T2)->T3

uncurry(F)(A,B) -> F(A)(B)

| ?? mapF(curry(+)(2),[3,4,5]).

[5,6,7]:[digit]

curry(+) is a function of type

nat -> (nat -> nat) | int -> (int -> int) | num -> (num -> num)

curry(+)(2) is a single argument function that adds 2 to any supplied
number. mapF takes this function and apples it to each value on the list of
numbers second argument, so producing the list in which each number is 2
greater than the corresponding number on the argument list.

uncurry(curry(+)) gives back the original two argument function +.
But uncurry will convert any function of type T1->(T2->T3) to a function
of type (T1,T2)->T3, even if that function is not the result of currying.

For comparison, we also define mapR, curryR and uncurryR. Currying
a relation is a little odd because it generates a function that returns a one
argument relation. So its type is that of a higher order function, but its
definition is a relation rule telling is how to evaluate a predication with a
curryR function call value as its relation.

mapR: ((?T1,?T2)<=, ?[T1], ?[T2])

mapR(R,[],[])

mapR(R,[U|L], [RU|RL]) <= R(U,RU) & mapR(R,L,RL)

curryR: (T1,?T2)<= -> (T1->(T2<=))

curryR(R)(A)(B) <= R(A,B)

uncurryR: (T1->(?T2<=)) -> (T1,?T2)<=

uncurryR(F2R)(A,B) <= F2R(A)(B)

48

mapR, as typed, can be used either to generate or test a pair of lists of the
same length such that corresponding elements are in the R relation. Either
list may be given, or neither list.

An example use of mapR is

mapR(child_of,[bill,C],[P,peter)

A call

mapR(child_of,[bill,mary],[june,peter])

will check that each person in the first list is a child of the corresponding
person in the second.

A relation similar to mapR can also be defined, as it would need to be
in Prolog, which takes the atom back-quoted name `R of a defined binary
relation R and uses evalListCall to construct a type correct call to that
named relation. This constructed call is the used to relate corresponding
elements of the two lists. But this has a run-time failure if the constructed
call is not type or mode correct for the named relation. Each use of the
above higher order relation is guaranteed to evaluate only type and mode
correct R(U,RU) calls for the mapping relation R as only relations of type
that match the list element types can be passed into a mapR call. Run-time
failures due to incorrect use of defined relations must be avoided whenever
possible, for the serious use of inference in applications.

curryR(child of) is a function that we can apply to a person P that
returns a unary relation curryR(child of)(P) that can be used to test if
another person is a child of P. For example curryR(child of)(mary) is a
unary relation for checking if some person is a child of mary. This unary
relation can be passed around as a value. For the sample facts we gave in
Section 2.3, curryR(child of)(mary)(peter) is inferable.

uncurryR(curryR(child of)) denotes the binary relation child of.
uncurryR(curryR(child of))(mary,peter) holds.

Note that curryR is defined as only requiring a relation argument of type
(T1,?T2)<=. It is used with a relation of type (?atom,?atom)<=, which is
not an instance of the polymorphic type expression (T1,?T2)<=. This is
allowed as the ? mode for the first argument allows the required ! mode
of use. The relation type (?atom,?atom)<= is a sub-type of the instance
(atom,?atom)<= of the (T1,?T2)<= type pattern. Hence child of may
be given as the relation argument of curryR. The sub-type relationship for
functions and relations is defined in Section 9.

49

8.1 Run-time handling of higher order values

Calls to functions that return a function or relation are special in that they
do not get evaluated in the way that a call to a normal function gets eval-
uated. A call such as fact(3) gets replaced by its value 6. However, an
application of a function such as curry or curryR that return a higher order
value is left as a wrapper term around its argument, in the same way that
application of a data constructor such as tree is left as a wrapper around its
arguments. In both cases the value is a functor term that is passed around.
So, the function value of curryR(child of) is actually passed around as the
function application term curryR(child of).

When a curried function or relation gets called, as in

curryR(child_of)(mary)

this is still not ‘evaluated’. What is then passed around, denoting the unary
relation of type atom<=, is the above unevaluated complex term. It is only
when this term denoting the one argument relation that tests if a person is a
child of mary is called, say as in an R(C) condition of a rule in which R, typed
has (atom)<= has be assigned the ‘term’ value curryR(child of)(mary),
that the resulting higher order call expression

curryR(child_of)(mary)(C)

which R(C) becomes, actually call some code.
First the rule curryR(R)(A)(B) <= R(A,B) of the curryR definition is

applied to reduce this complex call to the call child of(mary,C). Then the
relation child of is queried.

8.2 Example higher order expression queries

When the expression value is a function or relation its type is returned as
the value.

| ?? curry.

((T1,T2)->T3) -> T1->T2->T3 % RHS is T1->(T2->T3)

| ?? curry(+).

num->num->num | int->int->int | nat->nat->nat

% i.e. num->(num->num) etc

50

| ?? curry(+)(1).

num->num | int->int | nat->nat

| ?? curry(+)(1)(12).

13:age % Again minimum inferable type for value is given

| ?? mapF(curry(+)(1), [1,2.3,3]).

[2,3.3,4]:[num]

| ?? curryR(child_of).

curryR(child_of): atom->((atom)<=)

% A function from an atom to a relation over atoms

| ?? curry(<>).

curry(<>): [A] -> [B] -> [A||B]

| ?? curry(<>)([1,2]).

curry(<>)([1,2]): [A] -> [digit||A]

| ?? curry(<>)([1,2])([a,b]).

[1,2,a,b]:[digit||atom]

| ?? curry(<>)([1,2])([-3]).

[1,2,-3]:[int]

The first of the of the last four expression queries tells us that curry(<>)

is a polymorphic function from a list of any type A to a function from a list
of the same or different type B, to a list of type A||B elements. The second
tells us that calling this function with a list of digit integers will return a
function from a list of any type A to a list with elements of type the union of
digit and A. This allows us to later append to [1,2] a list of atoms, as in
the expression [1,2]<>[a,b]. We can do this because, although [digit]

is the minimal type of [1,2], and [atom] is the minimal type of [a,b],
both are sub-types [digit||atom]. In the last query we append a list of
integers so we have a list of integers value. [digit||int] is simplified to
the equivalent [int] type.

51

9 Sub-type relationships for functions and rela-
tions

When we have a higher order relation or function which has arguments that
are themselves relations or functions, the type and mode checker makes sure
that a relation or function with a type compatible with the required type is
always passed in as an argument, or returned as a value. The higher order
value will be type compatible if its type is in the following higher order ≤
relation to the required type.

(t1,...,tk) ->t ≤ (t′1,...,t′k) ->t′ if t1 ≥ t′1 &...& tk ≥ t′k & t ≤ t′

That is, the compatible function must be able to be given the same or a
greater type for each of its arguments, and return a value of the same or
lesser type.

For relation types we give the sub-type relation where every type is
explicitly moded with a prefix mode.

(mt1,...,mtk)<= ≤ (mt′1,...,mt′k)<= if mt1 ≤ mt′1 &...& mtk ≤ mt′k

!t ≤ !t′ if t≥t′ % test only use of super-type ok for test only use
?t ≤ !t′ if t ≥ t′ % test/gen, for super type, ok for test only use
t? ≤ !t′ if t ≥ t′ % even if a non-grounding generator
?t ≤ t? % grounding rel., same type, may be used if non-grounding is ok
!t(met) ≤ !t(met′) if met ≤ met′ % t a parameterised structure type

% moded element type met of structure tester should cover all met′ uses
?t(?et) ≤ ?t(et?) % may use a grounding rel for same element type if only

% non-grounding use for elements required, for test/gen of structure

The above tells us that the compatible relation or action procedure must
have the same or a lesser moded type for each of its arguments. This lesser
relation depends on both the type and the mode. The sub-type relationship
between the argument types can flip from = to > to <, depending upon
whether the higher order argument value may be used to both generate and
test (=), or is only used to test (>), or is only used to generate (<), a
particular argument.

Suppose a function argument is typed (atom,num) -> num. A function
typed (atomic,atomic)->int) has a compatible type, so could be passed
as an argument. If a relation argument is typed (!string,!int,!atom),

52

a relation moded (?string,?num,!atomic) can be used in the way the
relation argument will be used, and may be passed as an argument value.

The fourth inequality is for parameterised structure types like list and
trees, where the outer structure must be complete, but values for structure’s
elements, such as the elements of a list or the labels of a tree, may be given
as variables or non-ground terms. The moded element types must satisfy
the moded sub-type relation.

As an example, if an argument of a higher order relation is declared
as being of type ([int])<= (implicitly (![!int])<=) then we can pass a
relation of type ([?num])<=, (implicitly (![?int])<=), as the value of that
argument. However, if the argument type is ([?int])<=, we cannot pass
in a relation of type ([?num])<= in case the passed in relation is used to
generate values for the list elements, which must be of type no greater than
int.

The last rule is for relations which may be used to test, or generate, a
complete structured term. It says that a relation typed (?[?tree(num)])<=

is an allowed value for an argument of type (?[tree(num)?])<=, as it does
not matter that the passed in relation will always generate a ground struc-
ture for the list elements - trees of numbers.

10 Moded type checks, declarative reading and
sound inference

A variable will have a ground value if it appears in the head of the function
rule, or in a ! argument position in the head of the clause, or immediately
after a call in which it appears in a prefix ? argument position.

It may have a ground if it only appears in the head of a clause in prefix
or postfix ? argument terms, and only appears in earlier relation calls in
postfix ? moded argument positions.

The initial type of a variable is the of the type its occurrences in a rule
head, or, if not in a rule head, the type of its occurrences in the first relation
call in which it appears. This initial type then becomes its current type
for its next call use.

The current type of variable V changes to be a sub-type tV of its current
type whenever it appears in a type test type(V,tV). A warning is issued
that the type test will always fail if tV is not a sub-type of V’s current type
immediately before the type test.

The type of the occurrences of a variable in a predication is the mini-
mum of all its occurrence types. The minimum is only defined if they can

53

be linearly ordered. For example, if the types are atomic and atom the
minimum is atom. For the types int and atom there is no minimum type.
When a minimum type for occurrences of a variable cannot be computed, it
is a type error.

Using the above rules for when a variable is ground, or may be ground,
and for determining its current type, the QuLog type checker does the fol-
lowing checks as it moves left to right along a conjunction of relation calls.

1. If a variable appears in ! argument positions in a clause head, with
type tI for these ground input occurrences, and it also occurs in other
argument positions, the type tIO of each non-input occurrence must
be such that tI ≤tIO.

2. Each variable will have a ground value before it is used in a function
call or a ! argument of a relation call.

3. After it is determined a variable V has a ground value, all its later call
uses have a type tO such that tO ≤tV , where tV is its current type
just before the use.

4. After it is determined a variable V may have a ground value, all its
later call uses have a type tV , where tV is its current type just before
the use.

5. Each variable V in a prefix ? argument position in the head of a clause
will have a ground value at the end of the clause body.

6. Each not C condition will have ground values for all but anonymous
variables when evaluated

7. In each forall, all except the quantified variables, variables and any
exists explicitly quantified variables will have ground values when it
is evaluated. In addition, the two conditions of the forall satisfy the
normal type and mode constraints when viewed as queries.

8. In a comprehension containing Term::exists Vars Conds, all vari-
ables in Conds, except variables and variables in Term and Vars, and
any variables in Term not in Conds, will have ground values before the
set expression is evaluated. In addition, Conds satisfies type and mode
constraints when viewed as a query.

All these checks are made by a single pass algorithm over each clause,
function rule and query. If any check fails, a type or mode use error is
signalled giving the reason for the failure and the compiler terminates.

54

The last three checks ensure that QuLog rules for relations have a straight-
forward declarative reading as sentences of predicate logic enhanced with
functions and set expressions. These rules are implicitly universally quan-
tified with respect to all their variables except: the inner universally and
existentially quantified variables of a forall, the local variables in the tem-
plate terms of set comprehension expressions and any existentially quantified
variables of its generator condition, and any variables. The variables are
implicitly existentially quantified immediately before the condition in which
they appear.

A QuLog query evaluation of relational and expression queries is an in-
ference that is sound with respect to that declarative reading, providing:

� A :: commitment test in a rule is only used to prevent unnecessary
attempts to use later rules because their use would definitely fail. (In
Prolog terms, each :: is a so called ‘green’ cut).

� Equality (=) of higher order values is understood as identity of the
expressions denoting the higher order values not equality of their ex-
tensions as sets of tuples of data values. It is identifier unification not
denotation equality.

10.1 Need for runtime type checks to filter out sub-types

Ideally, the programmer has designed his program so that all the above
checks are passed without the need for the use of run-time type or ground

tests. Sometimes this is not possible.
Here is an example of the need for a type test before a call. Suppose we

have

produce: ?atomic

use: !num

The conjunction of calls

produce(A) & use(A) ...

will generate a compile time type error message. However,

produce(A) & type(A,num) & use(A) ...

is acceptable, as is

produce(A) & type(A,int) & use(A) ...

55

The second conjunction would be used if a later call in the conjunction
required A to have type int. This only makes sense if produce will generate
some values of the sub-types num, int of atomic, which is a union of nat,
int, num, atom and string. The type test then forces backtracking until
such a value is generated, as this is what must be passed to the later call(s).
The type test acts as a filter of the values of the super-type that might be
generated by the produce call.

As an example of the need for a type test where the variable only may
have a ground value, suppose we have

r: ?num

q: ?int

The clause

r(N) <= q(N)

must be written as

r(N) <= type(N,int) & q(N)

else there will be a type error signalled for this clause identifying the q call
as the culprit. We need the type test in case N is given in the call to check
that it is an integer. If not given, the test will just succeed and its effect
is simply to satisfy the type checker that only int values will be passed
into the q call. The integer binding for N that will then be generated by q

satisfies the promise that a num value will be retuned by a call to r.
An example related to check 4, is

p:(..,?tree(int),..)

q:(..,tree(int)?,..)

p(..,Tr,..) <= q(..,Tr,..)

The clause is not mode correct as q may not generate a ground tree. We
must write the clause as

p(..,Tr,..) <= q(..,Tr,..) & ground(Tr)

The ground test will cause backtracking to retry the q call until it returns
a ground tree of integer values. This only makes sense of q may generate
several answer bindings for Tr some of which will be ground. If Tr was given
as a ground tree when p was called, the test does no harm.

Here is a final example where only postfix ? modes are involved.

56

p: ..,tree(num)?,..

q: ..,tree(int)?,..

... p(..,Tr,..) & type(Tr,tree(int)) & q(..,Tr,..) ...

is type and mode correct as only a ground or partial tree of integers can
be passed through to the call to q. There will be backtracking to generate
an alternative Tr value using the p call, should the type test fail. Without
the type test it is not type correct as q could be given a tree containing
non-integer values. If the tree argument of q had ! ground input mode we
would have to use

... p(..,Tr,..) & type(Tr,!tree(int)) & q(..,Tr,..) ...

57

