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1 Introduction

QuLog is a higher-order logic/functional/string processing language with an imperative rule
language sitting on top, defining actions. QuLog’s action rules are used to program multi-
threaded communicating agent behaviour. Its declarative subset is used for the agent’s
belief store. The language is flexibly typed and allows a combination of compile time and
run-time type checking.

It is a fully integrated language in that function calls can appear as or inside arguments
to relation calls, and relational queries can be used as guards of function rules. It has sets
as a separate data type from lists with set <-> list convertors. Both can be created using
Trm::Query comprehension expressions.

Sets are manipulated using union, intersection and difference operators. Lists are manip-
ulated as in Prolog but also using non-deterministic pattern matching. Similar pattern
matching is used for string processing as a precursor to DCG parsing. An ’in’ primitive can
be used to access elements of sets, lists and characters in strings.

QuLog supports type safe meta-level programming to complement its type safe higher order
programming. However there are no lambda expressions in QuLog. All code has to be
named and defined in the top level sequence of type definitions, type declarations and
relation, function and action defining rules. At this time QuLog has no module system, so
each consulted file must use different type and code names for its definitions.

As mentioned above, using its action rules and action primitives multi-threaded message
communicating agent applications can be created with the agents communicating using
the companion Pedro publish/subscribe and destination addressed communications server.
Such an agent application can also receive and send MQTT notifications routed via an
MQTT publish/subscribe server.

Debugging is done by putting a watch on any number of relations, functions and actions.
This invisibly transforms their code to display each call, the input and output bindings of
the unification or match of the call with each rule that can be used, and optiionally the
instantiated body of the rule before it is used. An unwatch command reverses the code
transformation.

This manual assumes familiarity with logic programming and with higher functional pro-
gramming in a typed language. A tutorial introduction to the QuLog declarative subset is
given in,

doc/tutorial/QuLog.pdf.

A formal systax using extended BNF grammar rules is given as an Appendix of this man-
ual. examples/introduction/qlexamples.qlg is an example QuLog program that can be
consulted and queried.

The teleor extension of the QuLog interpreter allows program files to be consulted contain-
ing TeleoR procedures as well as QuLog rules. This extension includes a generic agent shell
that can be launched to execute calls to TeleoR procedures as tasks. It can be configured
by including specially named QuLog action procedures and relations in your program file,
as explained in doc/tutorial/toolsRM.pdf.

To support use of TeleoR robotic agent programs with robots and simulations that use
ROS, there is an example Python program in the ROS directory that will act as an interface
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between our Pedro inter-agent and inter-process communications server and an invocation of
ROS. This program and information on how to modify it for a particular ROS architecture,
are in the examples/ROS directory of the QuLog distribution.

QuLog has some predefined constructor types. These usually have a name such as write_
type__ and their constructors and atom values often end with underscore, for example the
constructor q_ and the atom nl_ of the write_type__ system type. We recommend you
do not use a trailing underscore in any of your own type definitions. If you do use a system
reserved name the compiler will reject your definition giving an error message.

Every data type of QuLog has a place in a lattice of types. At the bottom of the lattice
is the system type bottom with one data value botton_, meaning undefined. At the top is
the system type top. There are no values that just belong to top but it includes all data
and code types. Just below top on the data side of the lattice is the type term, which will
be familiar to Prolog programmers. All other data types are sub-types of term.

The type code is the other immediate sub-type of top. All relation, function, action and
TeleoR procedure types are sub-types of code.

For a particular program the lattice of system and program associated types is finite.
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2 Getting Started

This section describes how to set up the required environment variables and briefly describes
how to run the interpreter. At the moment it is not possible to generate an executable QuLog
application that can be launched independently of the interpreter. This will be possible.
However, the intepreter can be used to launch a multi-threaded message communicating
application that can be left to its own devices.

2.1 Environment Variables

The root directory of the QuLog tree contains the files PROFILE_CMDS that can be used to
define the required environment variables.

2.2 Data Areas

Because Qulog is currently implemented in QuProlog it has the same data areas as QuProlog
and the sizes of these areas can be modified in the same way as for QuProlog - see the
QuProlog manual.

2.3 Running the Interpreter

qulog is the name of the Qulog interpreter. From a Unix shell, Qulog is started by typing:

qulog

or

qulog -A name

where name is a name for this QuLog process that will be registered with a Pedro server
running on the same host. You need to use this option if you want to be able to receive
and/or send messages to other processes that have similarly registered a different name with
this Pedro server.

If the Pedro server is running on a different host identified by domain or IP address Host,
launch QuLog using

qulog -N Host -A name

For example

qulog -N leo.itee.uq.edu.au -A keith_agent

When the interpreter is ready it will prompt you with

| ??

At this point, a relation query or an action command followed by a FULLSTOP NEWLINE
or an expression query followed by a ! NEWLINE can be entered. The interpreter will
check that the query or command is syntactically and type correct and that modes of use
are correct. It will either display an error message or print out a response to the query or
command.

A CONTROL-D will exit the interpreter whenever you get the prompt.

CONTROL-C will interrupt an evaluation and allow you to abort the interpreter (enter
e in response to the interrupt prompt), or to terminate the current query and any forked
action threads (enter r in response to the interrupt prompt), giving you the | ?? query
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prompt again. There are other response options, displayed if you enter ? in response to the
interrupt prompt.

If you enter a relation query then either ’no’ will be displayed to indicate there are no
solutions to the query or bindings for variables of the query with their minimal types will
be displayed separated by lines of fullstops. If you entered a command any output from
the command will be displayed followed by ’success’ or ’fail’ depending upon whether the
command ultimately succeeded or failed.

When there are multiple solutions to a relation query the first five (if there are that many)
are displayed separated by lines containing ...

Example:

| ?? X in [4,0,3,4].

X = 4 : nat

...

X = 0 : nat

...

X = 3 : nat

...

X = 4 : nat

| ?? % New prompt indicates all sols have been given

If there are five or more solutions the interpreter waits for input from the user before
displaying more. The two usual responses are:

NEWLINE - no more solutions are required; or

..NEWLINE - asking for up to 5 more solutions.

Example, showing a second use of ’in’:

| ?? S in "Apple".

S = "A" : string

...

S = "p" : string

...

S = "p" : string

...

S = "l" : string

...

S = "e" : string

.. % Request for more answers if there are any

no more solutions

% Above displayed only after .. input and there are no more answers

| ?? X in {6,2,3,0,3,7,4}.
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% {6,2,3,0,3,7,4} is a set so second 3 ignored, third use of ’in’

X = 0 : nat % Answers displayed in value order

...

X = 2 : nat

...

X = 3 : nat

...

X = 4 : nat

...

X = 6 : nat

.. % Request to display up to 5 more answers

X = 7 : nat

| ?? % Prompt for next query indicating no more answers

If you feel that the interpreter is giving back too many, or too few answers for a particular
problem you can control this in two ways. The first is to prefix the query by the number
of solutions you would like displayed at a time, followed by a ?, followed by the query.
Also, instead of simply using a .. to ask for more solutions you can change the number of
solutions to be displayed for this query to positive integer k by entering ..k.

Example:

| ?? 1 ? X in [1,2,1,4,2]. % Answers 1 at a time

X = 1 : nat

.. 2 % Switch to sols 2 at a time

X = 2 : nat

...

X = 1 : nat

.. % Request for the next 2 sols

X = 4 : nat

...

X = 2 : nat

.. % Request for the next 2 sols

no more solutions

| ?

You can also change the default number of solutions that are displayed for any query to a
positive number n, say 3, using the command:

| ?? set_num_answers 3.

success
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Sometimes you might have a relation query that contains many variables but you might
only be interested in the bindings for some of the variables. This can be accomplished by
listing the variables for which you want to see the answer bindings, separated from the
query by a ?.

Example:

| ?? L1, L2 ? append(L1, L3, [1,2,3,4,5,6]) & append(L4, L2, L3)

& 2 = #L4.

% Expressions such as #L4, length of L4, can be used in = tests

L1 = [] : [Ty1]

% A type variable Ty1 as [] is empty list of any type

L2 = [3, 4, 5, 6] : [nat]

% [nat] is type expression for a list of nats (non-neg ints)

...

L1 = [1] : [nat]

L2 = [4, 5, 6] : [nat]

...

L1 = [1, 2] : [nat]

L2 = [5, 6] : [nat]

...

L1 = [1, 2, 3] : [nat]

L2 = [6] : [nat]

...

L1 = [1, 2, 3, 4] : [nat]

L2 = [] : [Ty1]

The two ideas above can be combined as in the following example.

| ?? 2 L1, L2 ? append(L1, L3, [1,2,3,4,5,6]) & append(L4, L2, L3) &

2 = #L4.

L1 = [] : [Ty1]

L2 = [3, 4, 5, 6] : [nat]

...

L1 = [1] : [nat]

L2 = [4, 5, 6] : [nat]

Equivalently you can express the above query using an existential quantification on L3, L3.

| ?? 2 ? exists L3, L4 append(L1, L3, [1,2,3,4,5,6]) &

append(L4, L2, L3) & 2 = #L4.

An expression query is an expression followed by ! NEWLINE. The expression is evaluation
and the result will be displayed followed by its minimal type.
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Example:

| ?? 2+sin(pi_()/4)!

2.70711 : num

| ?? cos!

cos : (num)->num

The second expression is just the name of a primitive function and the value is that function.
However its type is usefully displayed.

Instead of getting each solution of a query displayed (as in the previous append example)
you can use a list comprehension expression with unwanted variables existentially quantified
as below.

| ?? [(L1,L2) :: exists L3, L4 append(L1, L3, [1,2,3,4,5,6]) &

append(L4, L2, L3) & 2 = #L4]!

[([],[3,4,5,6]), ([1],[4,5,6]), ([1,2],[5,6]), ([1,2,3],[6]),

([1,2,3,4],[])]:[([nat],[nat])]

% Value type is a list of pairs of lists of nats

We can re-express the last list expression query more succinctly using the list concatenation
operator <> for splitting of a list using the special non-determinsitic match operator =? that
requires its left hand side to be, or to evlaluate to a ground term. <> may also be used for
concatenating complete lists or ground or non-ground terms.

| ?? [(L1,L2) :: exists L4 [1,2,3,4,5,6] =? L1 <> L4?2=#L4 <> L2]!

Using this non-deterministic list pattern matching we do not need the L3 variable, and the
constraint that L4 must contain two elements becomes a constraint

2=#L4

expressed inside the <> pattern expression attached to the variable L4, preceded by a ?.

If you have constructed a program file prog1.qlg of QuLog type definitions, type decla-
rations for relations, function and actions and their rules, you can bring all those into the
interpreter using the command

| ?? consult prog1.

success
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You may get syntax and mode errors signalled in which case none of the program file is
consulted. There will be at least one QuLog examples file with the QuLog distribution that
you installed. You can consult and query one of these files. For example, there may be a
file qlexamples.qlg in qulog/examples/introduction. If you launch QuLog from inside
this directory you can load all its definitions using:

| ?? consult qlexamples.

You can see all the relation and function rules you currently have in the interpreter using:

| ?? show.

or specific ones using:

| ?? show child_of, person, fact, new_child.

Notice the variable names of the consulted file will be used.

You can see all the type definitions and declarations using:

| ?? types.

You can see all the system type definitions and the type declarations for the primitive
relations, functions and actions using:

| ?? stypes.

A displayed type declaration may be accompanied by a brief description of the primitive.
You can also show the type declarations for specific relations by giving their names, sepa-
rated by commas, after either the types or stypes command.

As an alternative to using consult, the Prolog alternative of using a list of file names can
be used. At the interpreter level, only a single file can be consulted (see the discussion on
constraints below) and so

| ?? [prog1].

is the same as

| ?? consult prog1.

It’s also possible to consult files from within a program (as in Prolog) using a line in the
program like

?- [prog1, prog2]

or equivalently

?- consult prog1

?- consult prog2
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Constraints on using consult

For this discussion we say the file consulted at the interpreter level is the primary file and
any files consulted in the primary file or any file consulted from within those programs are
secondary files.

Whenever programs are consulted, type and mode checking is applied and if, at the in-
terpreter level, a file is re-consulted then we need to check that changes to programs have
not introduced type and mode errors. In principle, this means we should remove all user
definitions and declarations (both from the primary and secondary files) and do a fresh
consult of the primary file.

Typically, when a user is debugging a programming, only the primary file will be edited by
the user and so it would be inefficient to remove all definitions and declarations form the
secondary files and start again. In order to make this process more efficient we constrain the
use of consult in two ways in order to make this easier. The first is that, in any interpreter
session, the user can only consult one file with re-consulting that file allowed (i.e. only one
primary consult). The second is that all consults appearing in a program file are at the
start of the file (before declarations and definitions).

When any file is consulted, a fact containg the file name and a timestamp (last update
time) is remembered. When the primary file is reconsulted the first step is to check if any
secondary files has a more recent last updated time than the remembered fact (meaning
the file has been updated). In this case we take the conservative approach and clear out all
user definitions and declarations and do a “fresh consult”.

If no secondary files have changed and the primary file has also not changed then the consult
does nothing as nothing has changed.

Otherwise, all the definitions and declarations of the primary file are removed and the file
is re-consulted. If it turns out that one of the changes to the primary file is to change
what files are consulted (including the order of consults) then this could lead to potential
type mode problems and so, again, we take a conservative approach and remove all user
definitions and declarations and do a fresh consult.

By doing the above, we believe that there is no significant impact on the way users write
and debug programs. If fact, the most typical debugging approach of editing the definitions
and declarations of only the primary file will be quite efficient as only the old definitions
and declarations for the primary file will be removed and the new code consulted (without
re-consulting the secondary files).
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3 Syntax

This section informally describes the concrete syntax of Qulog. There is a formal extended
BNF syntax in Appendix A [EBNF Grammar for Qulog], page 43.

The basic building block is an expression. An expression is a: data constant (aka atomic
value), variable, compound term, list, set, code name, function call, list comprehension, set
comprehension.

We define each of these categories below.

A reader unfamiliar with logic programming might find it odd that a variable is considered
a data value. However in both QuLog and Prolog variables are first class values and can
be passed between calls and embedded in lists and other compound terms, but not in sets.
An answer to a query that contains a variable denotes the set of instantiates of that answer
where the variable is replaced by any value of its type. The ability to pass around terms
that are or which contain variables is a powerful programming feature of QuLog and Prolog.
It is not a feature of Datalog or Answer Set Logic Programming.

The last three are evaluable expressions that denote a ground term.

A term is a: data constant, code name, a simple compound term (see below) all arguments
of which are terms, a list of terms, a set of ground terms.

A ground term is a term containing no variables.

QuLog function call evaluation is strict. A function call argument is completely evaluated
just before the function call in which it appears is evaluated.

A code name is a value of system type code. For example append and *

Both term and code are sub-types of system type top

A ground expression is an expression that contains no variables, or is such that all its
variables are bound to ground values at the point that the expression is evaluated.

3.1 Data constants - the atomic term values

These are atoms (atom type), natural numbers (nat type), integers (int type), floating
point numbers (num type) and strings (string type).

QuLog strings are not lists of byte codes as in Prolog. They are packed sequences of byte
codes as in Python an are stored on the heap and are garbage collected when no longer
referenced. Identity of strings is determined by character by character matching if they
have the same length. Manipulation of strings - concatenation and sub-string extraction
involves copying but is quite fast.

As in Prolog, QuLog atoms are stored in an atom table and are replaced by a pointer to its
entry in the atom table. Identity of atoms is then identity of atoms table address, there is
no character by character matching at runtime. Atoms are a suitable alternative to strings
for character sequence values that will not be manipulated and are not transient values.
For example use them for names of things in facts. The atom table entries are not garbage
collected.

All data contants are sub-types of the system type atomic.

nat is a sub-type of int, which is a sub-type of num
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3.1.1 Atoms

There are four syntactic forms for atoms.

1. A lower case letter followed by any sequence consisting of "_" and alphanumeric char-
acters.
For example:

percy_smith_2

semester_1

2. Any combination of the following set of graphic characters.

|-/+*<=>#@$\^&~:.?

For example:

@<=

3. An atom of the above two forms preceded by the back quote charater "‘". This form
of atom is used when the sequence of characters without the back-quote has been used
as the name of a relation, function or action. Such a name cannot be used as an atom
unless preceded by a backquote.
For example:

‘<>

‘append

4. Any sequence of characters enclosed by "’" (single quote). Single quote can be included
in the sequence by writing the quote twice. "\" indicates an escape sequence, where
the escape characters are case insensitive. The possible escape characters are:

newline Meaning: Continuation
^ Meaning: Same as d.
^character Meaning: Control character.
dd Meaning: A two digit octal number.
a Meaning: Alarm (ASCII = 7).
b Meaning: Backspace (ASCII = 8).
c Meaning: Continuation.
d Meaning: Delete (ASCII = 127).
e Meaning: Escape (ASCII = 27).
f Meaning: Formfeed (ASCII = 12).
n Meaning: Newline (ASCII = 10).
odd Meaning: A two digits octal number.
r Meaning: Return (ASCII = 13)
s Meaning: Space (ASCII = 32).
t Meaning: Horizontal tab (ASCII = 9).
v Meaning: Vertical tab (ASCII = 11).
xdd Meaning: A two digit hexadecimal number.

Here are a few examples of quoted atoms.

’hi!’

’they’’re’

’\n’
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3.1.2 Numbers

The available range of integers is -(2^31-1) to 2^31-1 on a 32 bit machine and -(2^63-1)

to 2^63-1 on a 64 bit machine. Integers can be represented in any of the following ways.

1. Any sequence of numeric characters. This method denotes the number in decimal, or
base 10.

For example:

123

2. Base’Number, where Base ranges from 2 to 36 and Number can have any sequence of
alphanumeric characters. Both upper and lower case alphabetic characters in Number

are used to represent the appropriate digit when Base is greater than 10.
For example, integer value 10 can be written as:

2’1010

16’A

16’a

3. Binary numbers can also be represented in the form 0b followed by binary digits.
Similarly octal and hexadecimal numbers can be represented by 0o or 0x followed by
digits.
For example

0b1011

0o3170

0x3afd

4. 0’Character gives the character code of Character.
For example,

0’A

gives the ASCII character code 65.

A natural number is a non-negative integer.

num type numbers include double precision floating point numbers. They are represented
using either a decimal point or scientific e notation. Examples:

27.8

1.896e4

3.1.3 Strings

Any sequence of characters enclosed by ’"’

is considered as a string.

Note: Strings in Qulog are the same as Python strings and NOT Prolog strings.

Example:

| ?? "Hello" ++ " " ++ "there".

"Hello there" : string



Chapter 3: Syntax 14

3.2 Code names

Syntactically these are the same as the first two forms of atom - alphanumeric and graphic
- but they are the names of primitive or program defined relations, functions or actions.
For example:

<>

append

These were names we have to precede with a back-quote if we want to use them as atoms.
Without a preceding back-quote they denote code values.

3.3 Variables

Variables are available in three syntactic forms.

1. An upper case letter followed by any sequence consisting of "_" and alphanumeric
characters.
For example:

List_nums Head

2. "_", followed by an upper case letter, and then any sequence consisting of "_" and
alphanumeric characters.
For example:

_Dictionary _X_1

3. "_" alone denotes an anonymous variable. Repeated occurences of underscore in a
query or rule denote different unnamed variables.

Variables beginning with an underscore should be used when there is just a single occurence
of a variable in a rule. It suppresses the "single occurrence of variable" warning which is
given otherwise, which is useful for picking up mis-typed variable names.

3.4 Compound Terms

A simple compound term is composed of an atom of the first two forms (an alphanumeric or
graphic atom), called the functor, immediately followed (no spaces) by a sequence of zero
or more expressions separated by commas, enclosed in a pair of "("..")" parenthesis. For
example:

data(jack, 35)

tr(emp(),X/9,tr(L,7,R))

$$(5)

Simple compound terms are typically instances of a structured data type declared in the
program where the functor is a constructor for the type. If not, the compound term has
default type term, and a warning that it is not a constructor of a defined type is issued in
case there has been a spelling error.

A compound term is a simple compound term, or a compound term immediately followed by
a sequence of zero or more expressions separated by commas, enclosed in a pair of "("..")"
parenthesis. For example:

curry(*)(4)

curryR(child_of)(mary)(P)
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Compound terms that are not simple determine the functor of the compound term by a
function call which is itself a compound term.

3.5 Function calls

A function call is a either simple compound term where the functor is the name of a primitive
or program defined function, or it is a non-simple compound term where the compound term
that denotes the functor is a function call that returns a function value.

For certain binary primitive functions the functor name may be used as an infix operator
and placed between the two arguments. This holds for the usual binary arithmetic operators
+, * etc. for which function applications are written as expressions such as 6+9*X.

The special zero argument functions e_ and pi_, invoked as in expressions e_() and pi_(),
evaluate to the numbers ’e’ and ’pi’. More details are given in Section 4.4 [Arithmetic],
page 33.

In the QuLog interpreter a function call, indeed any expression, can be given as an entry
to be evaluated.

Examples:

| ?? 67.7/2.3.

29.4348 : num

| ?? curryR(child_of)(peter).

curryR(child_of)(peter) : (atom)<=

% The denoted value is a relation over atom names

Function calls denote expressions that contain no function calls. That is they denote non-
variable terms: atomic values, code names, simple compound terms all the arguments of
which are non-variable terms, lists or sets of non-variable terms. The exceptions are certain
code returning function calls which are only evaluated when the code value they denote is
itself called. The above curryR(child_of)(peter) is an example. It denotes an unary
relation but that relation is only used when the unary relation is called in a query such as:

| ?? P ? Rel=curryR(child_of)(peter) & Rel(P).

P = harry : atom

...

P = mary : atom

3.6 Lists

A list is a comma separated sequence of expressions enclosed in "[".."]" brackets. This is
a complete list. Or it is a comma separated sequence of terms ending with ,.. optionally
followed by a variable, or ending with |) always followed by a variable, enclosed in "[".."]"
brackets.
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Example:

[3,2.7,X*Y,"hello"]

[3,4,..Tail]

[Head,..Tail]

[Head,..] % shorthand for [Head,.. _] with _ the anonymous variable

[Head|Tail]

The first example is a complete enumeration and the remaining examples are list patterns
in which both ,.. and | can be read as "followed by". The fourth example is equivalent
to [Head,.. _]. The last example is using the Prolog syntax for a list.

3.7 List comprehension expressions

Lists of ground terms can also be denoted by a list compehension expression. Examples
are:

[X**2::X in L & not X in [0,1]]

% Squares of numbers other than 0,1 in nums list L

[C :: exists A child_of(C,peter) & age_of(C,A) & A<18]

% Non-adult children of peter in order found

The general form of a list comprehension is:

[Expression :: exists VarSequence SimpleConjunction]

where the exists VarSequence is optional.

There are constraints on the variables that can be used in such a comprehension. Each
variable in Expression must either appear in SimpleConjunction and be such that it
will be given a ground value by some call in the conjunction, or it must appear before
the comprehension expression in a query or rule and will have been given a ground value.
Every variable in SimpleConjunction must either be underscore, appear in Expression or
in VarSequence, or must appear before the comprehension expression in a query or rule and
will have been given a ground value. This ensures that the value of a list comprehension is
always a list of ground terms.

VarSequence is a single variable or a comma separated sequence of variables such as X,Y,Z

The syntax for SimpleConjunction is given below.

3.8 Sets

A set is a comma separated sequence of ground expressions surrounded with { and } braces.
If there are any duplcate ground terms when all the expressions have been evaluated all
but one of the duplicates will be removed. If returned as the value of a expression entry to
the interpreter, or as a binding of a variable in a relation query, it will be diplayed with its
elements in term order as determined by the @ primitive.
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Example set expression entry:

| ?? {4,3,1,5-2,1}.

{1, 3, 4} : {nat}

3.9 Set comprehension expressions

Sets can also be denoted by a set compehension expression. Examples are:

{X**2::X in L & not X in [0,1]}

% Squares of numbers other than 0,1 in L, duplicates removed.

{A :: exists C, P child_of(C,P) & age_of(C,A) & A<18}

% Set of all the ages of recorded children

The general form of a set comprehension is:

{Expression :: exists VarSequence SimpleConjunction}

where the exists VarSequence is optional.

The constraints on the variables that can be used in a set comprehension are the same as
those for a list comprehnesion expression.

VarSequence and SimpleConjunction are as for list comprehensions.

3.10 Programs

A Qulog program comprises a sequence of:

• type definitions,

• type declarations,

• relation rules (aka clauses),

• action rules, and

• function rules.

A QuLog/TeleoR program also includes TeleoR procedures.

They may appear in any order except that all the rules for a particular relation, action or
function must be contiguous. A type declaration for a relation, action, function or procedure
does not need to be given immediately before its code. The rules of a TeleoR procedure are
all included inside {...} braces following the procedure head.

An important constraint is that each type definition, type declaration, relation, action and
function rule must begin at the left end of a new line. If one needs to be continued over
more than one line all but the first line must be indented from the left end by at least one
space or tab. Fullstop terminators may be given at the end of each definition, declaration
or rule but is not needed. It is the text starting at the extreme left end of a line after one
or more newlines that terminates the previous program statement.



Chapter 3: Syntax 18

TeleoR procedures must also begin at the left end of a line but inside the {...} there are
more relaxed layout constraints. Each TeleoR rule can start anywhere on a new line. The
parser can use the rule syntax to determine that it is the start of a new rule. Again fullstop
terminators may be given at the end of each rule but are ignored.

3.10.1 Type Definitions

A type definition is of the form

type-name ::= type-expression

type-name is either an alphanumeric atom or a single argument compound term whose only
argument is a variable (representing any type). A type definition with such a type name
defines a parameterised type where the type variable stands for any type. That type variable
then appears in one or more of a disjunction of compound terms with other arguments that
are type names. We give examples below.

type-expression may be another user or system defined type, in which case the type definition
is essentially a type alias, for example

speed ::= num

More usually it is one of the following type expressions defining a new data type.

3.10.1.1 Integer range type expression

This is an expression of the form M..N where M < N and both are integers.

Examples:

digit::= 0..9

small_int::= -10..10

As in the examples different range types may overlap but only when one is completely
contained inside the other. To have overlapping sets of integers corresponding to different
types, type union must be used (see below).

3.10.1.2 Disjunction of constants type expression

This is an expression of the form C1 | C2 | ... | Ck where each Ci is the same kind of
constant, except that we can mix different types of numbers.

Examples:

gender::= male | female

threeNums::= 20 | 6.7 | -50

article::= "a" | "an" | "one" | "the" | "that" | "those"

Different type definitions using overlapping disjunctions of constants are allowed providing
one is completely contained inside the other. So, as well as the article type we could
define

indef_article::= "a" | "an" | "one"

A disjunction of integers can also overlap with a range type providing it either comprises a
subset or a superset of the integers of the range type. These constraints ensure that each
constant belongs to a unique minimal type. For example "a" would belong to the types
indef_artcle, article, string, atomic, term, top.

To have partially overlapping disjunctions of constants corresponding to different types,
type union expressions must be used to define each partially overlapping type (see below).
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3.10.1.3 Parameterised type expression

This is an expression of the form CT1 | CT2 | ... | CTk where each CTi is a compound term
with arguments that are type names, or a single type variable T, or a parameterised type
name with argument the same type variable T. Such a type expression can only appear as
the right hand side of a parameterised type definition with left hand side a unary compound
term containing the type variable T.

Examples:

tree(T) ::= empty() | tr(tree(T),T,tree(T))

an_indexed(T)::= rec(int,T)

3.10.1.4 Type union expression

This is an expression of the form Ty1 || Ty2 || ... || Tyk where each Tyi a simple type
name or a ground parameterised type name or a code type expression.

Examples:

int_atom ::= int || atom

int2intOrstring::= int -> int || int -> string

3.10.1.5 Code type expressions

The last example above was the union of two function type expressions. There are four
code type expressions in Qulog/TeleoR. These are: a function type, a relation type, and
action type and a TeleoR procedure type.

3.10.1.6 Function type expression

This has the form (TE1,TE2,...,TEk) -> TE where each TEi and TE is any simple, or
compound type name, or type union expression, or a code type expression.

3.10.1.7 Relation type expression

This has the form (MTE1,MTE2,...,MTEk) <= where each MTEi is a moded type where the
type is any simple, or compound type name, or type union expression, or a code type
expression.

The possible modes of a moded type are the prefixes !, ? and ?? and the postfix ?.

The moded type !Type used as an argument of a relation means, when called, the supplied
argument must be ground and of type Type.

The moded type ?Type used as an argument of a relation means, when called, the supplied
argument must either be ground and of type Type or will be ground to a term of type Type
by the call.

The moded type Type? used as an argument of a relation means, when called, the supplied
argument must either be ground and of type Type or, if ground by the call, will be ground
to a term of type Type.

The moded type ??Type used as an argument of a relation means, when called, the supplied
argument, if ground, must be of type Type and the call will not further instantiate the
argument.

Modes can be used multiple times in structured types as long as inner modes are more
liberal than outer modes. For example, the moded type
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![?int]

means that the top-level list structure must be given (i.e. the number or elements are known
at call time) but the elements of the list can be a mixture of integers and variables with the
variables instantiated to integers by the call.

3.10.1.8 Action type expression

This has the form (MTE1,MTE2,...,MTEk) ~>> where each MTEi is a moded type where
the type is any simple, or compound type name, or type union expression, or a code type
expression.

The modes are as described above.

3.10.1.9 TeleoR type expression

This has the form (TE1,TE2,...,TEk) ~> where each TEi is any simple, or compound type
name, or type union expression, or a code type expression.

3.10.2 Type Declarations

All functions, relations, actions and teleoR programs have type declarations of the form

Name : Type

Examples of declarations are given below where definitions are described.

If multiple functions, relations, actions or teleoR programs have the same type their names
can all be listed on the left hand side of a declaration as follows.

Name1, ..., NameN : Type

As an example, below is the type declaration for the builtin append relation (with the same
semantics as the standard Prolog append relation).

append : (![T], ![T], ?[T]) <= |

(?[T], ?[T], ![T]) <= |

(![T?], ![T?], ?[T?]) <= |

(?[T?], ?[T?], ![T?]) <= |

([T]?, [T]?, [T]?) <=

The first type of append says that, if the first two arguments of the call on append are
ground lists of a given type, then the third argument will be a ground list of the same type
on exit from the call.

The second type says that, if the third argument is a ground list of a given type, then the
first and second arguments will be ground lists of the same type on exit from the call.

The third type of append says that, if the first two arguments are lists of a known length
(i.e. do not have a variable tail) but possibly containing non-ground elements, then the
third argument will have a known length on exit from the call but that variables occurring
in any of the arguments need not be ground.

The fourth type is the "append driven backwards" version of the third type.

The fourth type is the most general allowing variable length lists in all arguments. In this
situation, nothing can be said about the modes on exit from the call.

Note that when we say, for example, the first two arguments are of the same type we mean
that the type inference system can find a suitable type as in the example interpreter query
below.
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| ?? append([1,2], [a,b], X).

X = [1, 2, a, b] : [atom || nat]

Here, the suitable (minimal) type for T is the union of two types.

Beliefs are dymanic relations and are declared as follows.

belief Name1 : ArgTypes1 , ..., NameN : ArgTypesN

Where each ArgTypesI is of the form

(TE1,TE2,...,TEk) in which each TEi is any simple, or compound type name, or type
union expression, or a code type expression.

The declaration

belief age_of: (human,age)

is esentially the declaration

age_of : (?human, ?age) <=

together with the declaration that age_of is dynamic.

Percepts are similar to beliefs in that they are dynamic but are specifically used for storing
percepts in teleoR programs. They are declared as follows.

percept Name1 : ArgTypes1 , ..., NameN : ArgTypesN

Global variables are used to store either integer or number values and are declared as follows.

int Name := IntValue

or

num Name := NumValue

The declaration

int count := 0

is like a combination of the declaration

belief count : (int)

and the definition

count(0)

with the restriction that the count belief always contains exactly one fact.

3.10.3 Simple Conditions for Rules and Relation Queries

These comprise predications, negated predications and meta-calls.

3.10.3.1 Predications

These are atoms that are names of no argument defined relations or compound terms with
functors that are the names of primitive or program defined relations with argument types
consistent with the relation’s declared type. A compound term with a functor that is an
expression of relation type consistent with the argument types of the compound term is
also a predication, this includes the case where the functor is a variable. The compiler will
also check that all varibles of any argument term of the predication that must be ground
will have have been given ground values by the time the predication needs to be evaluated.
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3.10.3.2 Negated Predications

These have the form not Cond where Cond is a predication. The compiler will check that any
arguments of the predication Cond that need to be ground will have ground bindings for all
their variables before the not is evaluated. All other arguments must also be ground values
by the time the condition is evaluated, or they must be anonymous underscore variables.

not Cond is deemed to have been inferred if, and only if, a complete search of the tree of
alternatve possible inferences of Cond fails to find a proof. It is the so-called negation-as-
failure. It is a sound rule of inference on certain assumptions regarding the completeness
of the relation definitions used in the exploration of the possible proofs of Cond and on the
assumption that different data terms (after being normalised in the case os sets) denote
different values.

3.10.3.3 Meta-calls

These have the form call Var where Var is of type relcall. relcall is the system type
comprising all terms that denote type correct calls to primitive or program defined relations.
The meta call call Var succeeds providing the relation call denoted by the relcall value
of Var at the time of evaluation has all its input arguments ground and will succeed.

3.10.3.4 Complex Conditions

not Predication

Negation. If Predication is inferable then fail else succeed. At the time of call all
variables appearing in Goal must be ground or underscore variables.

relcall is the system type comprising all terms that are type correct calls to primitive
or program defined relations. The functor of the predication must either be given or
be a variable with known moded type so that the compiler can check that the call is
type correct and that any arguments that need to be ground will have ground bindings
before the not is evaluated. The only variables that need not already have ground
bindings are underscore variables. None of these can be in ! argument positions of
the called relation.

once (SimpleConj)

Find first solution to SimpleConj and discard any alternative choices. If SimpleConj
is just a predication the brackets are not needed.

once cannot be used inside a SimpleConj. It may only be used in an interpreter
query or in the conjunctive body of a relation rule.

call Predication

call Call

relcall is the system type comprising all terms that are type correct calls to primitive
or program defined relations. The functor of the predication must either be given or
be a variable with known moded type so that the compiler can check that the call
is type correct and that any arguments that need to be ground will have ground
bindings before the call is evaluated.

forall UVars (exists EVars1 SimpleConj1 => exists EVars2 SimpleConj2)
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If, for all bindings of variables in UVars that make exists EVars1 SimpleConj1 in-
ferable, exists EVars2 SimpleConj2 is also inferable, then the forall succeeds,
otherwise it fails.

UVars must be a collection of new variables and all free variables occurring in
SimpleConj1 must be in UVars, have a ground value before the forall is evaluated,
or be an underscore variable.

EVars1 and EVars2 must also be collections of new variables, all variables occurring in
SimpleConj1 must be in UVars or EVars1 and all variables occurring in SimpleConj2

must be in UVars or EVars2, have a ground value before the forall is evaluated, or
be an underscore variable. exists EVars1 and exists EVars2 are optional.

forall cannot be used inside a SimpleConj. It may only be used in an interpreter
query or in the conjunctive body of a relation rule.

Assuming we have a collection of child_of(C, P) beliefs that associate a child C with
a parent P, and a collection of person(Name, Gender, Age) beliefs, giving the gender
and age of people. The following query will return as an answer each parent who has
at least one adult child.

child_of(_, P) &

forall C (child_of(C,P) => exists A person(C,_,A) & A>20)

Note that P will be given a value before the call on forall and so there are no free
variables in the body of forall other than C and the underscore variable.

Also note that each quantified variable is not allowed to appear outside the quantifi-
cation or in other quantifications.

3.10.4 Relation Definitions

A relation definition consists of a sequence of rules (clauses) of the form

Head :: Commit <= Body

where Head is an atom or simple compound term, Commit is a conjunct of goals, and Body
is a conjunct of goals. Conjuncts are separated by &. Both the :: Commit and <= Body
parts of the rule are optional. The heads of each rule of a relation have the same functor
and arity.

When a goal Goal with the same functor and arity as Head is called, the rules of the
relation are tried in order. If Goal unifies with the head of the rule then the Commit part
is called. If that succeeds then this rule is committed to (i.e. no subsequent rules are tried
on backtracking) and Goal succeeds if and only if Body succeeds. If Body is not present it
is treated as being the goal true.

If Commit is not present then Goal succeeds if Body succeeds but, on backtracking, subse-
quent rules will be tried.

The rule has the same semantics as the Prolog rule

Head :- Commit, !, Body

Note, however, that cut (!) is not part of Qulog.

As examples, the definitions of the relations greater and sum_list are given below.

greater: (!num, !num, ?num) <=

greater(A, B, C) :: A > B <= C = A



Chapter 3: Syntax 24

greater(A, B, C) :: B > A <= C = B

sum_list : (![num], ?num) <=

sum_list([], 0)

sum_list([H,..T], N) <= sum_list(T, M) & N = H+M

Note that in N = H+M, H+M is evaluated before unification and that the second rule of greater
could have been written as

greater(A, B, C) <= B > A & C = B

3.10.5 Action Definitions

An action definition consists of a sequence of rules of the form

Head :: Commit ~>> Body

where Head is an atom or simple compound term, Commit is a conjunct of goals, and Body
is a sequence of goals and actions. The elements of the sequence are separated by ;. Both
the :: Commit and <= Body parts of the rule are optional. The heads of each rule of an
action have the same functor and arity.

The semantics of action definitions is the same as for relation definitions. The difference is
that at least one of the elements of the Body sequence is an action which typically has a
side effect such as writing, reading, sending a message or updating the database.

As examples, the definitions of the actions ask_query and handle_response are given
below.

ask_query: (atom, term?, [term ?], handle)

ask_query(QId,Ans,QList,Ag) ~>>

ask(QId,Ans,QList) to Ag; Reply from Ag;

handle_response(QId,Ag,Reply,Ans)

handle_response: (atom,handle, term?, term?)

handle_response(QId,_,tell(QId,ans(Ans)),Ans) :: true

handle_response(QId,Ag,tell(QId,Reply),_) ~>>

writeLine([’Agent ’,Ag,’ responded ’,Reply,’ to query ’,QId]); fail

3.10.6 Function Definitions

A function definition consists of a sequence of rules of the form

Head :: Commit -> Expression

where Head is an atom or simple compound term, Commit is a conjunct of goals, and
Expression is a term. The :: Commit part of the rule is optional. The heads of each rule
of a relation have the same functor and arity.

When the function is called, the rules are tried and the first rule whose Head unifies with
the function call and where Commit is true then the result returned is the evaluation of
Expression. Note that rules without an explicit Commit have an implicit true commit and
so no backtracking occurs.

As examples, the definitions of the functions factorial and tree2list are given below
(using the tree type given above).
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factorial : nat->nat

factorial(0)->1

factorial(N) :: N1 = N-1 & type(N1,nat) -> N*factorial(N1)

tree2list : tree(T) -> [T]

tree2list(empty()) -> []

tree2list(tr(LT, V, RT)) -> tree2list(LT) <> [V] <> tree2list(RT)

Note that type(N1,nat) is necessary above in order that the type checker can type check
the recursive call on factorial.

3.10.7 TR Program Definitions

A TR-program definition has the form

Head {

TR Rule
...
TR Rule

}

where Head is an atom or simple compound term and each TR Rule has one of the forms
given below.

The most simple TR rule has the form

Guard ~> TR Action

where Guard is a conjunct of goals and TR Action is of the form given below.

At the other extreme, the most complete form of a TR rule is

Guard while While min Duration until Until min Duration ~> TR Action

where While and Until are conjuncts of goals and Duration is a number.

The most simple rule above is a particular form of the full rule where both While and Until
are false and both durations are 0.

Other variations of the general form are:

Guard min Duration ~> TR Action

which is the same as

Guard while false min Duration until false min Duration ~> TR Action

and

Guard while_until Goal min Duration ~> TR Action

which is the same as

Guard while not Goal min Duration until Goal min Duration ~> TR Action

and

Guard while_until Goal ~> TR Action

which is the same as

Guard while not Goal min 0 until Goal min 0 ~> TR Action

Semantically, when a TR program is executed, the guards are checked in order until a guard
is found that is true (with a given instantiation of variables). The corresponding TR Action
is then executed.
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While Guard (with the same instantiation of variables) is true or While is true or the
duration of the while part hasn’t expired (since the time this rule was chosen) then this
rule will continue to be the chosen rule until Until becomes true and the until duration has
expired.

At that point, the guards will be checked again from the beginning. If no earlier rule
guards are true, the same rule will refire if the guard is true with a different instantiation of
variables (and execute the corresponding actions using the new instantiation of variables)
or will continue as long as the guard remains true with the same instantiation of variables
or While is true or the while duration hasn’t expired. Otherwise, the guards of the rules
below this rule are checked.

Note that executing TR Action will typically mean stopping durative actions from previous
rule firings and starting new actions (both discreet and durative). As an optimization,
instead of stopping a durative action with given arguments and starting the same action
with different arguments, the system will generate a ’modify action’.

The forms of TR Action for each TR rule are given below.

3.10.7.1 TR call

A TR Action can be a call on a TR program (possibly a recursive call on the same program).
When such a rule is fired this TR program is executed.

3.10.7.2 Sequence of discreet and durative actions

A TR Action can be a comma separated sequence of discreet and durative actions. The
special sequence () is the ’do nothing’ action.

3.10.7.3 Timed sequence

A TR Action can be a comma separated sequence of the form

Action for Duration , ... , Action for Duration.

where the last duration can be elided.

Each action above can be either a call on a TR program or a sequence of discreet or durative
actions.

When called, the first action is called and then after that duration is up, the second action
is called and so on until the last action in the sequence is called. After its duration has
expired then the sequence is repeated from the start. This will repeat until a different rule
is fired. If the last duration is missing, it as treated as infinity.

3.10.7.4 Wait repeat

A TR Action can be of the form

Action Sequence wait Duration ^ Repeats

When called, the actions will be executed, and after Duration seconds the actions will be
executed again. This will be repeated Repeats times unless another rule is chosen. If another
rule is not chosen then an error will be generated.
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3.10.7.5 Attached Qulog actions

TR Actions can have Qulog actions attached as below.

TRAction ++ Action

When called, both TRAction and Action will be executed. The Qulog action is typically a
modification to the belief store or a message send action.

3.10.7.6 Example TR program

As an example of TR Programs, consider the following TR program (from the
examples/introduction directory of the release) controlling a robot whose objective is to
find, approach, and pick up an object using grippers.

%% We assume that if the program receives a dead_centre percept

%% it will also receive a centre percept

dir::= left | right | centre | dead_centre

percept

see : (num, dir),

holding : ()

durative

move : (num),

turn : (dir)

discrete

grab : (),

release : ()

%% We interpret holding true and see(0, centre) not true to mean that

%% the grippers are closed but not actually holding an object

get_object : () ~>

get_object {

holding & see(0, centre) ~> ()

not holding & see(0, centre) ~> grab wait 10^2

not holding ~> get_to

true ~> release wait 10^2

}

get_to : () ~>

get_to {

see(0, centre) ~> ()

see(0, Dir) ~> turn(Dir)

see(_, centre) ~> move(6)

see(_, Dir) while see(_, centre) until see(_, dead_centre)

~> move(4) , turn(Dir)

true ~> turn(left) for 10 ; move(4) for 10

}
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Consider an initial state where no objects are seen and holding is false. When get_object

is executed then the third rule is fired causing get_to to be executed. The last of rules of
get_to will be chosen (a timed interval). This will first cause the robot to start turning for
10 seconds and then start moving for 10 seconds. This will be repeated until an object is
spotted.

At some point, say see(10, left) becomes true. This causes the fourth rule of get_to to
fire (with Dir instantiated to 10). Assuming this object is not moved by the environment,
then eventually, say see(8, centre) becomes true. It might seem that the third rule should
now fire because its guard becomes true. However, the until condition prevents higher rules
from firing. Once, say, see(8, dead_centre) becomes true then rule three will fire. By
over-achieving the guard of the third rule the "fluttering" between the third and fourth rule
(without the until condition) is eliminated.

The while condition is necessary because it takes over from the guard and mantains rule
four as the active rule when seeing to the left is no longer true but seeing to the centre
becomes true.

On the other hand, if, before see(8, dead_centre) becomes true the environment moves
the object so that see(8, right) becomes true then there would be a refiring of rule four
and the robot will start turning to the right.

Note that, if before the object is seen dead centre, see(0, centre) becomes true then rule
two of get_object will fire. The until only has a local effect - affecting rule choices within
its own TR program.

Eventually, without interference from the environment, see(0, centre) will become true.
The second rule of get_object will now fire (stopping the execution of get_to), causing
the robot to grip the object. Under normal circumstances holding will become true and
then the first rule will fire causing the robot to stop.

If, however, there was a mechnical problem with the gripper, the robot will wait for 10
seconds and try to close the gripper again in the hope that the problem will disappear. If
the problem doesn’t clear up after two attemps (with a 10 second wait for each) then an
error will be produced.

It may seem that the robot’s job is done now that it has achieved its goal. However, the
TR program is still monitoring the state and say the environment now removes the object
from the robot’s grip. Rule four will fire, opening the grippers, and then, once holding is
no longer true, rule three will fire and the robot will go back to searching for an object.
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4 Built-Ins

4.1 Introduction

This section contains descriptions of the functions, relations and actions of the Qulog library.
In the interpreter you can see all their names and types by entering the command

| ?? stypes.

Many of these are Qu-Prolog primitive relations ’lifted’ to QuLog by giving them appropriate
type/mode declarations. Other Qu-Prolog relations and actions can be ’lifted’ to the Qulog
level be giving them a QuLog type declaration in your QuLog program file.

For example, if the primitives described in Section 4.3.3 [List Processing], page 33 had not
already been made available for use in QuLog, all you would have needed to do was include
their type declarations as given in that section.

As another example, there is a Qu-Prolog primitive

between(From,To,N)

for generating or testing an integer value N between given integer values From and To.

To use this in a QuLog program, add the moded type declaration

between: (integer,integer,?integer) <=

to your program file. It tells the QuLog mode/type checker that the relation is a Qu-Prolog
primitive (that will be checked), and that in every use the first two arguments should be
given as integers but the third integer argument may be given or may be returned as value
of an unbound variable.

4.2 Input/Output

Actions:

writeL(List)

Write the elements of List. If the atom nl_ appears in List it is written as a newline.

You can also use sp_(N) where N is a positive integer to insert N spaces. Strings
in List are displayed without the string quotes ".." unless you write them with q_

("..."). The quotes are then put around the string.
writeL : (![??term]) ~>>

Example:

| ?? writeL(["List of atoms ",[a,b], nl_,

"Set of nats ", {2,1,4,1}]).

List of atoms [a, b]

Set of nats {1, 2, 4}

with the next output on the next line.

nl_ causes a new line to be output as would the string "\n". In fact any of the C
string control characters, such as "\t", "\s" for tab and space respectively, can be
put into a string and will have the intended effect unless the string is wrapped inside
a q_ term. So we could have written the above query as:
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| ?? writeL(["List of atoms ",[a,b],

"\nSet of nats ", {2,1,4,1}]).

Other control term we can put in the list argument of writeL are:

sp_(n), n positive integer. It will display n spaces.

uq_(Atom), where Atom is an atom that normally needs to be quoted. It will be
displayed without the single quotes.

wr_(Var), will not display Var as an underscore followed by a sequence of digits, as is
normal, but will give it a name such as A, B, C when displayed and will give subsequent
occurence of Var in the list to be output using the given name for Var.

The following query illustrates the the use of uq_ and wr_.

| ?? writeL([uq_(’Hello’)," there\n",wr_(_895),sp_(2),

_895,sp_(2),wr_(_678),nl_]).

Hello there

A A B

_895 = A : Ty1

_678 = B : Ty2

success

writeLine(List)

The same as writeL but with a trailing newline.

Example:

| ??writeLine([s("A list "), [a, b], sp_(2), {2, 1, 4, 1},

s(" followed by a set.")]).

A list [a, b] {1, 2, 4} followed by a set.

with the next output being at the beginning of the next line.

readT(Term)

Unifies Term with the next term denoted by the next sequence of characters typed at
the terminal followed by fullstop, return.
readT :(term?) ~>>

Example:

| ?? readT(X).

f(A).

X = f(A) : term

Note that this read remembers the names of variables (the A above). A consequence
of this, given the occurs check in unification, is that the following query fails.
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| ?? readT(A).

f(A).

no

4.3 Terms

4.3.1 Comparison of Terms

Two terms are compared according to the standard ordering, which is defined below. Items
listed at the beginning come before the items listed at the end. For example, numbers are
less than atoms in the standard ordering.

1. Variables, in age ordering (older variables come before younger variables).

2. Numbers, in numerical ordering.

3. Atoms, in character code (ASCII) ordering.

4. String, in standard string odering.

5. Compound terms are compared in the following order:

1. Arity, in numerical ordering.

2. Functor, in standard ordering.

3. Arguments, in standard ordering, from left to right.

6. Sets, in dictionary order on elements.

7. Lists, in dictionary order on elements.

The above ordering is used when constructing sets.

The following relations use the above ordering to test terms.

Term1 @> Term2

Succeeds if Term1 is greater thanTerm1 in the above ordering.

Term1 @>= Term2

Succeeds if Term1 is greater than or equal to Term2 in the above ordering.

Term1 @< Term2

Succeeds if Term1 is less thanTerm1 in the above ordering.

Term1 @=< Term2

Succeeds if Term1 is less than or equal to Term2 in the above ordering.

4.3.2 Testing of Terms

These testing predicates are used to determine various properties of the data objects, or
apply constraints to the data objects.

Relations:

type(Term, Type)

Succeed if Term is a non-variable of type Type.
type : (??top, !typeE(_)) <=

Example:
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| ?? type(a, atomic).

yes

| ?? type(a, int).

no

| ?? type([a,2], [int || atom]).

yes

ground(Term)

Succeed if Term is ground.
ground : (??top) <=

isa(Term, Type)

Succeed if Term is of type Type and Type is a finite type.
isa : (?Term, !typeE(_)) <=

Example: For this example we assume the following type declarations.

name ::= "Alice" | "Bob" | "Carol"

status ::= good(name) | bad(name)

| ?? isa(X, status).

X = good("Alice")

...

X = good("Bob")

...

X = good("Carol")

...

X = bad("Alice")

...

X = bad("Bob")

..

X = bad("Carol")

| ?? isa(good("Bob"), status).

yes

| ?? isa(2, nat).

no

template(Term)

Succeed if Term is atomic or a compound term with a ground functor.
template :(??top) <=
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ground_inputs(Term)

Succeed if Term is a relation or action term and that the modes of its arguments are
correct.
ground_inputs : ??(relcall || actcall) <=

4.3.3 List Processing

append(L1, L2, L3)

Succeed if L3 is the concatentation of L1 and L2

append: ([T]?, [T]?, [T]?)<= | (![T], ![T], ?[T])<= |

(?[T], ?[T], ![T])<=

reverse(L1, L2)

Succeed if L2 is the reverse of L1.

reverse : (![T?], ?[T?]) <=

sort(L1, L2)

Succeed if L2 is L1 sorted.

sort : (![T?], ?[T?]) <=

member(X, L)

Succeed if X is in L.

member : (T?, [T]?) <=

X in L

Succeed if X is in L.

in: (?T,[T])<= | (T?,![T?])<= | (?string,[string])<= | (?T,{T}) <=

Almost exactly the same uses as member except that it it must be given a complete list of
possibly non-ground terms.

As its type indicates, in can also be used to access single character substrings of a string
and ground elements of a set.

4.4 Arithmetic

The following arithemetic functions are available.

Num1 + Num2

Returns the sum of Num1 and Num2.
+ : (nat, nat) -> nat | (int, int) -> int | (num, num) -> num

Num1 - Num2

Returns the difference of Num1 and Num2.
- : (int, int) -> int | (num, num) -> num

-Num1

Returns the negation of Num.
- : int -> int | num -> num

Num1 * Num2

Returns the product of Num1 and Num2.
* : (nat, nat) -> nat | (int, int) -> int | (num, num) -> num
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Num1 // Num2

Returns the integer division of Num1 and Num2.
// : (nat, nat) -> nat | (int, int) -> int

Num1 / Num2

Returns the division of Num1 and Num2.
/ : (num, num) -> num

Num1 mod Num2

Returns the mod of Num1 and Num2.
mod : (nat, int) -> nat | (int, int) -> int

Num1 ** Num2

Returns Num1 raised to the power Num2.
** : (nat, nat) -> nat | (int, nat) -> int | (num, num) -> num

Int >> Nat

Returns the bitwise right shift of Int with respect to Nat.
>>: (int, nat) -> int

Int << Nat

Returns the bitwise left shift of Int with respect to Nat.
<<: (int, nat) -> int

Int1 /\ Int2

Returns the bitwise AND of Int1 and Int2.
/\: (int, int) -> int

Int1 \/ Int2

Returns the bitwise OR of Int1 and Int2.
\/: (int, int) -> int

\ Int

Returns the bitwise complement of Int.
\: (int) -> int

abs(Num)

Returns the absolute value of Num.
abs: int -> nat | num -> num

sqrt(Num)

Returns the square root of Num.
sqrt: num -> num

round(Num)

Returns the round of Num.
round: num -> int

floor(Num)

Returns the floor of Num.
floor: num -> int

ceiling(Num)



Chapter 4: Built-Ins 35

Returns the ceiling of Num.
ceiling: num -> int

pi_()

Returns PI.
pi_: () -> num

e_()

Returns E.
e_: () -> num

sin(Num)

Returns the sin of Num.
sin: num -> num

cos(Num)

Returns the cos of Num.
cos: num -> num

tan(Num)

Returns the tan of Num.
tan: num -> num

asin(Num)

Returns the arcsin of Num.
asin: num -> num

acos(Num)

Returns the arccos of Num.
acos: num -> num

atan(Num)

Returns the arctan of Num.
atan: num -> num

atan2(Y, X)

Returns the atan2 of Y and X. This returns an angle in the range (-pi, pi].
atan2: (num,num) -> num

4.5 Other Functions

now()

Returns the current time.
now: () -> num

exec_time()

Returns the lapsed time in seconds since this qulog process was started
exec_time: () -> num

start_time()

Returns the time at which this qulog process was started
start_time: () -> num

random_num()
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Returns a random number in [0,1).
random_num: () -> num

random_int(Lower, Upper)

Returns a random number in the interval [Lower, Upper].
random_int: (int, int) -> num

S1 union S2

Returns the union of sets S1 and S2.
union: ({T}, {T}) -> {T}

S1 inter S2

Returns the intersection of sets S1 and S2.
inter: ({T}, {T}) -> {T}

S1 diff S2

Returns the set difference of sets S1 and S2.
diff: ({T}, {T}) -> {T}

L1 <> L2

Returns the concatination of lists L1 and L2.
<> : ([T], [T]) -> [T]

S1 ++ S2

Returns the concatination of strings S1 and S2.
++ : (string, string) -> string

#L

Returns the length of the list, set, or string L.
# : [T] -> nat | {T} -> nat | string -> nat

F@..Args

Returns the compound term obtained by applying F to Args.
@.. : (term, [term]) -> term

Example:

| ?? @..(a, [1,2]).

a(1, 2) : term

@.. can also be used to split up a compound term as in the following example.

| ?? a(1,2) =? F@..Args.

F = a : atom

Args = [1, 2] : [nat]

$Name

Here Name is an atom that must have been initialised with a statement
int Name:=Integer, e.g. int count:=0 or
num Name:=Number, e.g. num savings:=678.50

in the program. It returns the current value associated with Name

which can be updated by primitive actions (see Section 4.7 [Other Actions], page 38).
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4.6 Other Relations

true

Always succeeds.
true : () <=

false

Always fails.
false : () <=

Term1 = Term2

Succeeds if Term1 and Term2 unify.

Any function calls in each argument term are evaluated first using strict evaluation -
expression arguments evaluated first - as with every relation call.
= : (term?, term?) <=

N1 > N2

Succeeds if N1 is greater than N2.
> : (!num, !num) <=

N1 >= N2

Succeeds if N1 is greater than or equal to N2.
>= : (!num, !num) <=

N1 < N2

Succeeds if N1 is less than N2.
< : (!num, !num) <=

N1 =< N2

Succeeds if N1 is less than or equal to N2.
=< : (!num, !num) <=

X in T

Succeeds if X is a term and and T is a list or set of terms and X is an element of T or
if X and T are both strings and X is a single character string occurring inT.

in: (T?,![T?]) <= | (?T,![T]) <= | (?T,!{T}) <= | (?string, !string) <=

string2term(S, T)

Succeeds if T is the term obtained by parsing the string Sas a Qulog term.
string2term : (!string, term?) <=

current_thread(Name)

Succeeds if Name is the name of this thread
current_thread : (?atom) <=

get_active_resources(ResourceInfo)

Succeeds if ResourceInfo is the list of terms res(atom,[resource]) giving resources
used by each running task in a multi-tasking agent. The atom is task name.
get_active_resources : (?term) <=

get_waiting_resources(ResourceInfo)

Succeeds if ResourceInfo is the list of terms res(atom,[resource]) giving resources
needed by each waiting task in a multi-tasking agent. The atom is task name.
get_waiting_resources : (?term) <=
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4.7 Other Actions

remember(Belief)

Adds its ground relcall argument (Belief) as a new last dynamic fact for its functor
relation name R. R must have been declared as a belief.
remember : (relcall) ~>>

remember_for(Belief, Secs)

The same as remember except that Belief is forgotten after Secs seconds.
remember_for : (relcall, num) ~>>

Alternative syntax: remember Belief for Secs

rememberA(Belief)

Adds its ground relcall argument (Belief) as a new first dynamic fact for its functor
relation name R. R must have been declared as a belief.
rememberA : (relcall) ~>>

rememberA_for(Belief, Secs)

The same as rememberA except that Belief is forgotten after Secs seconds.
remember_for : (relcall, num) ~>>

Alternative syntax: rememberA Belief for Secs

forget(Belief)

Remove the first dynamic fact matching Belief. Note that Belief may contain
variables within the arguments. forget always succeeds even if there are no matching
facts.
forget : (relcall) ~>>

forget_after(Belief, Secs)

The same as forget except that Belief is forgotten when Secs seconds has elapsed
and Belief must be ground at the time of call.
forget_after : (relcall, num) ~>>

Alternative syntax: forget Belief after Secs

replace_by(Belief1, Belief2)

The same as forget(Belief1) ; remember(Belief2). Belief1 and Belief2 may
share variables.

Name := Expression

Here Name is an atom that must have been initialised with a statement

int Name:=Integer, e.g. int count:=0 or

num Name:=Number, e.g. num savings:=678.50

in the program. These statements are shorthand for belief declarations and a defi-
nition using one fact of a unary relation called Name. They are respectively expanded
into:

belief Name: int <=

Name(Integer)

belief Name: num <=
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Name(Number)

The action Name := Expression is the same as

forget(Name(_));remember(Name(Expression)).

Name can be used as though it were a global variable. To access its value the operator
$ is applied. The expression $Name evaluates to the current int or num value stored
in Name, i.e. in the current Name belief.

:= : (!(?int <= ), !int) ~>> | (!(?num <= ), !num) ~>>

Name +:= Expression

As above, Name is an atom that must have been initialised with a statement

int Name:=Integer or num Name:=Number

in the program.

The action Name +:= Expression is the same as

forget(Name(Val));remember(Name(Val+Expression)).

+:= : (!(?int <= ), !int) ~>> | (!(?num <= ), !num) ~>>

Example use

count +:= 1

for increasing value held in count by 1.

Name -:= Expression

As above, Name is an atom that must have been initialised with a statement

int Name:=Integer or num Name:=Number

in the program.

The action Name -:= Expression is the same as

forget(Name(Val));remember(Name(Val-Expression)).

-:= : (!(?int <= ), !int) ~>> | (!(?num <= ), !num) ~>>

Example use

savings -:= 67.90

for decreasing the value held in savings by 67.90.

fork_as(Action, Name)

Fork a new Qulog thread, give it the name Name, and start the thread executing
Action. If Name is a variable it will be instantiated to a name given by the system.
If Name is given it must not be the name of an existing thread.
fork_as : (actcall, ?atom) ~>>

Alternative syntax: fork Action as Name

from(Term, Handle)

This is the message receive action. It will succeed it there is a message term in that
threads message buffer whose message term unifies with Term and whose message
handle unifies with Handle. If not the call will suspend and be repeatedly retried as
new messages arrive until it succeeds. When it does succeed, the matched message
will be removed from the message buffer.
from : (term?, ?handle) ~>>
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Alternative syntax: Term from Handle

to(Term, Handle)

This is the message send action. It sends Term as a message to the thread (of possibly
another process on another machine) whose message address is Handle.
to : (??term, !handle) ~>>

Alternative syntax: Term to Handle

thread_sleep(Secs)

Causes the executing thread to suspend for Secs seconds.
thread_sleep : (!num) ~>>

4.8 TeleoR Specific Actions

The following actions are available when the system is running in TeleoR mode (after the
command teleor has been executed in the interpreter).

actions(Actions)

An interpreter command that can be used in teleor mode when an agent has been
started using start_agent. Actions is a list of actions that agent wants the robotic
interface to perform. The given actions must have been declared as discrete or dura-
tive.
actions : ([discrete || durative]) ~>>

kill_agent

Kill the current agent started using start_agent.
kill_agent : () ~>>

kill_task(Task)

Kill the task with name Task started using start_task.
kill_task : (atom) ~>>

start_agent(Name, Handle, Convention)

Start a new agent whose name is Name. Handle is the message address of the robot
interface or simulation with which the agent will interact. Convention is the percepts
update convention being used. This is one of: all if the robot sends all the percepts
each time it sends percepts; updates if the robot only sends changes to percepts;
or user if the percept management is application specific in which case the action
handle_percepts_ needs to be defined in the program.
start_agent : (atom, handle, atom) ~>>

start_task(Name, TRCall)

Start a new task (as a thread) whose name is Name. TRCall is the TeleoR call to be
executed in the thread.
start_task : (atom, trcall) ~>>



Chapter 5: Standard Operators 41

5 Standard Operators

We use the Prolog notation for operator declarations even though, unlike Prolog, QuLog’s
syntax cannot be extended by adding application specific operators and the QuLog parser
is not an operator precedence parser. op is not a system predicate of QuLog. Using Prolog
op statements gives us a succint way of summarising the precedence relationship between
the operators that is implicit in the formal syntax rules.

In each op statement the number is the ’binding’ power of the operator, called the precedece
of the operator. The higher the precedence, the higher up the parse tree, so the less binding
the operator. For example, + has higher precedence than * , so X+Y*Z is really X+(Y*Z) and
we have to use brackets if we want to have the expression (X+Y)*Z.

fx means the operator is prefix and cannot be followed immediately by an expression with
top operator of the same precedence unless that expression is bracketed.

xfx means that the operator is an infix non-associative operator and must have expression
arguments for which the top operator has lower precedence, or the expressions arguments
are bracketed. So, (X**Y)**Z needs the brackets.

xfy means that the operator is an infix right associative operator, and yfx means that the
operator is an infix left associative operator. More specically, a xfy operator can have an
expression to the right with a top operator of equal or lower precedence and that expression
being implicitly bracketed. For a yfx this implicit bracketing applies to the expression on
the left hand side. So, X*5 mod 6 is implicitly (X*5) mod 6.

Note that ? has two precedences as an infix operator. One is for its use in an interpreter
query after the required initial number of solutions and/or variable bindings have been
given. For this use it must have higher precedence than &. The second use is in <> and ++

patterns when giving a single condition constraint on a sub-string or sub-list. For this use
it must have lower precedence than <> and ++.

The mode annotations are not in the table as prefix or infix operators as they will always
be inside a bracketed sequence of annotated types.

We have not included forall or exists as they are both prefix operators taking two
arguments, the sequence of variables that immediately follows and then some operator
expression. This is an => or ~>> implication in the case of forall and possibly an &

conjunction in the case of exists.

start_task and start_agent are just reserved words and are never followed by an operator
expression.

In QuLog comma is not treated as an operator. It is just an expression separator.

op(1100, xfx, [ <=, ~>>, ->, ~>, =>])

op(1050, xfx, [ ::= ])

op(1030, xfx, [ |, || ])

op(1030, xfx, [ .. ])

op(1020, xfx, [ ::, ? ])

<op(1020, xfy, [ while, until ])

op(1000, xfy, [ &, ; ])

op(900, fx, [not , once, watch , watchC, unwatch, show,
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types, stypes, remember, forget, call, do, wait])

op(850, xfx, [ for, after ])

op(800, xfx, [ ? ])

op(700, xfx, [= , \= , :=, +:=, -:=, =? , == , \== , @< , @=< ,

@> , @>= , @.. , in , =:= , =\= , < , =< , > , >= ])

op(600, xfy, [ ++, <> ])

op(550, xfx, [ ? ])

op(500, yfx, [ + , - , /\ , \/, union, diff ])

op(450, yfx, [ to, from ])

op(400, yfx, [ * , / , // , rem , mod , inter, << , >> ])

op(200, xfx, [ ** ])

op(200, fy, [ + , - , \ ])

op(100, xfx, [ .. ])

op(50, xfx, [ : ])

op(50, fx, [ $, # ])
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Appendix A EBNF Grammar for Qulog

(* The EBNF grammar for qulog *)

(*

We assume the following non-terminals that group tokens. All other

tokens in the grammar are given as strings.

atom: the allowed atoms of qulog

string: double-quoted strings

var: the variables of qulog

int: integers

num: floating point numbers

*)

any_number = int | num;

(* ------ program item ------ *)

(* Note: a program file is parsed one program item at a time *)

program_item =

type_definition |

declaration |

function_rule_definition |

relation_rule_definition |

action_rule_definition |

tr_program_definition;

(* ------ type definitions ------ *)

type_definition = definition_head, "::=", definition_type;

(* either atom type or polymorphic type with one arg *)

definition_head = atom | ( atom, var ) | ( atom, "(", var, ")" );

definition_type =

( int, "..", int ) |

( atom, "|", atom, {"|", atom} ) |

( string, "|", string, {"|", string} ) |

( any_number, "|", any_number, {"|", any_number} ) |

( compound, "|", compound, {"|", compound} ) |

( atom_or_compound, "||",

atom_or_compound, {"||", atom_or_compound} ) |

( "(", definition_type, ")" ) |
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atom | (* type macro *)

compound | (* type macro *)

type_expression;

atom_or_compound = atom | compound;

atom_or_simple_compound = atom | simple_compound;

(* ------ types ------ *)

simple_type_expression =

( "(", ")" ) |

var |

atom |

compound |

( "[", type_expression, "]" ) |

( "{", type_expression, "}" ) |

( "(", type_expression, ")" ) |

( "(", type_expression, ",", type_expression,

{",", type_expression}, ")" ) (* tuple type_expression *);

type_expression =

simple_type_expression |

function_type_expression |

relation_type_expression |

action_type_expression |

tr_type_expression;

type_expression_seq = type_expression, {",", type_expression};

fun_rel_act_tr_type_expression_seq =

fun_rel_act_tr_type_expression |

fun_rel_act_tr_type_expression, {"|", fun_rel_act_tr_type_expression};

fun_rel_act_tr_type_expression =

annotated_type_expression;

declaration_type_expression =

( "(", annotated_type_expression,

{",", annotated_type_expression}, ")" ) |

annotated_type_expression;

function_type_expression_seq =

function_type_expression, ["|", !, function_type_expression_seq];

function_type_expression =

( "(", function_type_expression, ")" ) |

( domain_type_expression, "->", type_expression ) |

( domain_type_expression, "->", function_type_expression );
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domain_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression) |

relation_type_expression |

action_type_expression |

tr_type_expression;

relation_type_expression_seq =

relation_type_expression, ["|", !, relation_type_expression_seq];

relation_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression),

"<=", !;

action_type_expression_seq =

action_type_expression, {"|", action_type_expression};

action_type_expression =

(basic_inner_annotated_type_expression | annotated_tuple_type_expression),

"~>>", !;

tr_type_expression =

simple_type_expression, "~>", !;

pre_annotation = "!" | "?" | "??";

post_annotation = "?";

annotated_type_expression =

[pre_annotation], inner_annotated_type_expression, [post_annotation];

inner_annotated_type_expression =

basic_inner_annotated_type_expression |

function_type_expression |

relation_type_expression |

action_type_expression |

tr_type_expression;

basic_inner_annotated_type_expression =

basic_annotated_type_expression |

annotated_compound_type_expression |

annotated_list_type_expression |

"{", type_expression, "}";

basic_annotated_type_expression =

atom | var | annotated_tuple_type_expression | ("(", ")");

annotated_tuple_type_expression =
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"(", annotated_type_expression, {",", annotated_type_expression}, ")";

annotated_compound_type_expression =

( atom, "(", annotated_type_expression,

{",", annotated_type_expression}, ")" ) |

( atom, annotated_type_expression );

annotated_list_type_expression =

"[", annotated_type_expression, "]";

(* ------ declarations ------ *)

declaration =

rule_declaration |

global_declaration |

percept_declaration |

belief_declaration |

durative_declaration |

discrete_declaration |

task_start_declaration |

task_atomic_declaration |

resources_declaration;

rule_declaration =

name_seq, ":",

(

fun_rel_act_tr_type_expression_seq |

function_type_expression_seq |

relation_type_expression_seq |

action_type_expression_seq |

tr_type_expression

);

name_seq = atom, {",", atom};

global_declaration = ("int" | "num" ), atom, ":=", arith_term;

percept_declaration =

"percept", tr_decl_element, {",", tr_decl_element};

belief_declaration =

"belief", tr_decl_element, {",", tr_decl_element};

durative_declaration =

"durative", tr_decl_element, {",", tr_decl_element};
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discrete_declaration =

"discrete", tr_decl_element, {",", tr_decl_element};

tr_decl_element =

atom, ":", "(", [type_expression_seq], ")";

task_start_declaration =

"task_start", atom, ":", type_expression_seq;

task_atomic_declaration =

"task_atomic", atom, ":", type_expression_seq;

resources_declaration =

"resources", type_expression_seq;

(* ------ function definitions ------ *)

function_rule_definition =

( atom_or_compound,"->", term ) |

( atom_or_compound, "::", simple_condition_seq, "->", term );

(* ------ relation definitions ------ *)

relation_rule_definition =

atom_or_compound |

( atom_or_compound, "<=", condition_seq ) |

( atom_or_compound, "::", simple_condition_seq, "<=", condition_seq ) |

( atom_or_compound, "::", simple_condition_seq );

(* ------ action definitions ------ *)

action_rule_definition =

atom_or_compound |

( atom_or_compound, "~>>", action_seq ) |

( atom_or_compound, "::", simple_condition_seq, "~>>", action_seq );

(* ------ TR program definitions ------ *)

tr_program_definition =

atom_or_simple_compound, "{", tr_rules, "}";

tr_rules = tr_rule, [tr_rules];

tr_rule = tr_rule_LHS, "~>", tr_rule_RHS;

tr_rule_LHS =

simple_condition_seq, [tr_rule_while_until];

tr_rule_while_until =

( "min", arith_term ) |

( "while_until", simple_condition_seq ) |
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( "while", while_until_part, "until", while_until_part ) |

( "while", while_until_part ) |

( "until", while_until_part );

while_until_part =

simple_condition_seq |

( simple_condition_seq, "min", arith_term ) |

( "min", arith_term );

tr_rule_RHS =

( tr_action, [wait_repeat], ["++", call_term] );

tr_action =

( "(", ")" ) | tr_action_seq | tr_timed_seq;

tr_action_seq = ( ( "(", ")" ) | call_term ), [",", tr_action_seq];

tr_timed_seq =

( tr_timed_for, ";", call_term ) |

( tr_timed_for , ";", tr_timed_for,

{ ";", tr_timed_for}, [";", call_term]);

tr_timed_for = tr_timed_seq_action, "for", arith_term;

tr_timed_seq_action = ( "(", ")" ) | call_term | ( "(", tr_action_seq, ")" );

tr_action_seq = call_term, [",", tr_action_seq];

wait_repeat = "wait", arith_term, ["^", arith_term];

(* ------ terms ------ *)

term =

( predication | simple_action |

arith_term | append_term | concat_term |

set_term | apply_term | global_val | pedro_addr | compound | basic_term);

basic_term =

(

("(", term, ")") |

list_comprehension |

set_comprehension |

tuple_constructor |

list_constructor |

set_constructor |

size_term |

atom | string | var | int | num

), !;
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arith_term =

mult_div_term,

[

("+", arith_term ) |

( "-", arith_term ) |

( "\\/", arith_term ) |

( "/\\", arith_term )

];

mult_div_term =

(

exp_term,

[

( "*", mult_div_term ) |

( "/", mult_div_term ) |

( "//", mult_div_term ) |

( "rem", mult_div_term ) |

( "div", mult_div_term ) |

( "<<", mult_div_term ) |

( ">>", mult_div_term )

]

) |

( "(", arith_term, ")" );

exp_term =

basic_arith_term, [ ( "**", exp_term ) ];

basic_arith_term =

int | num | var | compound | size_term | ("$", atom) |

( "(", arith_term, ")" ) |

( "+", basic_arith_term ) |

( "-", basic_arith_term );

size_term = "#", size_term_body;

size_term_body = (var | compound | list_constructor | string | set_constructor |

list_comprehension | set_comprehension ) |

("(", append_term, ")") |

("(", concat_term, ")") |

("(", size_term_body, ")");

append_term = list_term, "<>", ( list_term | append_term );

concat_term = string_term, "++", ( string_term | concat_term );

list_term = var | compound | list_constructor | list_comprehension |
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("(", list_term, ")") |

("(", append_term, ")");

string_term = (var | compound | string ) |

("(", string_term, ")") |

("(", concat_term, ")");

list_comprehension =

"[", (var | ("(", var_list, ")")), "::",

simple_exists_condition, "]";

set_comprehension =

"{", (var | ("(", var_list, ")")), "::",

simple_exists_condition, "}";

var_list = var, {",", var};

tuple_constructor = "(", term, ",", term, {",", term}, ")";

%compound = basic_compound, { term | ("(", ")") };

%basic_compound = (atom | var), (term | ("(", ")"));

compound = (atom | var), compound_args;

compound_args = (basic_term | ("(", ")")), [compound_args].

simple_compound = atom, term;

arg_list = term, {",", term};

braketed_arg_list = ("(", ")") | ("(", arg_list, ")");

list_constructor = "[", list_constructor_args,

("]" | ("|", list_term, "]") |

(",", "..", "]") | (",", "..", list_term, "]")), !;

list_constructor_args = term, [",", list_constructor_args].

set_constructor = "{", arg_list, "}";

basic_set_term = var | compound | set_comprehension | set_constructor;

set_term = set_inter_expr |

(set_inter_expr, "union", set_term) |

(set_inter_expr, "diff", set_term);

set_inter_expr = basic_set_term |

(basic_set_term, "inter", set_inter_expr) |

("(", set_term, ")");
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apply_term = basic_term, "@..", (list_term);

global_val = "$", atom;

pedro_addr = (atom | var), [":", (atom | var)], ["@", (atom | var)];

agent_handle = (atom | var), ["@", (atom | var)];

(* ------ conditions ------ *)

condition_seq = condition, {"&", condition};

simple_condition_seq =

simple_condition, ["&", simple_condition_seq];

simple_condition =

predication |

( "not", predication ) |

( "not", "(", predication, ")" ) |

( "once", predication ) |

( "once", "(", predication, ")" );

forall_condition =

"forall", var_list, "(", simple_condition_seq, "=>",

simple_exists_condition, ")";

simple_exists_condition =

simple_condition_seq |

"exists", var_list, simple_condition_seq |

"exists", var_list, "(", simple_condition_seq, ")";

exists_condition =

condition_seq |

"exists", var_list, condition_seq ;

condition =

forall_condition |

simple_condition;

predication =

compound | atom |

type_test |

( "mode_correct", brac_call_term ) |

( "call", brac_call_term ) |

( arith_term, ">", arith_term ) |

( arith_term, ">=", arith_term ) |
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( arith_term, "<", arith_term ) |

( arith_term, "=<", arith_term ) |

( term, "=", term ) |

( term, "\=", term ) |

( term, "@>", term ) |

( term, "@>=", term ) |

( term, "@<", term ) |

( term, "@=<", term ) |

( term, "@=", term ) |

( term, "in", (list_term | string_term | set_term) ) |

( compound, "=?", simple_term, "@..", list_term ) |

( ( list_term | append_term ), "=?", append_term ) |

( ( string_term | concat_term ), "=?", eq_string_term );

type_test = "type", "(", term, ",", annotated_type_expression, ")";

call_term = var | atom | compound;

brac_call_term = ("(", call_term, ")") | call_term;

simple_call_term = var | atom | simple_compound;

brac_simple_call_term = ("(", simple_call_term, ")") | simple_call_term;

eq_string_term = string_q, "++", string_q, {"++", string_q};

string_q = string_term | (string_term, "?", condition );

(* ------ actions ------ *)

action_seq = action, {";", action};

action = simple_action | forall_action;

simple_action_seq =

simple_action, {";", simple_action};

forall_action =

"forall", var_list, "(", simple_condition_seq, "~>>",

simple_action_seq, ")";

simple_action =

compound | atom |

( "do", brac_call_term ) |

( atom, ":=", arith_term ) |

( atom, "+:=", arith_term ) |

( atom, "-:=", arith_term ) |

( "remember", brac_simple_call_term, ["for", arith_term] ) |

( "rememberA", brac_simple_call_term, ["for", arith_term] ) |
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( "forget", brac_simple_call_term, ["after", arith_term] ) |

( "replace", brac_simple_call_term, "by", simple_call_term ) |

( "replaceA", brac_simple_call_term, "by", simple_call_term ) |

( "start_task", (atom | var), call_term ) |

( "kill_task", (atom | var) ) |

( "start_agent", (atom | var), agent_handle,

("all" | "updates" | "user") ) |

( "log", agent_handle ) |

( term, "to", pedro_addr ) |

( term, "from", pedro_addr ) |

( "fork", brac_call_term, "as", (atom | var) );

(* ------ interpreter entry ------ *)

interpreter_entry =

exists_condition |

action_seq |

( "watch", atom ) |

( "watchC", atom ) |

( "unwatch", atom ) |

( "set_num_answers", int ) |

( int, var_list, "?", condition_seq ) |

( var_list, "?", condition_seq ) |

( int, "?", condition_seq ) |

( "prolog", prolog_calls ) |

"prolog" |

"types" |

( "types", atom ) |

"stypes" |

( "stypes", atom ) |

"show" |

( "show", atom ) |

( "consult", atom ) |

( "[", atom, {",", atom}, "]" ) |

( "pconsult", atom ) |

( "!", term );

(* can use "&", and "," in prolog calls *)

prolog_calls =

( action | condition ), [("&" | ","), prolog_calls];
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