
Abstract specification in Object-Z and CSP

Graeme Smith1 and John Derrick2

1Software Verification Research Centre, University of Queensland 4072, Australia
phone: +61 7 3365 1625 fax: +61 7 3365 1533 smith@svrc.uq.edu.au
2Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.

J.Derrick@ukc.ac.uk

Abstract. A number of integrations of the state-based specification lan-
guage Object-Z and the process algebra CSP have been proposed in
recent years. In developing such integrations, a number of semantic deci-
sions have to be made. In particular, what happens when an operation’s
precondition is not satisfied? Is the operation blocked , i.e., prevented
from occurring, or can it occur with an undefined result? Also, are out-
puts from operations angelic, satisfying the environment’s constraints
on them, or are they demonic and not influenced by the environment
at all? In this paper we discuss the differences between the models, and
show that by adopting a blocking model of preconditions together with
an angelic model of outputs one can specify systems at higher levels of
abstraction.

1 Introduction

One strand of recent work on integrating formal methods has been the area
concerned with combining state-based languages such as Object-Z [11, 4] and Z
[14] with process algebras such as CSP [6, 9] and CCS [8]. A canonical example of
this are the integrations of Object-Z with CSP. In such an integration, of which
there have been a number of proposals [10, 5, 7, 13], Object-Z is used to specify
the components of a system, and CSP is used to describe how the components
interact and communicate.

In developing such an integration, one is faced with a choice in terms of
how preconditions and outputs are dealt with, and this choice effects the design
approach one takes in the language.

The specific choice in terms of preconditions is whether to adopt a blocking
or non-blocking model of an operation. That is, outside the stated or calculated
precondition, is the operation unable to occur (blocking) or is it able to occur
but its effect undefined (non-blocking)?

Z adopts the non-blocking approach and Object-Z the blocking approach
(which is closer to an object-oriented and process algebraic interpretation). Dif-
ferent integrations of Object-Z and CSP have also taken differing interpretations.
For example, [10, 13] adopt a blocking model whereas [5, 7] adopt a non-blocking
model1.
1 Both non-blocking approaches [5, 7] also extend the syntax of Object-Z to include
guards so that operations can also be blocked.

The specific choice in terms of outputs is whether to adopt a demonic or
angelic model of outputs. To understand this, consider a specification A‖B where
the components synchronise on an operation Op. In A, this operation has a non-
deterministic output, matched by an input in the corresponding operation in B .
The question is “Should B be able to control the output of A?”.

In a demonic model of outputs the answer is “No”. That is, the non-determin-
ism of the value output by Op in A is entirely internal to A. So, if the cho-
sen output is incompatible with the expected input in B , the composite opera-
tion’s precondition is not satisfied (resulting in blocking or undefined behaviour).
The contrasting angelic model of outputs, however, allows B to affect the non-
determinism in A by choosing a value to synchronise on, if one can be found,
thus allowing the operation to proceed normally if at all possible.

The majority of work on integrating Object-Z and CSP has used the demonic
model of outputs. This work includes that of [5, 7, 13]. This is also the main
approach appearing in other work on semantics of value-passing communication,
e.g., Butler [1] places conditions on composed value-passing action systems which
ensure that outputs are always accepted by the environment. The main reason for
this bias is that since outputs can be controlled by the environment in the angelic
model, they are effectively the same as inputs and hence cannot be strengthened
during refinement. As a consequence, standard state-based refinement [2], which
allows such strengthening, is not compositional.

In this paper, we show, however, that adopting an angelic model of outputs,
together with a blocking model of operations, as is done in [10], allows us to
specify at a higher level of abstraction. Consequently, specifications are simpler
and therefore easier to understand and reason about. Furthermore, we show how
the limitations of refinement for this interpretation of outputs can be overcome.

The structure of the paper is as follows. In Section 2, we illustrate the different
interpretations of preconditions and outputs via a simple example. In Section 3
we show how, by adopting a blocking plus angelic model of operations, we are
able to specify systems more abstractly. The consequences for refinement are
dealt with in Section 4. Finally, we conclude in Section 5.

2 Illustrative example

The differences between the approaches to the modelling of preconditions and
outputs is best illustrated by considering a simple example. We assume the
reader is familiar with both CSP and Object-Z, and the setting of our work is
the Object-Z/CSP approach first proposed by Smith [10] and further developed
by Smith and Derrick [13].

In this approach, which is similar in essence to other work in the area [5],
Object-Z is used to describe the individual components which are combined with
CSP operators by using, for example, parallel composition or interleaving.

Thus, in the following trivial example (more realistic examples are contained
in [10, 12, 13, 3]), two components A and B are given as Object-Z classes:

A

Op
x ! : IN

x ! ∈ {1, 2}

B

y : Z

Op
∆(y)
x? : IN

x? = 1
y ≥ 0 ∧ y ′ = y + x?

To illustrate the difference between the blocking and non-blocking model, let
us first consider the component B on its own. The blocking model takes the view
that outside its precondition (y ≥ 0 ∧ x? = 1) the operation is not enabled and
cannot occur. On the other hand, the non-blocking model views the operation
to be enabled but the outcome is undefined, i.e., any after-state might result,
including divergence or non-termination.

The complete Object-Z/CSP specification is given by the parallel composi-
tion of the two components:

Spec = A‖B

The effect of this specification is a system with one operation Op. Adopt-
ing the blocking model (as is done in Object-Z/CSP), how does it behave? The
operations in A and B must synchronise, with agreement on the value commu-
nicated. Therefore, if this event does occur the value 1 will be communicated
from A to B .

But does this event occur? Here, in addition to the issue of the precondition,
we have a choice, which is the crux of the issue concerning outputs highlighted
in the introduction. In particular, if A can non-deterministically output 2, then
under these circumstances the precondition of Op will not hold. This interpre-
tation is the one taken in [13] and [3] where the operation would be blocked. We
shall call such an interpretation demonic.

The alternative is to view A and B as cooperating components, and allow
the event to proceed if it can. That is, the non-determinism in A is restricted by
what the environment is prepared to accept. This interpretation is less popular,
but is the one taken in [10] and [12]. We shall call such an interpretation angelic.

3 Abstraction

The non-blocking interpretation of operations was developed (in Z, for example)
predominantly for the specification of sequential systems. Such systems perform
operations in a particular order. In concurrent systems where operations can
occur at any time, specifiers using a non-blocking approach need to be more
explicit about the exceptional behaviour that occurs when a precondition is not

met. In many cases, this information is missing in a specification, leading to un-
intentional underspecification. For example, consider the following specification
of a network node.

[Message,Address]

to, from : Message → Address

Node

address : Address

received : seqMessage

INIT

received = 〈 〉

Receive
∆(received)
msg? : Message

to(msg?) = address

received ′ = received a 〈msg?〉

Send
msg! : Message

from(msg!) = address

The receive operation has a precondition that the incoming message is ad-
dressed to the node. In the case where the incoming message is not addressed to
the node, the precondition is not met. Generally, we would not want our network
to behave chaotically whenever a node detects a message which is not for it. A
more suitable behaviour would be to ignore the message. Under a non-blocking
interpretation, this would need to be specified explicitly as follows.

Receive
∆(received)
msg? : Message

to(msg?) = address ∧ received ′ = received a 〈msg?〉
∨
to(msg?) 6= address ∧ received ′ = received

The blocking model, on the other hand, provides a way of specifying excep-
tional behaviour implicitly. This is only true when the exceptional behaviour is

of the form that nothing happens. Other types of exceptional behaviour have to
be specified explicitly as in the non-blocking model. As the node example illus-
trates, however, doing nothing is often what is required in concurrent systems.

This feature of the blocking model proves useful in the Object-Z and CSP
context where it can be used to abstract away from implementation detail. For
example, given a set of addresses A : P Address , we can define a network as
follows2. (The renaming of Send events ensures they communicate with Receive
events with the same message.)

Network =‖a:A Node{address 7→a}[Receive/Send]

Adopting the blocking model for classes, the nodes only engage in events
which concern them (i.e., where they are the sender or receiver). The specification
abstractly models that such messages are not seen by other nodes (due to some
routing mechanism in the network) or are simply ignored by them. The actual
mechanism by which the network operates is not of interest at this level of
abstraction.

It is not possible to similarly model at this level of abstraction with the non-
blocking model since all events are in a given node process’s alphabet regardless
of the sender and recipient. Therefore, the network’s operating mechanism needs
to be explicitly specified as, for example, in the modified Receive schema above.

This ability to abstract from implementation details is further enhanced when
we adopt the angelic model of outputs. This allows us to easily model cooperation
between processes to produce an output. This allows us to abstract away from the
actual cooperation mechanism which in general would require additional message
passing. For example, a group of nodes can elect a “leader” by synchronising on
an ElectLeader operation of the form

ElectLeader
address ! : Address

which would be included in each Node. The leader is chosen by the identification
of the address ! outputs.

In the demonic model where outputs are chosen without reference to the
environment, it cannot be guaranteed that all processes choose the same output.
Hence, if the ElectLeader operation is required to occur, deadlock is possible. To
avoid this, the actual protocol to elect the leader, which would typically comprise
a series of communications, needs to be specified.

In general, the non-blocking interpretation of operations and demonic model
of outputs reflect more closely the situation in an implementation: exceptional
behaviour must be dealt with and outputs cannot be influenced by the envi-
ronment. The penalty for this is that specifications tend to be less abstract,
including additional details which may not be necessary to describe the essen-
tial functionality of the specified system. Introducing these details at an early

2 Node{address 7→a} denotes the process corresponding to the class Node when its con-
stant address is instantiated to a [10].

stage can complicate both the understandability and the ease of analysis of a
specification.

To further illustrate these ideas, we specify a simple hotel booking system.
Customers of this system may book a room of a particular type for a particular
date. They may also cancel a booking they have previously made.

We introduce a given type for dates

[Date]

and define the type of a room to be single, double or twin.

RoomType ::= single | double | twin
A customer is specified as having a name and a set of bookings for particular

types of rooms on particular dates. Initially, this set is empty and operations to
make and cancel bookings are provided.

Customer

name : Name

bookings : RoomType ↔ Date

INIT

bookings = ∅

Book
∆(bookings)
n! : Name
r ! : RoomType
d ! : Date

n! = name
bookings ′ = bookings ∪ {(r !, d !)}

Cancel
∆(bookings)
n! : Name
r ! : RoomType
d ! : Date

n! = name
(r !, d !) ∈ bookings
bookings ′ = bookings \ {(r !, d !)}

Assuming we are adopting the blocking model of operations and angelic
model of outputs, the hotel booking system with which such customers interact
can be specified as follows.

Hotel

rooms : seqRoomType
booked : Date → (IN ↔ Name)

dom(ran booked) ⊆ dom rooms

INIT

∀ d : Date • booked(d) = ∅

Book
∆(booked)
n? : Name
r? : RoomType
d? : Date

∃ i : dom rooms •
rooms(i) = r? ∧
i 6∈ dom booked(d?) ∧
booked ′ = booked ⊕ {d? 7→ booked(d?) ∪ {(i , n?)}}

Cancel
∆(booked)
n? : Name
r? : RoomType
d? : Date

∃ i : dom rooms •
rooms(i) = r? ∧
(i , n?) ∈ booked(d?) ∧
booked ′ = booked ⊕ {d? 7→ booked(d?) \ {(i , n?)}}

This class models the hotel’s rooms by a sequence of room types (rooms), and
the current bookings by a function from dates to pairs of room numbers, denoted
by a room’s position in rooms , and customer names (booked). Initially, no rooms
are booked on any date. Operations Book and Cancel allow bookings to be made
and cancelled respectively.

The system can then be specified as follows.

System = (|||n:Name Customer{name 7→n}) || Hotel
The parallel composition ensures any customer performing a book or cancel
event synchronises with the hotel performing the same event.

Under the blocking model of operations and the angelic model of outputs, the
synchronisation corresponding to a booking being made is abstractly modelling a
sequence of communications. One possible implementation is that the customer
provides a preference for room type and date, and the hotel either acknowledges

the booking or indicates that the booking cannot be made and asks for a second
preference. In the latter case, the hotel may provide information about why
the booking was unsuccessful, e.g., no room of the desired type available on the
date, and may make suggestions for alternatives, e.g. booking a twin rather than
a double room. Another possible implementation is that the customer simply
indicates that he or she is interested in making a booking and is presented with
a table showing all available rooms and dates from which to make a choice. Using
the blocking model and angelic outputs, the actual implementation need not be
specified.

This is not the case, however, if either the non-blocking model of operations
or demonic model of outputs is used. Both of these require additional information
to be passed between a customer and the hotel before a booking can be made.

Adopting the non-blocking model, the hotel would accept any inputs for a
booking (since preconditions do not need to be met) and hence bookings will
proceed even when requested room type/date combinations are unavailable. An
exceptional behaviour modelling the hotel indicating that a request cannot be
met would need to be specified in order to capture the correct behaviour in this
case.

With demonic outputs, additional information would need to be communi-
cated to the customer (using one of the implementation strategies above, for
example) before a successful booking could be made. Otherwise, there is the
possibility of customer processes deadlocking when their booking choice is un-
available. Once again, this is not the correct behaviour.

4 Refinement

In this section, we examine the issue of refining specifications under the blocking
plus angelic model of operations.

At first sight, this seems to provide a theory of refinement which is not com-
positional. Because Object-Z/CSP specifications are given a semantics identical
to that of CSP specifications (i.e., a failures-divergences semantics) [10], we use
the notion of refinement adopted for CSP (i.e., failures-divergences inclusion)
[6]. Consider classes A and B from Section 2. Under the angelic model of out-
put non-determinism the operation in A‖B is always enabled since A and B
cooperate on the choice of value communicated. Now consider refining A to the
following class C :

C

Op
x ! : IN

x ! = 2

where, as in standard approaches to state-based refinement [2], we have reduced
the non-determinism in the output.

Now, when we form the composition C‖B we find the operation Op is
blocked. We have thus introduced a deadlock into the specification, and therefore
C‖B is not a refinement of A‖B . We might conclude, therefore, that refinement
is not compositional. However, closer inspection reveals a sleight of hand at
play. The unstated assumption in this deduction was that the standard Object-
Z downward simulation rule [2] (see Definition 1) is sound with respect to CSP
refinement.

Definition 1 Downward simulation in Object-Z
An Object-Z class C = (C .STATE,C .INIT ,COpi)i∈I is a downward simulation
of the class A = (A.STATE,A.INIT ,AOpi)i∈I if there is a retrieve relation R on
A.STATE ∧ C .STATE such that the following hold for all i ∈ I .

DS.1 ∀C .INIT • ∃A.INIT • R
DS.2 ∀A.STATE; C .STATE • R =⇒ (preAOpi ⇐⇒ preCOpi)
DS.3 ∀A.STATE; C .STATE ; C .STATE

′ •
R ∧ COpi =⇒ (∃A.STATE

′ • R′ ∧AOpi)

However, this rule is sound with respect to the blocking plus demonic model,
but it is not sound with respect to the blocking plus angelic model. Confirmation
of this is found by noting that initially C cannot perform operation Op with
x ! = 1 whereas A can. Refinement in CSP requires that the events which a
process can refuse to perform at any stage of its evolution are a subset of those
of any process it refines [6]. Thus, C is not, in fact, a valid refinement of A with
respect to the angelic model of outputs.

The solution here is to adapt the simulation rules given above to produce
rules which are sound with respect to the blocking plus angelic model. In fact,
this adaption is easy. As detailed in [12], one has just to change the meaning of
preOp to include existential quantification of the after state only (and not the
output), since we wish to exclude reduction of non-determinism of the output.

Thus, if we define Pre =̂ ∃State ′ • Op for an operation Op defined over state
space State, and use Pre in place of pre in the definition above, we produce a set
of simulation rules sound with respect to the blocking plus angelic model. We
call these rules (ba)-simulation rules for sake of easy reference.

Refinements in this model behave exactly as before, except non-determinism
in outputs cannot be resolved. In fact, this is a by-product of how outputs are
being used in this specification style. Specifically, the non-deterministic selection
of outputs represents some sort of required non-determinism in the description
(like external choice in CSP). Therefore, it would be an unacceptable refine-
ment to reduce this non-determinism which was explicitly needed as part of the
modelling paradigm.

We still do, however, achieve a compositional theory of refinement. That is,
using the (ba)-simulation rules (where Pre has replaced pre), if C refines A then
C‖B refines A‖B .

4.1 Introducing an explicit communication mechanism

Part of the motivation for using the blocking model with an angelic model of out-
puts was to model, at a suitable level of abstraction, cooperative communication
between components. This it does successfully, allowing components to agree on
values without having to describe explicitly how this agreement is achieved.

However, in an implementation the actual agreement mechanism used will
need to be made explicit, and the natural question to ask, therefore, is whether
the abstract description of the communicating components can be refined to an
implementation-oriented view. In fact, we can perform this refinement, and we
illustrate now how it can be achieved.

Consider a specification Sys1 = A1‖B1, where the cooperating communicat-
ing part of the components are as follows.

A1

Choose
x ! : IN

x ! ∈ {1, 2}

B1

Choose
x ! : IN

x ! ∈ {2, 3}

With the blocking model plus angelic model of outputs, the synchronisation
of Choose in A1‖B1 models agreement on a particular value for communication.
We wish to implement this design with an explicit mechanism which models
finding the agreed value. In particular, we will refine Sys1 to Sys2, where

Sys2 = (C X ‖Y (A2‖|B2)) \ {| Send |}

where X = {| Send ,Choose |}, Y = {| Send |} and the components are given
as:

A2

Send
v ! : {1}
y! : P IN

y! = {1, 2}

B2

Send
v ! : {2}
y! : P IN

y! = {2, 3}

C

nodes : P {1, 2}
s : P IN

INIT

nodes = {1, 2} ∧ s = IN

Send
∆(nodes , s)
v? : IN
y? : P IN

v? ∈ nodes
nodes ′ = nodes \ {v?}
s ′ = s ∩ y?

Choose
x ! : IN

nodes = ∅

x ! ∈ s

In this description A and B now communicate with C via an operation Send ,
and C records, in the variable s , those values which are acceptable to both A
and B . When both components have sent their preferences, C will communicate
an acceptable chosen value via Choose. This operation can then be synchronised
with a component taking in as input the values agreed by A and B .

Clearly, Sys1 and Sys2 have the same observable behaviour, and using struc-
tural simulation rules [3] which allow the structure of an integrated Object-Z
and CSP specification to be altered in a refinement, we can show that Sys1 is
refined by Sys2.

The structural simulation rules allow refinements to be verified even if the
overall CSP structure of the integrated specification has been altered in a devel-
opment step, and rules have been derived that allow components to be introduced
and removed using each of the commonly used CSP operators. For example,
there are simulation rules to refine a specification E into a specification F‖G
since, even though there is no correspondence between individual components,
the simulation rules check whether the overall observable behaviour in F‖G is
consistent with that defined in E .

To verify the refinement above we proceed using four steps which, as we see
in the following, introduce intermediate classes in order to verify the refinement

(v denotes “is refined by”):

Sys1 = A1‖B1 v D1

v D2 \ {| Send |}
v (C X ‖YD3) \ {| Send |}
v (C X ‖Y (A2‖|B2)) \ {| Send |}

Full details of the form of structural simulation rules can be found in [3].
Here our purpose is to illustrate their use, and we do not give all the rules in
full. First of all we note that the intermediate classes we need in the refinement
are as follows.

D1

Choose
x ! : IN

x ! ∈ {1, 2} ∩ {2, 3}

D3

Send
v ! : {1, 2}
y! : P IN

(v ! = 1 ∧ y! = {1, 2})
∨
(v ! = 2 ∧ y! = {2, 3})

D2

nodes : P {1, 2}
s : P IN

INIT

nodes = {1, 2} ∧ s = IN

Send
∆(nodes , s)
v? : IN
y? : P IN

(1 ∈ nodes ∧ nodes ′ = nodes \ {1}
∧s ′ = s ∩ {1, 2})
∨
(2 ∈ nodes ∧ nodes ′ = nodes \ {2}
∧s ′ = s ∩ {2, 3})

Choose
x ! : IN

nodes = ∅

x ! ∈ s

Let us consider a few of the steps involved. To verify the step D2 v (C X ‖YD3),
and hence the step D2 \ {| Send |} v (C X ‖YD3) \ {| Send |}, we use the struc-
tural simulation rule shown in Definition 2 for introducing a parallel composition.
This simplified form of the rule assumes that if an operation Op is shared be-
tween components F and G, then FOp has input z? and GOp has corresponding
output z !.

Definition 2 Parallel downward simulation
A CSP expression F A‖BG is a downward simulation of the Object-Z class E if
F and G satisfy the following for some retrieve relation R and each Op in both
A and B.

PS.1 ∀F .INIT ∧G.INIT • ∃E .INIT • R
PS.2 ∀E .STATE; F .STATE; G.STATE •

R =⇒ (Pre EOp ⇐⇒ Pre (FOp[z !/z?] ∧ GOp))
PS.3 ∀E .STATE; F .STATE; G.STATE ; F .STATE

′; G.STATE
′ •

R ∧ FOp[z !/z?] ∧ GOp =⇒ (∃E .STATE
′ • EOp ∧ R′)

(The derivation of a similar rule for demonic outputs can be found in [3]. Note
however that by using the blocking plus angelic model, we do not place any
restrictions on the outputs of the refinement as is done in [3].)

Application of this rule requires its verification for the initialisation and op-
erations Send and Choose. To do so, we will use the identity retrieve relation.
Since Choose does not appear in Y , the conditions with respect to that opera-
tion are easily discharged by the fact that CChoose is identical to D2Choose [3].
For Send , we are required to verify conditions such as PS.2:

Pre D2Send ⇐⇒ Pre (CSend [v !/v?, y!/y?] ∧ D3Send)

The predicate of Pre D2Send simplifies to nodes 6= ∅, as does the predicate
of Pre (CSend [v !/v?, y!/y?] ∧ D3Send). This condition is therefore easily dis-
charged. Verification of correctness (PS.3) for Send is done in a similar fashion.

The structural rules allowing the introduction of an interleaving, as in D3 v
A2‖|B2, are similar and we omit the verification here, as we similarly do for the
step A1‖B1 v D1.

The refinement step D1 v D2 \ {| Send |} which involves the introduction
of a hidden operation, is slightly more involved. Here, under the assumption
D2 \ {| Send |} contains no divergence, the relevant rule is (for our particular
specifications):

Definition 3 Weak downward simulation
The CSP expression D2\{| Send |} is a weak downward simulation of the Object-
Z class D1 if there is a retrieve relation R such that the following holds.

WS.1 ∀D2.STATE • D2.INIT o
9 IntSend =⇒ (∃D1.INIT ∧ R)

WS.2 ∀D1.STATE; D2.STATE • R =⇒
(Pre D1Choose ⇐⇒ Pre (IntSend o

9 D2Choose))
WS.3 ∀D1.STATE; D2.STATE; D2.STATE

′ •
R ∧ (IntSend o

9 D2Choose o
9 IntSend) =⇒

(∃D1.STATE
′ • R′ ∧D1Send)

Here IntSend represents the effect of the hidden event Send and is found by taking
zero or more occurrences of Send, i.e., IntSend =̂ ΞD2State ∨ Send ∨ (Send o

9

Send) ∨ (This can, in fact, be written using the schema calculus, see [3, 2].)

The verification of this involves comparing the effect of Choose in D1 with
IntSend o

9 Choose
o
9 IntSend in D2. In calculating IntSend o

9 Choose
o
9 IntSend in D2

we note that Send can occur up to two times, then Choose will definitely be
enabled. We then easily see that the effect of Choose in D1 is the same as the
effect of Choose in D2 \ {| Send |}, and the conditions can be formally verified
if necessary.

Putting the pieces together, we find that all the refinement steps in the
sequence can be verified and, therefore, A1‖B1 v (C X ‖Y (A2‖|B2)) \ {| Send |}.

In summary, what we have shown is that the blocking model with an angelic
model of outputs has not constrained the design to necessarily adopt the abstract
communication mechanism that motivated it. By using structural refinements,
we can introduce explicit mechanisms to communicate and negotiate between the
components. We can, therefore, move smoothly between an abstract view and
a more implementation-oriented view of the same behaviour and, furthermore,
this is achieved using the same angelic model of outputs throughout.

4.2 Hotel example

To further illustrate this approach, consider the specification of the hotel booking
system in Section 3. We can refine the specification to reflect more closely one
of the strategies for realising the communication specified abstractly.

For example, the implementation of the second strategy discussed at the end
of Section 4 would involve introduction of an additional operation MakeBooking,
which on the customer’s behalf indicates that they wish to make a booking, and
allows the hotel to pass over a table of available rooms and dates. To ensure a
double booking is not attempted, the hotel will give this information to one cus-
tomer at a time (implemented by a lock). When making a Booking, a customer
will select a room and date from those that he/she knows for certain are avail-
able (since they are in the table). Then, in the synchronisation of the booking
operation, the inputs and outputs will always be able to synchronise, allowing
implementation where outputs are demonic.

The specification of such a strategy can be given as follows (where we use
inheritance to shorten the description of the classes).

Customer1

Customer

table : RoomType ↔ Date
INIT

table = ∅

MakeBooking
∆(table)
table? : RoomType ↔ Date

table ′ = table?

Book
∆(table)

(r !, d !) ∈ table
table ′ = ∅

Hotel1

Hotel

lock : B
INIT

¬lock
MakeBooking
∆(lock)
table! : RoomType ↔ Date

¬lock ∧ lock ′

(r , d) ∈ table! ⇔
(∃ i : dom rooms •
r = rooms(i) ∧
i 6∈ dom booked(d))

Book
∆(lock)

lock ∧ ¬lock ′

The complete specification being

System1 = ((|||n:Name Customer1{name 7→n}) || Hotel1) \ {MakeBooking}

We can show that System1 is a refinement of System by employing structural
refinements to show

(|||n:Name Customer{name 7→n})‖Hotel
v
((|||n:Name Customer1{name 7→n})‖Hotel1) \ {MakeBooking}

The details are omitted.

5 Conclusion

This paper has investigated a particular semantic interpretation of preconditions
and outputs in the context of integrations of Object-Z and CSP. It has shown
that by adopting a blocking model of operations, where operations cannot occur
outside their preconditions, and an angelic model of outputs, where outputs
may be influenced by their environment, we can specify concurrent systems at
a higher level of abstraction. In particular, exceptional behaviours need not be
specified in many cases and mechanisms for communication between processes
can be largely ignored.

We have also shown that adopting an angelic model of outputs does not
preclude compositional refinement, nor refinement to an implementation in which
outputs are no longer influenced by the environment, i.e., are demonic. The
latter is achieved by introducing an internal operation which “chooses” a value
to output before the operation which outputs it. This approach can also be
used when initially specifying systems providing the internal non-determinism
associated with demonic outputs within the angelic interpretation.

References

1. MJ. Butler. Refinement and decomposition of value-passing action systems. In
E. Best, editor, International Conference on Concurrency Theory (CONCUR’93),
volume 715 of Lecture Notes in Computer Science, pages 217–232. Springer-Verlag,
1993.

2. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced
Applications. Springer-Verlag, 2001.

3. J. Derrick and G. Smith. Structural refinement in Object-Z/CSP. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, 2nd International Confer-
ence on Integrated Formal Methods (IFM’00), volume 1945 of Lecture Notes in
Computer Science, pages 194–213. Springer-Verlag, 2000.

4. R. Duke and G. Rose. Formal Object-Oriented Specification using Object-Z.
MacMillan, 2000.

5. C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), pages 423–438. Chapman & Hall, 1997.

6. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
7. B.P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction

to TCOZ. In 20th International Conference on Software Engineering (ICSE’98),
pages 95–104. IEEE Computer Society Press, 1998.

8. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
9. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

10. G. Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Formal
Methods Europe (FME’97), volume 1313 of Lecture Notes in Computer Science,
pages 62–81. Springer-Verlag, 1997.

11. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

12. G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-
fied in Object-Z and CSP. In M.G. Hinchey and Shaoying Lui, editors, First Inter-
national Conference on Formal Engineering Methods (ICFEM ’97), pages 293–302.
IEEE Computer Society Press, 1997.

13. G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems – an integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249–284, 2000.

14. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

