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Abstract. This paper presents a method of formally specifying, refining and verifying concurrent systems which
uses the object-oriented state-based specification language Object-Z together with the process algebra CSP. Object-
Z provides a convenient way of modelling complex data structures needed to define the component processes of
such systems, and CSP enables the concise specification of process interactions. The basis of the integration is a
semantics of Object-Z classes identical to that of CSP processes. This allows classes specified in Object-Z to be
used directly within the CSP part of the specification.

In addition to specification, we also discuss refinement and verification in this model. The common semantic
basis enables a unified method of refinement to be used, based upon CSP refinement. To enable state-based
techniques to be used for the Object-Z components of a specification we develop state-based refinement relations
which are sound and complete with respect to CSP refinement. In addition, a verification method for static and
dynamic properties is presented. The method allows us to verify properties of the CSP system specification in terms
of its component Object-Z classes by using the laws of the CSP operators together with the logic for Object-Z.
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1. Introduction

A primary purpose of formal specification is to provide concise and easily comprehensible
descriptions of software systems. For particularly large or complex systems, this goal may
be more readily achieved by using more than one specification language. While most spec-
ification languages can be used to specify entire systems, few, if any, are particularly suited
to modelling all aspects of such systems.

A good example of where such a combination of languages is particularly useful is the
specification of concurrent or distributed systems. Such systems comprise a number of
distinct componentprocessesoperating concurrently and synchronising on certain events.
Process algebras such as CCS [29] and CSP [21, 30] are suitable vehicles for modelling
the interactions between processes or their temporal ordering. State-based languages such
as Z [41] or VDM [23], however, offer better facilities for the specification of the com-
plex data structures which may be needed to describe the processes themselves. Indeed,
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modern distributed systems architectures (such as the Open Distributed Processing refer-
ence model [22]) partition a specification into a number of relatedviewpoints, and recognise
that different languages are likely to be used in the different viewpoint specifications of a
large distributed system.

This realisation has lead to the development of new specification languages which com-
bine features of one or more existing languages [3, 16] and, more recently, approaches for
formally integrating existing languages [4, 9, 12, 17, 20, 27, 45].

For example, the RAISE specification language (RSL) [16] designed for use with complex
industrial-scale systems involving concurrency includes features drawn from both VDM
and CSP. The use of state-based languages together with process algebras has also been
proposed to support the use of viewpoints in ODP where Z and LOTOS [3]1 are candidates
for use in the information and computational viewpoints respectively.

An advantage of the use of separate viewpoints in ODP over that of RAISE is that, rather
than defining a new language, existing languages can be used without altering their syntax
or semantics. This makes the approach more accessible to users who are already familiar
with the existing languages and also enables the use of tools and methods of verification and
refinement developed for these languages. A disadvantage of the ODP approach, however,
is that it produces, rather than a single specification, a number of related specifications
which must be checked for consistency [2].

In order to produce a single specification while using a combination of existing languages,
constructs defined in one of the languages need to be applicable in the other enabling the
various parts of the specification to be linked. This is possible if such constructs are given
a semantics identical to that of an identifiable construct in the other.

One problem with adopting such an approach, however, is the lack of a construct in most
state-based specification languages identifiable with processes in a process algebra. This is
not true of object-oriented state-based specification languages such as Object-Z [14, 39],
an object-oriented extension of Z. Central to object orientation is the view of a system as
a collection of distinct, interacting objects whose state and operations are encapsulated in
classes. Hence, there is a strong relationship between classes in object-oriented systems and
processes in concurrent systems: interactions between instances of each define the system
behaviour. This relationship has been recognised by many researchers in both the theory
and practice of object orientation [15, 37, 44, 49].

This paper presents a semantic integration of Object-Z and CSP based on the relation-
ship between classes and processes, and thereby enables a method of formally specifying
concurrent systems using Object-Z together with CSP to be described. Object-Z provides a
convenient method of modelling the complex data structures needed to define component
processes, and CSP enables a concise specification of process interaction. The semantic
integration enables classes specified in Object-Z to be used directly within the CSP part of
the specification.

The approach we describe consists of three phases. The first phase involves specifying
the component processes as Object-Z classes. To maintain a separation of concerns and
allow maximum flexibility in describing the component processes, each class is described
independently of the others and of the environment in which they are to be placed. The
components thus specified will generally not be in a form that allows them to be composed
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using CSP operators. The second phase involves modifying the class interfaces (by using
Object-Z inheritance and CSP renaming) so that they will synchronise and communicate
as desired. Finally, the specification of the whole system is given using CSP operators to
describe how the components interact.

In addition tospecification, a notation needs to be able to support incrementaldevelopment
of specifications through a well-defined method of refinement. It is also desirable to be able
to verify both static and dynamic, i.e. behavioural, properties of these specifications. The
work described here presents a method of refining specifications written in the integrated
Object-Z/CSP notation, and a method for verifying such properties of those specifications.

Having a common semantic basis for the two languages enables a unified method of
refinement to be developed for the integrated notation: because we give Object-Z classes a
CSP semantics, we can use CSP refinement as the refinement relation for their combination.
However, as a means for verifying a refinement it is more convenient to be able to use a
state-based refinement relation for the Object-Z components, rather than having to calculate
their semantics. In order to do so, we adapt the work of Josephs [24], who has developed
refinement relations for state-based systems which are sound and complete with respect to
CSP refinement.

In order to be able to verify static and dynamic properties, we present a method of
verification for the integrated notation. The method allows us to verify properties of the
CSP system specification in terms of its component Object-Z classes by using the laws of
the CSP operators presented in [21] together with the logic for Object-Z described in [35].
CSP and Object-Z properties are related via auxiliary variables introduced into the Object-Z
classes using inheritance.

Although the emphasis in this paper is on the application of the approach to concurrent
and distributed systems, its applicability extends to other domains. For example, it has been
applied to the specification of interactive systems [26]. Also, both Z and CSP have been
advocated for specifying different aspects of software architectures [34] and combinations
of Z and Object-Z with timed CSP have been suggested for the specification of embedded
systems [20, 28, 42].

The paper is structured as follows. Sections 2 and 3 introduce Object-Z and CSP re-
spectively by providing simple examples of their use and an overview of their semantics.
Section 4 presents the semantic integration of the languages. Classes in Object-Z are given
a failures-divergences [6] semantics identical to that of CSP processes. In Section 5 the
approach to specification using the integrated notations is illustrated through a simple case
study of a cinema booking system. Section 6 then discusses refinement in the integrated
notation, and defines the state-based refinement relations that we will use for the Object-Z
components of a specification. Section 7 explains how properties of specifications can be
verified, and we conclude in Section 8.

2. Object-Z

Object-Z [14, 39] is an extension of Z designed to support an object-oriented specification
style. It includes a special class construct to encapsulate a state schema with all the oper-
ation schemas which may affect its variables. A class may be used to define one or more
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components of a system or to specify the interactions between components by referring to
instances, i.e.objects, of their classes. In the approach adopted in this paper, the interactions
between components will be specified using CSP. We restrict our attention, therefore, to
classes which do not refer to objects of other classes.

A class in Object-Z is represented syntactically by a named box possibly with generic
parameters. In this box there may be local type and constant definitions, at most one state
schema and associated initial state schema, and zero or more operation schemas. As an
example, consider the following specification of a bounded queue. This specification is
generic in that the typeT , of the items in the queue, is not specified.

The class has a single constantmaxdenoting the maximum length of the queue and a
single state variableitemsdenoting the items in the queue. Constants are associated with a
fixed value which cannot be changed by any operations of the class. However, the value of
constants may differ for different objects of the class. Initially the queue is empty and the
operationsJoinandLeaveenable items to join and leave the queue, respectively, on a first-
in/first-out basis. Each operation schema has a1-list of state variables which it may change,
a declaration part consisting of input (denoted by names ending in ?) and output (denoted
by names ending in !) parameters and a predicate part relating the pre- and post-values
(denoted by names ending in′) of the state variables.

A class may alsoinherit the definitions of one or more other classes. Inheritance is
a powerful mechanism for incremental specification allowing peripheral concerns to be
postponed while specifying the intrinsic behaviour of a class of objects. An inherited class’s
local types and constants are implicitly available in the inheriting class. Its schemas are
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also either implicitly available or are implicitly conjoined with common-named schemas
declared in the inheriting class. As an example, consider the following definition of a lossy
message channel.

Let MSGdenote the set of all possible messages.

The classMsgChannelinheritsQueuewith its generic typeT instantiated withMSGand
with the state variableitemsrenamed tomsgsand the operation parametersitem? anditem!
renamed tomsg? andmsg! respectively. In general, constants, state variables, operation
schemas and operation parameters may be renamed. Objects ofMsgChannelbehave iden-
tically to those ofQueueup to renaming, except that they have an additional operationLose
corresponding to the loss of a message.

2.1. Semantics of Object-Z classes

A class in Object-Z can be modelled as a set of values each corresponding to a potential
object of the class at some stage of its evolution. Such a semantics is presented in [37] where,
following the work of [13], the value chosen to represent an object is the sequence of states
the object has passed through together with the corresponding sequence of operations the
object has undergone. This value is referred to as thehistoryof the object.

To define the structure and properties of the histories of a class, we first need to define
what is meant by its states and the operations it can undergo. The states of a class assign
values to the state variables and any constants the state schema may refer to. This includes
both constants defined in the class and those defined globally.

Given the set of all possible identifiers, i.e. strings of characters denoting names,Ident
and the set of all possible valuesValue, the states of a class can be represented by
a set2

S⊆ (Ident Value)

such that the following property holds.

st1 ∈ S∧ st2 ∈ S⇒ domst1 = domst2 (S1)

That is, the states of a class refer to a common set of variables.
The operations a class can undergo are instances of the class’s operation schemas. They

can be represented by the name of an operation schema together with an assignment of
values to its parameters.
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The operations of a class can be represented by a set

O ⊆ Ident× (Ident Value)

such that the following property holds.

(n, p1) ∈ O ∧ (n, p2) ∈ O⇒ dom p1 = dom p2 (O1)

That is, an operation name is always associated with the same set of parameters.
A history is a non-empty sequence of states together with a sequence of operations. Either

both sequences are infinite3 or the state sequence is one longer than the operation sequence.
The histories of a class with statesSand operationsO can be represented by a set4

H ⊆ Sω × Oω

such that the following properties hold.

(s, o) ∈ H ⇒ s 6= 〈 〉 (H1)

(s, o) ∈ H ∧ s /∈ S∗ ⇒ o /∈ O∗ (H2)

(s, o) ∈ H ∧ s ∈ S∗ ⇒ #s= #o+ 1 (H3)

(s1
_ s2, o1

_ o2) ∈ H ∧ #s1 = #o1+ 1⇒ (s1, o1) ∈ H (H4)

The first three properties capture the requirements on an individual history detailed above.
The final property is a condition on the set of histories representing a class. This set must
beprefix-closed. This is necessary since the first state in the sequence of states satisfies the
class’s initial state, and each pair of consecutive states is a possible state transition of the
operation whose position in the operation sequence is the same as that of the first state of
the pair in the state sequence. Therefore, any prefix of an object’s history is the history of
that object at some earlier stage of its evolution and hence represents a possible history of
the object’s class.

3. CSP

CSP has been designed specifically to specify concurrent systems. It models a system
as a collection of processes which run concurrently, communicate over unbuffered chan-
nels and synchronise on particular events. Processes are specified by guarded, and usu-
ally recursive, equations. For example, a simple one-place buffer can be specified as
follows.

α(BUFFER1) = {in.n | n ∈ N} ∪ {out.n | n ∈ N}
BUFFER1 = in?x→ out!x→ BUFFER1

The first line of the specification defines thealphabetof the processBUFFER1. The
alphabet is the set of all events that the process can possibly engage in. Each event, in
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this case, is of the formc.v wherec is the name of a channel andv is a value communicated
along that channel. The second line of the specification defines the temporal order in which
the process undergoes those events. The notationin?x corresponds to an eventin.x where
x is input on channelin. Similarly, out!x corresponds to an eventout.x wherex is output
on channelout.

To compose processes, CSP has a number of operators. One of the most important of
these is the concurrency operator5 ‖. When two processes are combined using this operator,
they run concurrently and synchronise on events with the same name or, in the case of
communications events, the same channel name and value. All other events are interleaved
in the resulting process. For example, a two-place buffer can be specified in terms of
two one-place buffers which are concurrently composed such that theout.x event of the
first synchronises and communicates with thein.x of the second. To do this we use the
substitution notation whereP[[a/b]] means that the event or channelb in processP is
replaced bya.

The two-place buffer is then specified as follows.

BUFFER2

= (BUFFER1[[transfer/out]] ‖ BUFFER1[[transfer/in]])\{transfer.n | n ∈ N}

The eventstransfer.n, wheren ∈ N, arehiddenin the resulting process so that these events
are not available to the environment for further synchronisation.

In addition to the concurrency operator‖, CSP also provides an interleaving operator‖|.
When two processes are combined using this operator all events are interleaved in the
resulting process (i.e. there is no synchronisation).

Although CSP processes are specified without reference to an explicit state, to simplify
specifications, they often have parameters which simulate the state information. For exam-
ple, consider the following equations which specify a queue of arbitrary length.

α(Queue) = {in.n | n ∈ N} ∪ {out.n | n ∈ N}
Queue= Queue<>
Queue<> = in.x→ Queue<x>

Queuesˆ<x> = in.y→ Queue<y>ˆsˆ<x>

[]

out.x→ Queues

The subscript parameters represent the sequence of items in the queue. Parameters can
also appear in brackets following the process name.

3.1. Semantics of CSP processes

The standard semantics of CSP is the failures-divergences semantics developed in [5, 6].
A process is modelled by the triple(A, F, D) where A is its alphabet,F is its failures
and D is its divergences. The failures of a process are pairs(t, X) where t is a finite
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sequence of events that the process may undergo andX is a set of events the process
may refuse to perform after undergoingt . That is, if the process after undergoingt is
in an environment which only allows it to undergo events inX, it may deadlock. The
divergences of a process are the sequences of events after which the process may undergo
an infinite sequence of internal events, i.e. livelock. Divergences also result from unguarded
recursion.

Failures and divergences are defined in terms of the events in the alphabet of the class.
The failures of a process with alphabetA are a set

F ⊆ A∗ × PA

such that the following properties hold.

(〈 〉, O�) ∈ F (F1)

(t1
_ t2, O�) ∈ F ⇒ (t1, O�) ∈ F (F2)

(t, X) ∈ F ∧ Y ⊆ X ⇒ (t,Y) ∈ F (F3)

(t, X) ∈ F ∧ (∀e∈ Y • (t _ 〈e〉, O�) /∈ F)⇒ (t, X ∪ Y) ∈ F (F4)

Notice that we have dropped the restriction in [5] that the set of refused events is finite as
is also done in [6]6 and [24].

PropertiesF1 andF2 capture the requirement that the sequences of events a process can
undergo form a non-empty, prefix-closed set. PropertyF3 states that if a process can refuse
all events in a setX then it can refuse all events in any subset ofX. PropertyF4 states that
a process can refuse any event which cannot occur as the next event.

The divergences of a process with alphabetA and failuresF are a set

D ⊆ A∗

such that the following properties hold.

D ⊆ dom F (D1)

t1 ∈ D ∧ t2 ∈ A∗ ⇒ t1
_ t2 ∈ D (D2)

t ∈ D ∧ X ⊆ A⇒ (t, X) ∈ F (D3)

The first property simply states that a divergence is a possible sequence of events of the
process. PropertiesD2 and D3 capture the idea that it is impossible to determine any-
thing about a divergent process in a finite time. Therefore, the possibility that it might
undergo further events cannot be ruled out. In other words, a divergent process behaves
chaotically.

4. Modelling classes as processes

As discussed in the introduction, there is a strong relationship between object-oriented
and concurrent systems. More precisely, the notion of class corresponds closely to that of
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process. In this section, we use this correspondence as the basis for a semantic integration of
Object-Z and CSP: Object-Z classes are given a failures-divergences semantics identical to
that of CSP processes. This allows classes defined in the Object-Z part of the specification
to be used directly in the CSP part.

4.1. Operations and events

In order to relate classes and processes, we need a relationship between operations and
events. Since both represent observable, atomic actions,7 we adopt the approach of simply
identifying them. This needs to be done in such a way that appropriate input and output
parameters of synchronising operations can be identified. We therefore define a meta-
function β which returns the basename of a parameter name, i.e.β(x?) = β(x!) = x,
and allow it to be applied to the assignment of values to an operation’s parameters as
follows.

β({(x1, v1), . . . , (xn, vn)}) = {(β(x1), v1), . . . , (β(xn), vn)}
where{x1, . . . , xn} ⊆ Identand{v1, . . . , vn} ⊆ Value

The function relating operations and events is then defined as follows.

event((n, p)) = n.β(p) wheren ∈ Identand p ∈ (Ident Value)

The event corresponding to an operation(n, p) is a communication event with the operation
namen as the channel and the mapping from the basenames of its parameters to their values
β(p) as the value ‘passed’ on that channel. For example, the event corresponding to joining
a valuex on to aQueueobject isJoin.{(item, x)}. In this eventJoin is a CSP channel,item
is a member ofIdentandx is a metavariable denoting a value of typeT .

This allows operations of different classes to interact in the following three ways.

• An output parameterx! can be equated with an input parameterx? in a synchronising
operation.

This type of interaction is the most common and models message passing communi-
cation between processes. For example, to join two queues so that the values output by
one are input by the other, we concurrently compose the following classes which inherit
the classQueueof Section 2.

The operationsLeaveof Queue1 andJoinof Queue2 are renamed toTransferto allow
them to synchronise as required. Communication is achieved by the identification of the
outputitem! of Queue2 with the inputitem? ofQueue2.
• An input parameterx? can be equated with an input parameterx? in a synchronising

operation.
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This type of interaction models sharing of an input value. For example, two message
channels which concurrently accept broadcast messages can be specified by composing
the following classes.

In this case, theLeaveandLoseoperations of each class are renamed to prevent them
from synchronising. TheJoinoperations synchronise and the sharing of inputs is achieved
by identifying theiritem? inputs.
• An output parameterx! can be equated with an output parameterx! in a synchronising

operation.
This type of interaction models cooperation of two processes to produce an output. It

is used when we wish to abstract away from the actual cooperation mechanism which
in general would require additional message passing. For example, two exchanges in a
mobile phone network may cooperate to output a frequency which neither are currently
using for calls. This can be specified as follows.

Let Freqbe the set of all frequencies.

The exchanges synchronise on the operationAvailable and the necessary output is
achieved by identifying theirfreq! outputs.

Note that when the values of the outputs of one or both of the operations are specified
nondeterministically (as in the above example), it cannot be guaranteed that they will have
the same output values and that the operations will synchronise. The choice of output values
is internal to the class instance and not constrained by the environment. Hence, the specifier
should be aware of the possibility of deadlock.

In general, our approach is to allow operations with both input and output para-
meters. Any two operations with the same name and parameters with identical basenames
will be modelled by identical events when their parameters have the same values and
hence will be able to synchronise. For example, the following operations could
synchronise.
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Particular attention must be given, however, to operations which have an input and output
parameter with the same basename. When these parameters have the same value, they will
be identified in the the setβ(p) where p is the assignment of values to the operation’s
parameters, and hence the operation can synchronise with an operation with just one pa-
rameter with this basename. When the parameters have different values, any synchronising
operation would necessarily have both a corresponding input and output parameter. In this
case, however, the inputs of each operation could be equated either to each other or to the
outputs of the other operation. Since such specifications could easily lead to misunderstand-
ings, input and output parameters with common basenames should be avoided in operations
as a matter of style.

Our use of communications events differs from the conventional usage suggested in
[21]. A channel in our approach is a means of bidirectional transfer of multiple messages
between processes.8 Conventionally, however, channels are used for unidirectional transfer
of a single message. If desired, conventional usage of channels can be achieved by restricting
the individual Object-Z operations to have only inputs or only outputs. In this case, each
input, or output, of the operation can be regarded as the field of an input, or output, message
to be passed on the channel identified by the operation name.

While identifying operations and events seems an appropriate choice, it should be noted
that there are in fact other options. For example, Benjamin [1] suggests identifying operation
parameters and events in order to integrate Z and CSP. This leads to a conventional use of
channels in communications events, i.e. channels are unidirectional and used to transfer
single messages, however it can also lead to more complex specifications. Ensuring the
correct synchronisation when an operation has several parameters can be difficult when each
parameter is treated as a separate event. Combinations of Z and Object-Z with timed CSP
have identified operation invocations and terminations with events [20, 42] and operations
with processes [27].

4.2. Classes and processes

The essence of the approach presented in this paper is that each Object-Z class can be
referred to as a process in the CSP part of the specification. The process representing a
class must describe the behaviour of all possible objects of that class. However, it is often
convenient to refer to the behaviour of particular objects corresponding to particular values
of the class’s constants. Since constants and state variables are not distinguished in the
history semantics of Object-Z, we do not wish to distinguish them here. That is, we do not
want to add to the existing semantics of Object-Z. We allow, therefore, the value of state
variables as well as constants in a class’s initial state to be referred to when the class is used
as a process.
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Corresponding to a classC is a set of parameterised processesCi . The parameteri is an
assignment of values to a subset of the state ofC satisfying a possible initial state ofC.
That is,i ∈ { j | ∃(s, o) ∈ H • j ⊆ s(1)}.9 The subseti is chosen to reflect the assignment
of initial values corresponding to the particular objects required by the specification. For
example,MsgChannel{(max,10)} refers to a message channel of length 10.

Classes with generic parameters are referenced with the actual parameters in brackets
following the class name. For example,QueueO� (N) refers to a queue of natural numbers.
The O� subscript in this case denotes the fact that there is no restriction on the initial state
of the class. That is, the process represents the behaviours of all possible objects of the
class. For notational convenience, we introduce the convention thatC = CO� write simply
Queue(N).

Given a classC with statesS, operationsO and historiesH , the alphabet of processCi

comprises the events corresponding to the operations inO.

alphabet(Ci ) = {event(op) | op ∈ O}

To define the failures of a class we use the following function which maps a sequence of
operations to a sequence of events.

events(〈 〉) = 〈 〉
events(〈op〉_ o) = 〈event(op)〉_ events(o)

We also introduce a meta-functionι which returns the assignment of values to the inputs of
an operation’s parameters.

ι({(x1!, v1), . . . , (xn!, vn), (y1?, u1), . . . , (ym?, um)}) = {(y1?, u1), . . . , (ym?, um)}

The failures ofCi are derived from the histories inH as follows:(t, X) is a failure of
Ci if

• there exists a finite history ofC whose initial state is satisfied byi ,
• the sequence of operations of the history corresponds to the sequence of events int , and
• for each event inX, either

– there does not exist a history which extends the original history by an operation corre-
sponding to the event, or

– there exists a history which extends the original history by an operation corresponding
to a second event which has the same operation name and assignment of values to input
parameters and is not inX.

The final condition on the setX models the fact that the outputs of an operation cannot
be constrained by the environment: a class instance may refuse all but one of the possible
assignment of values to the output parameters corresponding to a particular operation and
assignment of values to its input parameters. This enables the choice of values for output
parameters to be resolved during refinement.
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failures(Ci ) = {(t , X) | ∃ (s, o) ∈ H •
s ∈ S∗ ∧
i ⊆ s(1)∧
t = events(o)∧
(∀ e∈ X •

(6 ∃ st∈ S, op∈ O •
e= event(op) ∧ (s_ 〈 st〉, o_ 〈op〉) ∈ H )

∨
(∃ (n, p) ∈ O, (n,q) ∈ O •

ι(p) = ι(q)∧
e= event((n, p))∧
(∃ st∈ S• (s_ 〈st〉, o_ 〈(n,q)〉) ∈H )
event(n,q) /∈ X)}

It is necessary to show that the set of failures ofCi satisfy the propertiesF1 to F4 of
Section 3.

The propertiesF1 andF2 follow from the fact that the set of histories is prefix-closed
(propertyH4 of Section 2).

Proof of F1: SinceCi is only defined fori where∃(s, o) ∈ H • i ⊆ s(1) and #〈s(1)〉 =
#〈 〉 + 1, (〈s(1)〉, 〈 〉) ∈ H by H4. Since〈s(1)〉 ∈ S∗ andevents(〈 〉) = 〈 〉 and∀e∈ O� • P
for any predicateP, (〈 〉, O�) ∈ failures(Ci ). 2

Proof of F2: If (t1_ t2, O�) ∈ failures(Ci ) then ∃(s, o) ∈ H • i ⊆ s(1)∧ t1_ t2 =
events(o). If s = s1

_ s2 ando = o1
_o2 such that #o1 = #t1 and #s1 = #o1 + 1 then

(s1, o1) ∈ H by H4. Sinces1(1) = s(1), i ⊆ s1(1) and sinces1 ∈ S∗ andevents(o1) = t1
and∀e∈ O� • P for any predicateP, (t1, O�) ∈ failures(Ci ). 2

The propertiesF3 andF4 follow directly from the definition of the functionfailures.

Proof of F3: Since(∀e ∈ X • P)⇒ (∀e ∈ Y • P) for any predicateP whenY ⊆ X, if
(t, X) ∈ failures(Ci ) andY ⊆ X then(t,Y) ∈ failures(Ci ). 2

Proof of F4: If ∀e ∈ Y • (t _ 〈e〉, O�) /∈ failures(Ci ) then, since∀e ∈ O� • P for any
predicateP, ∀e ∈ Y• 6 ∃(s, o) ∈ H • i ⊆ s(1) ∧ s ∈ S∗ ∧ t _ 〈e〉 = events(o). Therefore,
given (s, o) ∈ H such thati ⊆ s(1) ands ∈ S∗ and t = events(o), ∀e ∈ Y • /∃st ∈
S, op ∈ O • e = event(op)∧ (s_ 〈st〉, o_ 〈op〉) ∈ H . Hence, if(t, X) ∈ failures(Ci )

then(t, X ∪ Y) ∈ failures(Ci ). 2

Since Object-Z does not allow hiding of operations, divergence is not possible. The set
of divergences ofCi are hence defined as follows.

divergences(Ci ) = O�

This definition trivially satisfies the propertiesD1 to D3 of Section 3.
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Alternatively, divergences could be used to indicate chaotic behaviour which occurs when
an operation is applied outside its precondition as in Z. However, our approach is consistent
with Object-Z where operations are “blocked”, i.e. cannot occur, outside their preconditions
(see [37]).

4.3. Unbounded nondeterminism

The failures-divergences semantics of CSP does not support the specification ofunbounded
nondeterminism(i.e. where a process can choose from an infinite set of options). For
example, it does not allow the specification of a process which nondeterministically selects
any natural numbern and then performs a particular eventn times. More precisely, because it
only uses finite traces to model a process, it cannot distinguish between a process which can
undergo any finite sequence of an eventa and a process which can also undergo an infinite
sequence ofa’s. This leads to problems when using this semantics for Object-Z classes
where unbounded nondeterminism arises naturally. For example, consider the following
Object-Z class.

An object of this class can perform the operationOpv times, wherev is the actual value
of x. Therefore, the corresponding process can perform any finite sequence ofOp.O� events
but cannot perform an infinite sequence ofOp.O� events. This fact is not captured in the
semantics which assumes that the infinite sequences of events can be extrapolated from the
finite sequences. Hence, in this case, the semantics assumes that the process can in fact
undergo an infinite sequence ofOp.O� events. Hence, ifOp.O� is subsequently hidden, the
process will diverge. Such a semantics is counter-intuitive and either the use of hiding in
the CSP part of a specification needs to be restricted or an alternative semantic model needs
to be adopted.

The use of hiding can be restricted by placing a well-definedness condition on the hiding
operator as is done in [24]. That is, given a processP with failuresF , P\C is well-defined
only if

∀s ∈ dom F • ¬ (∀n ∈ N • ∃t ∈ C∗ • #t > n ∧ s_ t ∈ dom F)

This prevents unbounded sequences of events being hidden. Although this seems to reduce
the expressibility of the notation, it should be noted that unbounded sequences of events
are not likely to occur in real systems. Usually there is a finite bound on the number
of consecutive occurrences of any particular event and this bound can be specified fairly
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abstractly by a constant whose type is, for example, the set of all natural numbers. This
approach was taken to model the bounded queue in Section 2: the constantmaxmodelled
the bound on the number of consecutiveJoinorLeaveevents without placing an exact value
on this bound.

However, although this restriction prevents unbounded sequences of events being
hidden it does not tackle all the counter-intuitive behavioural problems of unbounded
nondeterminism. For example, if we define10

P = a?n :N→ Q(n)

Q(n) = if n > 0 thenb→ Q(n− 1) elsestop

then with the above semantic modelP\b\a is stop and P\a\b diverges. Although the
well-definedness condition on the hiding operator prevents the formation ofP\a\b (and
therefore solves the problem with divergence) the solution is perhaps less than satisfactory
sinceP\b\a is still different fromP\a\b.

An alternative approach is via the subject of data independent (c.f. the definition and
discussion of data independence in Section 15 of [30]). If the programP is data inde-
pendent in a typeT , and the setC can be infinite only by virtue of being itself data
independent inT (when T is infinite, for example by being the set of events associ-
ated with a channel of typeT), then P\C is well behaved even whenT and C are
infinite.

Another possibility would be to extend the failures-divergences semantics with a
component corresponding to the infinite traces of a process as is done in [32]. This
approach is adopted for combining CSP and action systems in [8]. In addition to fail-
ures and divergences, the semantics of a process includes a componentI correspond-
ing to the infinite traces of a class.I is defined in terms of the alphabet of eventsA as
follows.

I ⊆ Aω\A∗ such that the following properties hold.11

t _u ∈ I ⇒ (t, O�) ∈ F (I1)

t ∈ D ⇒ t _u ∈ I (I2)

(t1, O�) ∈ F ⇒ (∃T • (∀t2 ∈ T • (t1 _ t2, {a | t2_ 〈a〉 /∈ T}) ∈ F)

∧ {t1_u | u ∈ T̄} ⊆ I ) (I3)

whereT is a non-empty, prefix-closed set of finite traces andT̄ = {u ∈ Aω\A∗ | ∀t < u •
t ∈ T}.

Axioms I1 and I2 are straightforward extensions of axioms F2 and D2 respectively.
The purpose of axiom I3 is to ensure there are enough infinite traces analogously to the
way that axiom F4 ensures there are enough failures. It states that there exists at least one
deterministic refinement of a process after it has undergone a tracet (the finite traces of
this refinement are given by the setT), and that any infinite trace that this refinement can
undergo is inI . The explanation and derivation for this axiom are quite subtle and the
interested reader is referred to [32] for details.
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The set of infinite traces corresponding to an Object-Z classC with operationsO can be
derived from the histories ofC as follows.

I(C) = {t | ∃(s, o) ∈ H(C) • o ∈ Oω\O∗ ∧ t = events(o)}

The proofs of the axioms I1 to I3 for this definition are given in [18]. This paper also includes
a case study illustrating the differences between using the standard failures-divergences
semantics and that with infinite traces for combining Object-Z and CSP. It shows that the
infinite trace semantics is preferable from a theoretical point of view: it can handle all forms
of unbounded nondeterminism, the rules for refinement in the presence of hidden events
have fewer side conditions and are hence more applicable, and it is even possible to handle
fairness constraints under certain restrictions.

An alternative model of infinite traces is discussed in Chapter 10 of [30], and this could
also serve as a semantic model for a notation including unbounded nondeterminism.

However, there is still a strong case for using the standard CSP semantics. This
semantics is more widespread in the CSP community and is the basis of tools like
the CSP model checker FDR [25] and an encoding of CSP in Isabelle/HOL [43].
Furthermore, although the refinement rule in the presence of hidden events is more com-
plicated, it can be proven to be complete whereas that for the infinite trace semantics
cannot [7]. For the purposes of this paper, we adopt the standard CSP semantics and
therefore restrict the use of hiding in the CSP part of the specification as previously
discussed.

5. Specifying concurrent systems

In this section, we describe the approach to specifying concurrent systems using the inte-
grated notations. The approach comprises three phases.

• The first phase involves specifying the component processes using Object-Z. Since all
interaction of system components is specified in the CSP part of the specification, a
restricted subset of Object-Z is used which does not include instantiation of objects of a
class. It also, therefore, does not include polymorphism, class union or object containment
which are only used in the context of object instantiation, and the parallel‖and enrichment
• operators which were introduced in Object-Z to model object interaction (see [14, 39]
for details). These restrictions greatly simplify reasoning about the Object-Z part of the
specification.

To maintain a separation of concerns and allow maximum flexibility in describing the
component processes, each is described independently of the others and of the environ-
ment in which they are to be placed. This also allows classes to be more easily shared
between specifications.
• The components specified in the first phase will generally not be in a form that al-

lows them to be composed using CSP operators. The second phase involves modi-
fying the class interfaces so that they will synchronise and communicate as desired.
This may be achieved using Object-Z inheritance to rename operations and operation
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parameters and to add state variables and operation parameters where required. For
example, ‘dummy’ operation parameters may be introduced to allow operations with dif-
ferent parameters to synchronise. Such ‘dummy’ parameters should not be restricted in
the operation’s predicate. CSP renaming may also be used on appropriate processes in this
phase.
• The final phase involves the specification of the system using CSP operators. Only a

subset of the operators defined in [21] is, in fact, required. For example, since we are
not specifying processes using the notations for input and output channels, the piping
operatorÀ intended for use with these notations is not required. Also, since Object-
Z classes have no notion of termination, the sequential composition operator; and its
associated notations (see [21] for details) are not required.

As noted above, a well-definedness condition is placed on the hiding operator restricting
its use.

To illustrate the approach we present a case study of a cinema booking system. This case
study is based on the specification of the Apollo box office in [47] but extended to support
multiple customers.

5.1. Specifying the components of a system

The Marlowe box office allows customers to book tickets in advance by telephone. When
a customer calls, if there is an available ticket then one is allocated and put to one side for
the caller. When the customer arrives, they are presented with this ticket.

The components of the booking system are the customers and the Marlowe box office.
In our approach, these will be specified by Object-Z classes. Consider the specification of a
customer of the booking system. LetNamedenote the set of all customer names andTicket
the set of all tickets.

This class has a single constantmy namedenoting the name of the customer and two
operations:BookandArrive. The operationsBookandArrive correspond to the customer
booking a ticket and arriving to collect a ticket respectively.
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The other component of the system is the Marlowe box office which is also specified as
an Object-Z class.

This class has a state schema with two state variables:mpool, denoting the pool
of tickets, andtkt, a partial injective function fromNameto Ticketrecording which tickets
have been allocated to which customers. Initially, no tickets have been allocated.

The operationBook is feasible whenever there are still tickets available (mpool 6= O� )
and allocates a ticket to a customer who has not already made a booking (name? /∈
dom tkt). The operationArrive issues the ticket but does not change the pool of tickets
(mpool= mpool′ is a consequence ofmpoolnot appearing in the1-list of the operation
Arrive).

5.2. Specifying the component interfaces

Although we do not need to modify the component interfaces in our running example, we
will illustrate how it can be achieved if needed by use of Object-Z inheritance and CSP
renaming.

Suppose, for example, we wished to use theCustomercomponent in another system where
the customer specified a maximum price (max) they were willing to pay when purchasing a
ticket. Furthermore, when collecting the ticket, the customer pays for it at the box office. We
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reuse theCustomerclass to build a new classCUSTOMERwhere we add this information
to the operationsBookandArrive as follows.

We have inherited theCustomerclass and captured the new requirements by including
additional declarations and predicates in the two operations. If we wished to rename opera-
tions in this interface, for example renamingArrive to Collect, we can do so in the CSP part
of the specification by applying a substitution to the appropriate components. For example,
we could define

NCUSTOMER= CUSTOMER[[Collect/Arrive]]

to achieve the renaming we required.

5.3. Specifying the system

To specify the booking system we use CSP operators to capture the interaction between the
customers and box office. To do so we define a processCustomern corresponding to the
customer with namen as follows.

Customern = Customer{(my name,n)}

We also writeMarlowe for the processMarloweO� corresponding to the classMarlowe
without any restriction on the initial state. The complete booking system specifica-
tion is then given by the composition of the processesCustomern and Marlowe as
follows:

BookingSystem= (|||n:NameCustomern ‖ Marlowe

That is, the booking system consists of the box office running concurrently with a collection
of customers—one for each name inName.

Since this part of the specification is a CSP specification, we can state properties we wish
to prove about it in the same way as they are stated in CSP (see [21]). That is, in the formP
sat SwhereP is a process andS is a predicate in terms oftr, the traces, andref , the refusal
sets, of the failures of processP. For example, the property that the number of bookings
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made is greater than or equal to the number of tickets allocated to arriving customers can
be stated as follows.12

BookingSystemsat#tr ↓Book≥ #tr ↓Arrive

An approach to proving such properties in terms of the component Object-Z classes is
presented in Section 7.

6. Refining concurrent systems

This section presents a method of refinement for systems specified using the integrated
Object-Z/CSP notation. The use of CSP semantics for Object-Z classes enables us to use
CSP refinement as the refinement relation for the integrated notation. To verify such a
refinement there are two different approaches that can be employed:

• The first is based on the approach used in CSP. The refinement is verified directly by
calculating and comparing the failures of the specifications or, in the case where the
specifications have identical structure, the failures of the components of the specifications.
• The second involves using state-based methods to verify the refinement of the component

Object-Z classes of a specification. This is achieved by adapting the work of Josephs [24],
which provides refinement relations for state-based systems that are sound and complete
with respect to CSP refinement.

In this section we illustrate both approaches by refining the cinema booking system of
Section 5.

6.1. Failures approach

Refinement in CSP is defined in terms of failures and divergences [6]. A processQ is a
refinement of a processP if

failures Q⊆ failures Panddivergences Q⊆ divergences P

Since divergences are empty for all Object-Z classes, we only need to show the subset
relation between the failures sets, that is

failures Q⊆ failures P.

We writeP v Q to denote the latter. As an example, consider an alternative booking system
to theBookingSystemspecification given in Section 5.

Like the Marlowe box office, the Kurbel box office allows customers to book tickets in
advance by telephone. However, the procedure is different from that used at the Marlowe.
When a customer calls, if there is an available ticket then the customer’s name is simply
recorded. When a customer whose name has been recorded arrives at the box office, a ticket
is allocated.
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The contrast between the Marlowe and the Kurbel box offices is the point of allocation
of tickets (at booking timevsat collection time). However, at this level of abstraction the
customer cannot tell that the Kurbel is behaving differently to the Marlowe. We will prove
this property by showing that the Kurbel booking system is a CSP refinement of the Marlowe
booking system.

The components of the Kurbel booking system are the customers and the Kurbel box
office. The specification of a customer is identical to that given in the Marlowe booking
system. The Kurbel box office is represented by the following Object-Z class.

The state variablekpool denotes the pool of tickets andbkd denotes the set of names of
customers who have booked a ticket. Initially,bkd is empty. The operationBookrecords a
booking provided that there are currently less bookings than tickets and, hence, still tickets
available. The operationArrive allocates a ticket to a customer who has a booking.

The complete system again consists of the box office running concurrently with a col-
lection of customers.

BookingSystemK = (|||n:NameCustomern) ‖Kurbel

To show thatBookingSystemK is a refinement ofBookingSystem, we will compare
their failures. Since the structure of the booking system specifications are identical and
the componentsCustomern are identical, we need only show thatfailures(Kurbel) ⊆
failures(Marlowe).
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Consider first the classKurbel. The failures ofKurbelcan be given in terms of the failures
of the processesKurbel{(kpool,p)} for each possible set of ticketsp.

failures(Kurbel) =
⋃

p∈P Ticket

failures
(
Kurbel{(kpool,p)}

)
The traces ofKurbel{(kpool,p)} comprise the empty trace and any trace formed by extending

a trace ofKurbel{(kpool,p)} by

• a Bookevent whenever the customer doing the booking has arrived and collected any
tickets he or she has previously booked and whenever there are tickets left, and
• anArrive event whenever

– the ticket being collected was initially inkpool,
– the ticket being collected has not been previously collected by any customer and
– the customer arriving has booked once more than he or she has arrived to collect a

ticket.

traces(Kurbel) = {〈 〉}
∪
{s_ 〈 Book.{(name, n)} 〉 | s∈ traces(Kurbel) ∧ n ∈ Name∧

#(s ¹ {Book.{(name, n)}}) = #(s ¹{Arrive.{(name, n), (t, x)} | x ∈ Ticket}) ∧
#(s ¹ {Book.{(name, m)} | m∈ Name}) < #p}

∪
{s_ 〈 Arrive.{(name, n), (t, x)} 〉 | s∈ traces(Kurbel) ∧ n∈ Name∧

x ∈ p∧#(s ¹{Arrive.{(name, m), (t, x)} | m∈ Name}) = 0∧
#(s ¹ {Book.{(name, n)}}) = # (s ¹ {Arrive.{(name, n), (t, y)}

| y∈ Ticket}) + 1 }

Kurbel{(kpool,p)} can refuse aBookevent whenever the customer making the booking has
booked more times than he or she has arrived, or there are no tickets remaining inkpool.
It can refuse anArrive event whenever the customer arriving has already arrived as many
times as he or she has booked, the ticket of theArrive event has already been allocated to
a customer or the ticket of theArrive event was not inkpool initially. It can also refuse all
but one of the possible assignment of values to the output parametert ! for theArrive event
reflecting the constraint that the outputs ofArrivecannot be constrained by the environment.

Hence, the failures ofKurbel{(kpool,p)} are

failures
(
Kurbel{(kpool,p)}

) = {(tr, X) | tr ∈ traces
(
Kurbel{(kpool,p)}

) ∧ X ⊆ S}
where

S= {Book.{(name, n)} | n ∈ Name∧
(#(tr ¹ {Book.{(name, n)}} ≥ #(tr ¹ {Arrive.{(name, n), (t, y) | y ∈ Ticket})
∨ #(tr {Arrive.{(name, l), (t, y) | l∈ Name∧ y ∈ Ticket} = # p)}

∪
{Arrive.{(name, m), (t, x)} | x ∈ Ticket∧ m∈ Name∧
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(#(tr ¹ {Book.{(name, m)}}) = #(tr {Arrive.{(name, m), (t, x)}})
∨#(tr ¹ {Arrive.{(name, l),(t, x)} | l∈ Name}) 6= 0
∨ x /∈ p
∨ (∃y ∈ Ticket• Arrive.{(name, m), (t, y)} /∈ S)}

The failures ofMarlowe can similarly be given in terms of the failures of the processes
Marlowe{(mpool,p)} for each possible set of ticketsp.

failures(Marlowe) =
⋃

p∈P Ticket

failures
(
Marlowe{(mpool,p)}

)
It easy to see that the traces ofMarlowe{(mpool,p)} are identical to those ofKurbel{(kpool,p)}.
In addition,Marlowe{(mpool,p)} can refuse exactly the same events asKurbel{(kpool,p)} can
after every trace. Hence,failures(Kurbel{(mpool,k)}) = failures(Marlowe{(mpool,k)}) for all
k ∈ P Ticketand, therefore,failures(Kurbel) ⊆ failures(Marlowe) as desired. This proves
that Kurbel is a refinement ofMarlowe, and in fact we can also see thatMarlowe is a
refinement ofKurbel.

6.2. State-based approach

Calculating and comparing the failures of classes as illustrated above is feasible, but can
be complex for non-trivial specifications. The purpose of this section is to show how we
can use state-based refinement techniques for the Object-Z component of a specification.
This will enable refinements to be verified at the specification level, rather than working
explicitly in terms of failures, traces and refusals at the semantic level.

Work on state-based refinement for concurrent systems goes back to He [19] and Josephs
[24], who have developed refinement relations for state-based transition systems which
are complete and sound with respect to CSP refinement. Woodcock and Morgan [48] have
produced similar results in the context of action systems and weakest precondition formulae.
In this section we adapt the work of Josephs to the Object-Z setting. This work is directly
applicable to this context because it uses processes which do not diverge and places the
same restrictions on hiding that we have adopted. We produce two refinement relations,
called upward and downward simulation, which together are sound and complete with
respect to CSP refinement. Using these rules we can refine the Object-Z components of an
integrated Object-Z/CSP specification such that the entire specification is also refined, i.e.
in a compositional manner.

Josephs considers a state-based systemP to be defined by a tuple(A, S,→, R)whereA
is its alphabet,S its states,→ its transition relation andR its initial states (R⊆ S, R 6= O� ).
As usual we will denote a transition under evente from stateσ1 to σ2 by σ1

e→ σ2. In
addition, the set of next possible events that a systemP can undergo when in stateσ is
denotednextP(σ ), i.e.

nextP(σ ) = {e∈ A | ∃σ ′ ∈ S• σ e→ σ ′}
Refinement in state-based systems is based on the concept of simulations. For example,
simulation forms the basis of the refinement rules in Z as they are usually presented [47].
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Josephs uses two versions called downward and upward simulation (sometimes called
forward and backward simulations respectively) defined as follows.

Definition 1 (Downward simulation). P2 is a downward simulation ofP1 if there is a
relationD ⊆ S1× S2 such that

1. ∀σ1 ∈ S1, σ2 ∈ S2 • σ1Dσ2⇒ nextP1(σ1) = nextP2(σ2)

2. ∀σ1 ∈ S1, σ2, σ
′
2 ∈ S2, e∈ A • σ1Dσ2 ∧ σ2

e→2 σ
′
2⇒ (∃σ ′1 ∈ S1 • σ1

e→1 σ
′
1 ∧ σ ′1Dσ ′2)

3. ∀σ2 ∈ R2 • ∃σ1 ∈ R1 • σ1Dσ2

Definition 2(Upward simulation). P2 is an upward simulation ofP1 if there is a relation
U ⊆ S1× S2 such that

1. ∀σ2 ∈ S2 • ∃σ1 ∈ S1 • σ1Uσ2 ∧ nextP1(σ1) ⊆ nextP2(σ2)

2. ∀σ ′1 ∈ S1, σ2, σ
′
2 ∈ S2, e∈ A • σ ′1Uσ ′2 ∧ σ2

e→2 σ
′
2⇒ (∃σ1 ∈ S1 • σ1

e→1 σ
′
1 ∧ σ1Uσ2)

3. ∀σ1 ∈ S1, σ2 ∈ R2 • σ1Uσ2⇒ σ1 ∈ R1.

Josephs then proves that these two relations are sound and complete with respect to CSP
refinement.

To use these results, we first adapt the definitions to the Object-Z setting. The translation
is straightforward, and the relationsD andU between the state spaces are re-cast as retrieve
relations (denotedAbs) between the abstract state (Astate) and the concrete state (Cstate).

To translate the rules involvingnextP(σ ) we adopt the precondition operatorpre from Z
to return the precondition of Object-Z operations. The event corresponding to an Object-Z
operationOp is in nextP(σ ) iff pre Op is true in the state representingσ . This is because the
interpretation of operations in Object-Z differs from that in Z in that an operation cannot
occur when its precondition is not enabled.13 We can now give the definition of downward
and upward simulation in Object-Z.

Definition 3(Downward simulation). An Object-Z classC is a downward simulation of
the classA if there is a retrieve relationAbssuch that every abstract operationAOpis recast
into a concrete operationCOpand the following hold.

DS.1 ∀ Astate;Cstate•Abs⇒ (pre AOp⇔ pre COp)
DS.2 ∀ Astate;Cstate;Cstate′ •Abs∧ COp⇒ (∃ Astate′ •Abs′ ∧ AOp)
DS.3 ∀ Cinit • ∃ Ainit •Abs

Definition 4(Upward simulation). An Object-Z classC is an upward simulation of the
classA if there is a retrieve relationAbssuch that every abstract operationAOp is recast
into a concrete operationCOpand the following hold.

US.1 ∀ Cstate• ∃ Astate• Abs∧ pre AOp⇒ pre COp
US.2 ∀ Astate′;Cstate;Cstate′ • COp∧ Abs′ ⇒ (∃ Astate• Abs∧ AOp)
US.3 ∀ Astate;Cinit • Abs⇒ Ainit

Using these rules we can show that the Kurbel class is an upward simulation, and hence a
refinement, of the Marlowe class without having to calculate the failures. To do so we first
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record the relationship between the two classes as a retrieve relation given by

Kurbel.STATEdenotes the state schema in the classKurbel, etc.
Firstly, to prove the initialisation correct (US.3) we must prove the following:

∀ Marlowe.State;Kurbel.INIT • Ret⇒ Marlowe.INIT

To do so we must show the following holds (which it clearly does).

∀ mpool: P Ticket; tkt : Name½p Ticket; kpool : P Ticket; bkd : P Name| bkd= O� •
bkd= domtkt ∧ kpool=mpool∪ rantkt∧mpool∩ rantkt= O�⇒ tkt= O�

Next, we must show that US.1 holds for the operationsBook andArrive. For theBook
operation, this requires us to show that

∀ Kurbel.STATE• ∃ Marlowe.STATE• Ret∧ pre Marlowe.Book⇒ preKurbel.Book

This amounts to showing that

∀ kpool : P Ticket; bkd : P Name• ∃ mpool : P Ticket; tkt : Name½p Ticket•
(bkd= domtkt∧ kpool= mpool∪ rantkt∧ mpool∩ rantkt= O� ) ∧
(name? /∈ domtkt∧ mpool 6= O� )⇒

(name? /∈ bkd∧ # bkd< # kpool).

Given the declarations and the constraints inRet, we proceed as follows.

name? /∈ domtkt∧ mpool 6= O�
⇒ name? /∈domtkt∧ # mpool> 0
⇒ name? /∈domtkt∧ # rantkt< #(mpool∪ rantkt)
⇒ name? /∈ domtkt∧ # domtkt< #(mpool∪ rantkt)

[since # domtkt= # rantkt]
⇒ name? /∈ bkd∧ # bkd< # kpool [By Ret]

A similar proof can be given for the operationArrive.
Finally, we must show that US.2 holds for the operationsBookandArrive. For theArrive

operation, this requires us to show that

∀ Marlowe.STATE′,Kurbel.STATE,Kurbel.STATE′ •
Kurbel.Arrive∧ Ret′ ⇒ (∃ Marlowe.STATE• Ret∧Marlowe.Arrive).

That is, given the declarations we need to show that
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(name?∈bkd∧ bkd′= bkd\ {name?} ∧ t! ∈ kpool∧ kpool′= kpool\ {t!} ∧
bkd′ = domtkt′ ∧ kpool′ = mpool′ ∪ rantkt′ ∧ O� = mpool′∩ rantkt′)⇒

(∃ mpool: P Ticket; tkt : Name½p Ticket•
bkd= domtkt∧ kpool= mpool∪ rantkt∧ mpool∩ rantkt= O�∧
name?∈ domtkt∧ mpool= mpool′∧ tkt′ = {name?} --G tkt∧

t! = tkt(name?)).

This can be seen to be true if we takempool= mpool′ andtkt = tkt′ ∪ {name? 7→ t !}. We
only need to prove the first three conjuncts of the consequent, the rest follow trivially from
our choice ofmpool, etc. For example, with these choices we can then make the following
deductions.

domtkt = dom(tkt′ ∪ {name? 7→ t !}) = domtkt′ ∪ {name?}
= bkd′ ∪ {name?} = (bkd\ {name?}) ∪ {name?}
= bkd

mpool∪ rantkt = mpool′ ∪ rantkt′ ∪ {t !} = kpool′ ∪ {t !} = kpool

Finally, to show thatmpool∩ rantkt = O� we note that (since rantkt = rantkt′ ∪ {t !})

mpool∩ rantkt = (mpool∩ rantkt′) ∪mpool∩ {t !} = O� ∪ (mpool∩ {t !})

Now from t ! ∈ kpool∧ t ! /∈ kpool′ we deduce thatt ! /∈ mpool′ = mpool. Therefore
mpool∩ rantkt = O� .

A similar proof can be given for the operationBook.
This concludes the proof thatKurbel is an upward simulation ofMarlowe, and there-

fore a CSP refinement. As with the failures approach, from this we can conclude that
BookingSystemK is indeed a refinement ofBookingSystem.

6.3. Weak simulations

The upward and downward simulation techniques discussed in the previous subsection can
be extended to classes which contain operations which are subsequentlyhidden(by the use
of the CSP hiding operator), and are thus not visible to the environment. Such operations
are calledlocal operations. The extensions of the simulation rules enable one to prove
refinements of the formA v C\X whereX is the set of events of the concrete classC
being hidden. Simulation rules for this situation are calledweak simulations[10, 11]. [18]
discusses the use of these rules for the combined Object-Z/CSP notation with respect to both
the finite and infinite trace model. Here we present the results for the standard semantics
(i.e. the finite trace model).

In a weak simulation, the abstract state is not changed by a local operation in the concrete
class. ForC to be a weak downwards simulation of a classAwe require that there is a retrieve
relationAbssuch that every abstract operationAOpis recast into a concrete operationCOp
and the following hold (whereL is the set of local operations inC).
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WDS.1 ∀ Astate;Cstate• (Abs∧ ∀l : L • ¬prel )⇒ (preAOp⇔ preCOp)
WDS.2 ∀ Astate;Cstate;Cstate′ • Abs∧ COp⇒ (∃ Astate′ • Abs′ ∧ AOp)
WDS.3 ∀ Cinit • ∃ Ainit • Abs

Furthermore there exists a termination schematerm=̂ [Cstate; t : N | P] such thatterm
is defined for all states ofC and for all local operationsl ∈ L the following hold.

WDS.4 l does not change the abstract state:l ∧ Abs⇒ (∃ Astate′ •4 Astate∧ Abs′)
WDS.5 l does not diverge:l ∧ term⇒ t ′ < t ∧ term′

WDS.6 There exists a constant (b) that bounds the increase oft for all concrete operations:
COp∧1 term⇒ t ′ < t + b.

WDS.7 In addition, the initial value oft must be bound, i.e.,Cinit ∧ term⇒ t < b

The definition of weak upwards simulation follows similar lines.
As an example, consider the following specification of the Schonell box office.
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The Schonell box office implements the same booking strategy as the Kurbel box office,
but is described in terms of two sequences of names, one for the booking process and
one for the ticket collection. A local operationtransfersnames into the sequence used for
collection. As it is internal it is hidden from the environment, and thus we wish to prove
thatKurbelv Schonell\{transfer}. To do so we describe the retrieve relation as

and verify conditionsWDS.1–7above. For example, since¬pre transfer= (#bd = #ar)
to showWDS.1we need to prove that

Ret∧ #bd= #ar⇒ (preAOp⇔ preCOp)

for operationsBookandArrive, which is easily done. To prove the last three conditions, we
take as termination schema the following

from which the conditions easily follow.

7. Verifying concurrent systems

This section presents a method of verification for the integrated notation. The method allows
us to verify properties of the CSP system specification in terms of its component Object-Z
classes. It comprises three phases.

• The first phase involves reasoning about the CSP part of the specification. System prop-
erties are stated and transformed to properties of the component Object-Z classes using
the notation and laws for CSP operators of [21].
• The properties of the Object-Z classes derived in the first phase will often include terms

not readily reasoned about in Object-Z. The second phase involves extending the Object-
Z classes with auxiliary variables to model these terms. This is achieved using Object-Z
inheritance which allows the addition of variables and predicates to the state schema,
initial state schema and operations of a class. Reasoning can then be carried out using
the logic for Object-Z presented in [35].
• The final phase involves showing that the classes extended with the auxiliary variables

are refined by the original Object-Z classes and hence the original classes also satisfy the
desired properties.
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To illustrate the approach, we will verify the property ofBookingSystemstated at the end
of Section 5.

7.1. Reasoning about the CSP processes

Properties about CSP processes can be stated in term of their failures. Given a processP with
failuresF , the property∀(tr, ref) ∈ F • S(tr, ref) can be expressed using the notation of
[21] asP sat S(tr, ref). For example, the following property of the processBookingSystem
states that the number of bookings made is greater than or equal to the number of tickets
allocated to arriving customers.

BookingSystemsat#tr ↓ Book≥ #tr ↓ Arrive

To prove such a property in CSP, we would use the laws for the various CSP operators
given in [21]. Therefore, we re-express the property in terms of CSP operators by replacing
BookingSystemwith its definition in terms of component processes.

(|||n:NameCustomern) ‖Marlowesat#tr ↓ Book≥ #tr ↓ Arrive

In this form, we can apply the following law for the parallel composition operator.14

If P satS(tr)
andQ satT(tr)
then(P ‖ Q) sat (S(tr¹αP) ∧ T(tr ¹ αQ)).

Let S(tr ¹ α(|||n:NameCustomern)) = trueand, since the alphabet ofMarloweis identical to
that ofBookingSystem, let T(tr ¹ αMarlowe) = #tr ↓ Book≥ #tr ↓ Arrive. Using the law
for the parallel composition operator, the above property is true whenever the following is
true.

Marlowesat#tr ↓ Book ≥ #tr ↓ Arrive

This property is now in terms of a process corresponding to an Object-Z class and we can
no longer use the laws for CSP operators. To complete the proof, we require a method for
showing the above property is true for the Object-Z classMarlowe.

7.2. Reasoning about the Object-Z classes

Building on the work in [46], a logic for reasoning about Object-Z classes is presented in
[35]. Properties of classes are expressed as sequents of the form

A :: d | 9 ` 8

where A is a class name,d is a list of declarations and9 and8 are lists of predicates.
The sequent is valid, i.e. the stated property is true, whenever given the declarationsd
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and predicates9 at least one of the predicates in8 is true in classA. For example, the
following is a valid sequent (INIT denotes the declarations and predicates of theINIT schema
of Marlowe).

Marlowe :: INIT ` tkt = O�

The predicates in9 and8 are only defined in terms of variables and constants which
are accessible in the class or declared ind. Hence, it is not possible to state properties
about sequences of events such as those we would like to prove about the CSP process
corresponding to a class. Therefore, we need to introduce auxiliary variables to cap-
ture such properties. For example, an auxiliary variablebks:N could be added to the
classMarlowe to model the CSP term #tr ↓Book. Initially bkswould be zero, it would
be incremented each timeBook occurs and remain unchanged each timeArrive occurs.
Similarly, an auxiliary variablearrs :N could be added to model the CSP term #tr ↓
Arrive.

The addition of such variables to a class is possible using Object-Z inheritance. For
example, consider the following classauxMarlowewhich inheritsMarlowe.

The classauxMarloweincludes all the definitions of classMarlowe and extends them
as follows. The state schema has the additional state variablesbksandarrs and the ad-
ditional predicate #tkt = bks− arrs. This predicate isn’t strictly necessary but aids the
proof of the refinement relation betweenMarlowe and auxMarloweas shown in Sec-
tion 7.3. The initial state schema includes the additional constraint thatbksandarrs are
equal to zero and the operationsBook and Arrive increment the variablesbks and arrs
respectively.

To prove the property that the number of bookings is greater than or equal to the number of
tickets allocated to arriving customers for the classauxMarlowe, i.e.auxMarlowesat#tr ↓
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Book≥ #tr ↓ Arrive, we need to show that the following sequents are valid.

auxMarlowe:: INIT ` bks= 0∧ arrs= 0
auxMarlowe:: Book` bks′ = bks+ 1∧ arrs′ = arrs
auxMarlowe:: Arrive ` bks′ = bks∧ arrs′ = arrs+ 1
auxMarlowe:: ` bks≥ arrs

The first three sequents ensure thatbksandarrs model the number of occurrences of
the operationsBookandArrive respectively. They can easily be proved using the logic for
Object-Z (see [36] for examples of proofs in the logic). The final sequent states the desired
property. It can be proved by structural induction, i.e. by proving the following sequents.

auxMarlowe:: INIT ` bks≥ arrs
auxMarlowe:: Book` bks≥ arrs⇒ bks′ ≥ arrs′

auxMarlowe:: Arrive ` bks≥ arrs⇒ bks′ ≥ arrs′

These sequents can also be easily proved using the logic for Object-Z.
The above can be generalised as follows. A propertyP of a process corresponding to a

classC in terms of the number of occurrences of particular eventsOp1, . . . ,Opn,

C sat P(#tr ↓ Op1, . . . ,#tr ↓ Opn)

is true when the following sequents are valid. (The set of operations of the class are
Op1, . . . ,Opm wherem≥ n.)

C :: INIT ` a1 = 0∧ · · · ∧ an = 0

C :: Op1 ` a′1 = a1+ 1∧ a′2 = a2 ∧ · · · ∧ a′n = an

...

C :: Opn ` a′1 = a1 ∧ · · ·a′n−1 = an−1 ∧ a′n = an + 1

C :: Opn+1 ` a′1 = a1 ∧ · · · ∧ a′n = an

...

C :: Opm ` a′1 = a1 ∧ · · · ∧ a′n = an

C :: ` P(a1, . . . ,an)

Similarly, we can develop rules for proving other types of properties. For example, a CSP
predicate in terms ofOp∈ ref can be replaced by a predicate in terms of¬pre Op. For
example, we might wish to prove that if there are uncollected tickets, then the box office
must be able to issue a ticket to some customer. This property could be specified as

BookingSystemsat (#tr ↓ Book> #tr ↓ Arrive)
⇒ (∃n, x • Arrive.{(name, n), (t, x)} 6∈ ref)

which can then be proved by showing that the following Object-Z predicate is true:

auxMarlowe:: ` bks> arrs⇒ preArrive
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The use of such rules need to be proved sound. This can be done with respect to the failures
semantics of classes presented in Section 3.

7.3. Proving the refinement relations

To show that the property proved forauxMarlowealso holds forMarlowe, we need to prove
the refinement relationauxMarlowev Marlowe. This can be done using the notion of
downward simulation defined in Section 6. To do so we first note that the retrieve relation
betweenauxMarloweandMarlowe is simply the identity (which we denoteId). Therefore
to prove the refinement we have to show that

DS.1∀ auxMarlowe.STATE; Marlowe.STATE • (preauxMarlowe.Book
⇔ preMarlowe.Book)

DS.2∀ auxMarlowe.STATE; Marlowe.STATE; Marlowe.STATE′• Marlowe.Book
⇒ (∃ auxMarlowe.STATE′ • auxMarlowe.Book)

DS.3∀ Marlowe.IN I T • ∃ auxMarlowe.INIT • Id

together with similar conditions for the operationArrive. Because we have simply added
new state variables under the refinement, these conditions are easily discharged.

DS.1:This amounts to showing that

(name? /∈ domtkt∧ mpool 6= O�∧ # tkt= bks− arrs∧
(∃ tkt′ : Name½p Ticket; mpool′ : P Ticket; bks′, arrs′ : N •
∃ t : mpool• tkt′ = tkt∪ {name? 7→ t} ∧ mpool′ = mpool\ {t}) ∧
# tkt′ = bks′− arrs′∧ bks′ = bks+ 1∧ arrs′ = arrs)

⇔
(name? /∈ domtkt∧ mpool 6= O�∧
(∃ tkt′ : Name½p Ticket; mpool′ : P Ticket•
∃ t : mpool• tkt′ = tkt∪ {name? 7→ t} ∧mpool′ = mpool\{t}))

which is easily shown to be true (for example, #tkt′ = #tkt + 1 = bks− arrs + 1 =
bks′ − arrs= bks′ − arrs′).

DS.2:This amounts to showing the following, which again can easily shown to be true.

(name? /∈ domtkt∧ mpool 6= O�∧ (∃ t : mpool• tkt′ = tkt∪ {name?7→ t}
∧ mpool′ = mpool\{t}))

H⇒
(∃ bks′, arrs′ : N •

name? /∈ domtkt∧ mpool 6= O�∧ (∃ t : Ticket• tkt′ = tkt∪ {name? 7→ t}
∧ mpool′ = mpool\{t})∧
# tkt= bks− arrs∧# tkt′ = bks′− arrs′∧bks′ = bks+1∧ arrs′ = arrs)
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DS.3:To prove this, it is sufficient to show the following, which is easily done.

∀ tkt : Name½p Ticket| tkt= O� • ∃ bks, arrs :N | #tkt= bks− arrs∧ bks= arrs= 0

The conditions forArrive can be proved in a similar fashion. Hence,auxMarlowev
Marlowe. Since we have shown thatauxMarlowesat #tr ↓Book≥ #tr ↓Arrive we can
deduce thatMarlowesat#tr ↓ Book≥ #tr ↓ Arrive, and hence conclude the proof that the
booking system satisfies the desired property. Furthermore, sinceMarlowev Kurbel and
Marlowev Schonell\ {transfer}, we can also conclude that both the Kurbel and Schonell
booking systems satisfy the property.

8. Conclusion

This paper has presented an approach to specifying concurrent systems using a combination
of Object-Z and CSP. A common semantic basis allows classes specified in the Object-Z part
of the specification to be used directly as processes in the CSP part. The explicit modelling
of state in Object-Z facilitates the specification of data structures needed to describe the
concurrent components of a system. Furthermore, inheritance allows issues concerning a
component’s interface with the system into which it is to be placed to be separated from
the specification of its intrinsic behaviour. This, together with the explicit mechanisms for
modelling concurrency and communication in CSP, leads to system specifications which
are more concise and, we believe, more easily comprehensible than those specified using
just one of the languages.

We also presented methods for refining and verifying specifications written using the
integrated notation. Because we have not modified either of the languages used, we have
been able to use existing methods in our approach to refinement and verification in the
combined notation. For example, by giving Object-Z classes a CSP semantics, we can use
CSP refinement as the refinement relation for the integrated notation. A refinement can
be verified by either calculating the failures semantics directly, or by applying standard
state-based refinement relations to the Object-Z components.

To verify behavioural properties of the CSP system specification we use the Object-Z
logic to prove subsidiary properties of the Object-Z component classes, these properties are
then combined by application of CSP laws to deduce the desired behavioural properties of
the overall system.
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Notes

1. LOTOS includes a process algebra part bases on CCS.
2. S∗ T denotes the set of finite, partial functions fromS to T .
3. Infinite histories enable liveness properties of classes to be modelled. Such properties have been ignored in

the description of Object-Z in this paper.
4. Sω andS∗ denote the set of sequences and set of finite sequences, respectively, of elements from the setS.
5. The definition of CSP in [30] uses a different concurreny operator to that used here which is defined in [21].

Concurreny operators defined in [30] useinterface setsto describe the extent to which two processes must
synchronise. It is possible to re-write definitions in one form into the other, and as Roscoe states: the choice
of one version or the other is largely a matter of taste [30]. Because our processes are very simple we use the
concurreny operator from [21].

6. The additional property stating that a set is refusable if all its finite subsets are refusable in [6] was shown to
be unnecessary in [31].

7. Both operations and events represent instantaneous observations of actions which may themselves take time
to occur.

8. Our notion of channel is in fact closer to that of a LOTOS gate[3].
9. An Object-Z class with unsatisfiable initial constraints is not given a semantics in this approach. Such

degenerate classes are, however, unimplementable and of no practical interest to the specifier.
10. This example is due to an anonymous referee.
11. We adopt the form of axiom 13 from [33] which is equivalent to that in [32] as argued in the appendix of that

paper.
12. s ↓ c denotes the sequence of valuesv of events of the formc.v in s, e.g.〈c.1,a.4, c.3, d.1〉 ↓ c = 〈1, 3〉.
13. In Z when operations occur outside their preconditions, the post-state is undefined.
14. As mentioned in [21], this law is valid providedSandT do not mention refusal sets.
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