
An Integration of Real-Time Object-Z and CSP
for Specifying Concurrent Real-Time Systems

Graeme Smith

Software Verification Research Centre, University of Queensland, Australia
smith@svrc.uq.edu.au

Abstract. Real-Time Object-Z is an integration of the object-oriented
formal specification language Object-Z with a timed trace notation suit-
able for modelling timing constraints and continuous variables. This ex-
tends the applicability of Object-Z to real-time and embedded systems.
In this paper, we enhance the ability of Real-Time Object-Z to specify
concurrent real-time and embedded systems by semantically integrating
it with the process algebra CSP. The approach builds on the existing
work on the integration of (standard) Object-Z and CSP.

1 Introduction

Object-Z [16,3] is an object-oriented specification language based on Z [21]. It
extends Z with a notion of classes, used to encapsulate a state schema with
its initial state schema and associated set of operations, and objects, instances
of classes used to specifying systems. The enhanced structuring provided by
classes and associated techniques such as inheritance, which enables definitions
of one class to include those of another, and polymorphism, which enables the
construction of a type corresponding to a collection of classes, makes Object-Z
well-suited to modelling large-scale systems with complex data structures.

When modelling interaction in concurrent systems, however, Object-Z speci-
fication can become unwieldy. This is due to the necessity to explicitly specify all
concurrent occurrences of operations [16, Chapter 5]. This shortcoming led to the
development of Object-Z/CSP [15,17,2,18], a semantic integration1 of Object-Z
and CSP [9,12] in which Object-Z classes are identified with CSP processes so
that interaction between instances of them can be specified using CSP operators.

In order to model real-time and embedded systems, Object-Z has also been
semantically integrated with the timed trace notation of Fidge et al. [5] in which
variables are modelled as (possibly continuous) functions defining their values
over all time. The integrated notation, referred to as Real-Time Object-Z [19,20],
suffers from the same shortcomings with respect to modelling concurrent systems
as standard Object-Z.

1 A semantic integration is one in which language constructs of the constituent lan-
guages are semantically identified and usually involves no change to the syntax of
either language [6].

M. Butler, L. Petre, and K. Sere (Eds.): IFM 2002, LNCS 2335, pp. 267–285, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

268 Graeme Smith

To overcome this problem with Real-Time Object-Z, Smith and Hayes [20],
developed a simple parallel composition operator. This operator, which iden-
tifies common-named inputs, outputs and operations of instances of combined
classes, provides a concise means of modelling concurrency. However, it is overly
restrictive since it requires synchronising operations to have the same start and
end times. Furthermore, it provides only a limited means for constructing con-
current systems. For example, there is no support for combining instances of
classes which do not synchronise on common-named operations nor any means
of renaming or hiding operations.

In this paper, we provide an alternative approach to concurrency in Real-
Time Object-Z. Building on the work on Object-Z/CSP, we semantically iden-
tify Real-Time Object-Z classes with CSP processes allowing instances of them
to be combined with the full range of CSP operators. We begin by providing
an overview of Object-Z/CSP (in Section 2) and Real-Time Object-Z (in Sec-
tion 3). We then show how a failures/divergences semantics (the semantics of
CSP processes) can be given to Real-Time Object-Z classes by associating CSP
events with (instantaneous) observations of operations and process parameters
with continuous variables (in Section 4). We discuss alternative approaches for
specifying real-time concurrent systems based on Object-Z (in Section 5) before
concluding (in Section 6).

2 Overview of Object-Z/CSP

Object-Z/CSP [15,17,2,18] is an integration of Object-Z [16,3] and CSP [9,12]
motivated by the need to model both complex data structures and process in-
teraction in the specification of concurrent and distributed systems. Object-Z
classes are used to model data structures, comprising a state and collection of
operations, and CSP operators are used to model the interactions between in-
stances of these classes.

The integration is semantic in the sense that a common semantics is given to
the two languages and hence to the overall specifications. This approach has two
main advantages. Firstly, the individual notations are syntactically unchanged
and clearly separated in specifications. This makes the specifications more ac-
cessible to users already familiar with the languages, and the use of existing tool
support and verification and refinement methods possible [8,17,18]. Secondly,
there is no need to define a new semantics for the integration. Adopting the
existing semantics of one of the languages is possible. The semantics adopted for
Object-Z/CSP is the existing failures/divergences semantics of CSP.

To illustrate Object-Z/CSP, we specify a simple case study. The case study
is based on a proposed system to help farmers in outback Australia keep track
of the condition of their cattle2. Due to the large size of cattle properties, it
is not always possible for farmers to be aware of the condition of their cattle,
and hence to know whether additional food needs to be brought to them in
2 The author worked on the implementation of this system while an undergraduate

student. He is not aware whether it is still in use.

An Integration of Real-Time Object-Z and CSP 269

times of drought. To overcome this, weighbridges can be installed around fenced
waterholes. As the cattle enter and leave the area around the waterhole, their
weight is recorded and trends in weight loss or gain can be noticed by the farmer.

Typically, the system would comprise several weighbridges, each with its own
weigh unit , and a central store unit (see Fig. 1).

store unit

weigh units

weigh unit

Fig. 1. Aerial view of cattle weighing system

The weigh units calculate the weight of individual cattle from a continuous signal
input from the weighbridge (see Fig. 2).

minimum
 weight

cow crossing
maximum
 weight

Fig. 2. Typical weighbridge signal

These weights are then transmitted to the store unit which stores them along
with the day they were recorded.

To specify such a system in Object-Z/CSP, we would begin by specifying its
components, weigh units and store units, as Object-Z classes. As a preliminary,
we specify the set of non-negative real numbers R+ for representing weights and
the constants MinWeight and MaxWeight denoting the minimum weight that

270 Graeme Smith

should be detected as a cattle crossing and the maximum weight the system
needs to be able to deal with respectively.

R+ == {r : R | r � 0}

MinWeight ,MaxWeight : R+

MinWeight < MaxWeight

A weigh unit is specified as having a single state variable: data comprising
recently recorded data not yet transmitted to the store unit. Initially, there is
no recorded data. An operation Weigh allows a new weight, input as weight?,
to be added to the data, and an operation SendData allows the recorded data
to be output, as data!, and cleared. Note that the input weight? of the former
operation is an abstraction of the actual continuous signal from the weighbridge.
It (informally) corresponds to the average value of the weighbridge signal over
an interval of time where the signal is greater than the level “minimum weight”
(see Fig. 2).

WeighUnit

data : bag R+

INIT

data = [[]]

Weigh
∆(data)
weight? : R+

MinWeight � weight? � MaxWeight
data ′ = data � [[weight?]]

SendData
∆(data)
data! : bag R+

data! = data
data ′ = [[]]

A store unit is specified as having two variables: day denoting the day of
operation of the system (incremented every 24 hours), and record denoting the
data received from the weigh units each day. Initially, day is set to 1 and there
is no received data. An operation RecData allows data to be received and added
to any other data received for that day. An operation UpdateDay allows the day
to be incremented.

An Integration of Real-Time Object-Z and CSP 271

StoreUnit

day : N
record : N → bag R+

INIT

day = 1
∀n : N • record(n) = [[]]

RecData
∆(data)
data? : bag R+

record ′ = record ⊕ {day �→ record(day) � data?}

UpdateDay
∆(day)

day ′ = day + 1

To specify systems of components, Object-Z/CSP views such classes as pro-
cesses which can be combined using the operators of CSP. In particular, opera-
tions are identified with events and, to synchronise, must have the same name
and parameters with the same basenames (i.e., apart from the ? or !) and values.
In the case study, we want RecData of StoreUnit to synchronise with SendData of
WeighUnit . Hence, we specify new classes SU and WU which inherit StoreUnit
and WeighUnit , respectively, applying appropriate renaming.

SU
StoreUnit [ComData/RecData]

We also need to refer to multiple instances of WeighUnit . This is facilitated by
adding a constant to the class so that distinct weigh units can be assigned unique
numbers. Given the specification below, WU{number �→i} denotes an instance of
WU with number = i [15].

WU
WeighUnit [ComData/SendData]

number : N

The weighing system is specified as a parameterised system. The parameter
denotes how many weigh units are present. The weigh units are combined with
each other using the CSP interleaving operator ||| (i.e., they do not synchronise
with each other on any events) and with the store unit using the CSP parallel
operator ‖ (i.e., the store unit performs the (renamed) operation SendData only
when one of the weigh units can synchronise with it).

272 Graeme Smith

WeighingSystem(n) = (|||ni=1 WU{number �→i}) X‖Y SU

where X = {| Weigh,SendData |} and Y = {| SendData,UpdateDay |}.
The preceding specification of the cattle weighing system has several short-

comings. Firstly, the interpretation of the weight? inputs is informal. Addition-
ally, the fact that the Weigh operations occur every time their associated weigh-
bridge signals are greater than the level “minimum weight”, is not specified.

There are also some timing constraints which are not formalised. Firstly, the
fact the UpdateDay operation occurs regularly at an appropriate time is not
formalised. Secondly, the fact that the information recorded by the weigh units
is transmitted to the store unit on the same day they are recorded is similarly
omitted. Both of these timing constraints are crucial to the information in the
store unit being of use to the farmer.

3 Overview of Real-Time Object-Z

Real-Time Object-Z [19,20] is an integration of Object-Z with the timed trace
notation of Fidge et al. [5]. It allows the specification of complex data structures
which behave according to real-time constraints and interact with a continuously
changing environment. A type T == R is introduced to model absolute time.
In this paper, we assume its units are seconds and use constants min=60 and
hour=60*60 to allow us to write times in minutes or hours respectively.

Classes are divided into two parts by a horizontal line. The part above the
line is essentially standard Object-Z with the addition of an implicit variable τ
of type T denoting the current time. The part below the line contains two timed
trace predicates denoting an assumption on the class’s environment and an effect
the class achieves when that assumption is met.

Using Real-Time Object-Z, the class WeighUnit can be modified as follows.
A timed trace constant weight?, denoting the continuous signal from the weigh-
bridge over all time, replaces the need for the input weight? of the operation
Weigh. The ? decoration on this constant denotes that it is an input from the
environment (a ! decoration would similarly denote an output). The fact that
such an input is continuous (and smooth) is specified using the function symbol
� [4]. A timed trace assumption predicate is added to the class restricting the
value of weight? to always be less than or equal to MaxWeight .

The operation Weigh uses this environmental input to calculate the weight
of a cow. It adds to data the average value of the signal between its start time
τ and end time τ ′ 3. To ensure this operation occurs when necessary (and not
otherwise), we add an effect predicate which states that the operation occurs
precisely when weight? is at least MinWeight .

The predicate uses the notation 〈P〉 to denote the set of intervals of time in
which a predicate P holds. In general, any timed trace constants and variables
3 In practice, some error, due to sampling and time delays, would be introduced in

the calculation of the average weight. For simplifying the presentation, however, we
ignore this and other such errors in this paper.

An Integration of Real-Time Object-Z and CSP 273

in such a predicate P may be lifted to their range types [5], i.e., a constant or
variable of type T → T is treated as if it were a variable of type T (e.g., weight?
in the predicate below). Such a predicate P may also include the names of op-
erations denoting Boolean variables which are true precisely when the operation
is occurring (e.g., Weigh in the predicate below).

The frequency of occurrence of the operation SendData is also constrained
by a timed trace effect predicate. This predicate use the operator ‘;’ for concate-
nating sets of time intervals [5]. It specifies that in any time interval of at least
10 minutes duration, the operation SendData must occur. This is done using the
reserved symbol δ which denotes the duration of an interval. Similarly, α and ω
are reserved symbols denoting the start and end times of an interval, and φ is a
reserved symbol denoting the interval itself.

WeighUnit

weight? : T � R+

data : bag R+

INIT

data = 〈 〉

Weigh
∆(data)

data ′ = data � [[(
∫ τ ′

τ
weight?)/(τ ′ − τ)]]

SendData
∆(data)
data! : bag R+

data! = data
data ′ = [[]]

assumption ∀ t : T • weight?(t) � MaxWeight

effect 〈Weigh〉 = 〈weight? � MinWeight〉
〈δ � 10 ∗ min〉 ⊆ 〈true〉 ; 〈SendData〉 ; 〈true〉

The class StoreUnit is extended with a variable last update denoting the last
time the day was updated. Initially, this value is equal to the current time. The
operation UpdateDay is extended to set this variable to its start time and to
only occur when this time is 24 hours since the time held by the variable.

By itself, the precondition of UpdateDay only prevents the operation from
happening at times other than 24 hours after last update. It does not ensure
that the operation occurs when its precondition is satisfied. To specify this, we

274 Graeme Smith

add an effect predicate which states that the operation occurs in every 24 hour
interval of time.

StoreUnit

day : N
record : N → bag R+
last update : T

INIT

day = 1
∀n : N • record(n) = [[]]
last update = τ

RecData
∆(data)
data? : bag R+

record ′ = record ⊕ {day �→ record(day) � data?}

UpdateDay
∆(day , last update)

τ − last update = 24 ∗ hour
day ′ = day + 1
last update ′ = τ

assumption true

effect 〈δ = 24 ∗ hour〉 ⊆ 〈true〉 ; 〈UpdateDay〉 ; 〈true〉

The above classes overcome the shortcomings identified at the end of Sec-
tion 2. The interpretation of the input to the Weigh operation is formalised as
are the constraints on the occurrence of Weigh, UpdateDay and SendData. To
specify the weighing system, however, we would like to be able to combine these
classes in a manner similar to that in Section 2.

4 Semantic Integration of Real-Time Object-Z and CSP

To enable instances of Object-Z classes to be combined with CSP operators
in Object-Z/CSP, classes are given a failures/divergences semantics, i.e., the
semantics of processes in CSP. This semantics is derived from the existing history
semantics of Object-Z [14].

A history of a class is a possible sequence of states an instance of the class
can pass through, together with the associated sequence of operations that cause
the state changes. A state is an assignment of values to a set of identifiers rep-

An Integration of Real-Time Object-Z and CSP 275

resenting its variables and the constants it can refer to. The states S of a class
are hence defined as

S ⊆ Id � �→ Value

An operation comprises the operation’s name and an assignment of values to the
operations parameters. The operations O of a class are defined as

O ⊆ Id × (Id � �→ Value)

Therefore, the set of histories of a class is represented by a set4

H ⊆ Sω × Oω

such that

(s, o) ∈ H ⇒ s = 〈 〉 (H1)
(s, o) ∈ H ∧ s ∈ S∗ ⇒ #s = #o + 1 (H2)
(s, o) ∈ H ∧ s ∈ S∗ ⇒ o ∈ O∗ (H3)
(s1 � s2, o1

� o2) ∈ H ∧ #s1 = #o1 + 1 ⇒ (s1, o1) ∈ H (H4)

These properties capture the fact that the sequence of states is non-empty (H1)
and is one longer than the sequence of operations (H2) (except when both are
infinite (H3)), and that the set of histories is prefix-closed (H4).

To relate Object-Z classes and CSP processes, we identify Object-Z oper-
ations with CSP events. In order that common-named operations synchronise
and communicate via parameters with common basenames, we define a function
event which, given an operation (n, p), where n is the operation’s name and
p is an assignment of values to its parameters, returns the event n.p′ where
p′ is p with all parameters replaced by their basenames (i.e., with the ? and !
decorations removed).

The failures of an Object-Z class C with constants �c assigned values �v are
then derived from its histories as follows: (tr ,X) is a failure of C{�c �→�v} if

– there exists a finite history of C whose initial state is satisfied by the assign-
ment of �v to �c,

– the sequence of operations of the history correspond to the sequence of events
in tr , and

– for each event in X , there does not exist a history which extends the original
history by an operation corresponding to the event.

failures(C{�c �→�v}) = {(tr ,X) | ∃(s, o) ∈ H •
s ∈ S∗ ∧
{�c �→ �v} ⊆ s(1) ∧
#tr = #o ∧
(∀ i ∈ 1 . . #tr • tr(i) = event(o(i))) ∧
(∀ e ∈ X • (�st ∈ S , op ∈ O •

e = event(op) ∧ (s � 〈st〉, o � 〈op〉) ∈ H))}
4 Sω and S∗ denote the set of (possibly infinite) sequences and set of finite sequences,

respectively, of elements from the set S .

276 Graeme Smith

This definition assumes classes do not have liveness constraints (since it only
refers to finite histories) and that outputs of class instances are angelic, i.e., for
the purpose of specification they can be influenced by the environment [15]. Al-
ternative semantics also exist which support liveness constraints [7] and demonic
outputs [18]. Operations are also assumed to be blocked outside their precondi-
tions, i.e., they do not behave chaotically. Hence, the set of divergences of a class
instance C{�c �→�v} is empty.

divergences(C{�c �→�v}) = ∅

Problems due to unbounded nondeterminism are avoided by restricting hiding
of unbounded sequences of events [15].

To similarly integrate Real-Time Object-Z with CSP, we need means of en-
coding both timing constraints and continuous variables in CSP process defini-
tions. There are a number of approaches to the former. For example, start and
end times could be associated with events. That is, an operation Op starting at
time t1 and ending at time t2 could be represented by an event Op.t1.t2. Alter-
natively, the operation could be associated with two events, OpS .t1 and OpE .t2,
denoting the start and end of the operation respectively.

The problem with these approaches is that they restrict the way in which
synchronisations can occur between processes. The first approach forces two
synchronising events to have the same start and end times (since they have to
agree on the values t1 and t2). The second approach forces synchronisation to
occur at the start or end times of the operations, or at the start time of one
and the end time of the other. In general, synchronising operations may simply
overlap and not have any common start or end times (see Fig. 3).

synchronisation

(b)

Occurence of Op in P

Occurrence of Op in Q

synchronisation
(a)

Occurence of Op in P

Occurrence of Op in Q

Fig. 3. Possible operation synchronisations

A more general approach, which we adopt in this paper, is to represent an
operation occurrence by a single event and a single time during the occurrence.

An Integration of Real-Time Object-Z and CSP 277

In this case, the event corresponds to an instantaneous observation of the time-
consuming operation. For example, if an operation Op starts at time 10 and
ends at time 15, it is represented by a single event Op.t where 10 � t � 15. This
enables operations to synchronise whenever they overlap, i.e., have at least one
point in time in common.

Since continuous variables in Real-Time Object-Z are class constants, they
can be assigned values when an instance of the class is used in a specification (cf.,
the constant number of class WU in Section 2). The resulting failures of the class
instance depend on the value assigned. For example, the times of events related
to the operation Weigh of WeighUnit depend directly on the value assigned to
the continuous variable weight? (see Fig. 4).

weight?
MinWeight

 of Weigh
Occurrence

Fig. 4. Dependence of Weigh operations on weight?

When a class instance is used in a specification, the values of any continuous
variables need to be supplied as additional parameters. For example, given the
definitions of WeighUnit and StoreUnit of Section 3 together with the definitions
of WU and SU of Section 2, the weighing system can be specified as

WeighingSystem(n,w1, . . . ,wn) = (|||ni=1 WU{weight?�→wi ,number �→i}) X‖Y SU

where X = {| Weigh,SendData |} and Y = {| SendData,UpdateDay |}.
To formalise this approach, we need to translate the semantics of Real-Time

Object-Z to appropriate failures and divergences. The semantics as given by
Smith and Hayes [19,20] models a class as a set of real-time histories. A real-
time history extends a standard Object-Z history with
– start and end times of each operation,
– timed trace representations of all constants and variables, and
– a set of time intervals for each operation denoting the operation occurrences.

Since the latter can be derived from the start and end times of operations [19,20],
we do not need to include them explicitly as part of the semantics. Similarly,
since the timed trace representation of constants and variables can be derived
from the sequence of states [19,20]5, we do not need to explicitly include them
either.
5 Note that since continuous variables are modelled as constants, their value (over all

time) is available in any state.

278 Graeme Smith

The start times are represented by a sequence of times equal in length to the
number of operations (or infinite when the number of operations are infinite).
Similarly, the end times are represented by a sequence of times. The first end
time denotes the time at which initialisation occurred. Hence, the length of the
sequence is one greater than the number of start times (or infinite when the
number of start times is infinite).

Therefore, the real-time histories of a class are represented by a set

R ⊆ Sω × Oω × Tω × Tω

such that

(s, o, ts , te) ∈ R ⇒ s = 〈 〉 ∧ (∀ i ∈ 1 . . #ts • te(i) � ts(i) � te(i + 1)) (R1)
(s, o, ts , te) ∈ R ∧ s ∈ S∗ ⇒ #s = #o + 1 = #ts + 1 = #te (R2)
(s, o, ts , te) ∈ R ∧ s ∈ S∗ ⇒ o ∈ O∗ ∧ ts ∈ T∗ ∧ te ∈ T∗ (R3)
(s1 � s2, o1

� o2, ts1 � ts2, te1
� te2) ∈ R

∧ #s1 = #o1 + 1 = #ts1 + 1 = #te1 ⇒ (s1, o1, ts1, te1) ∈ R (R4)

These properties extend those for standard Object-Z histories so that there is
an appropriate ordering on start and end times of operations (R1), and the
sequences of start and end times are of the same length as the sequence of
operations, and one more than the sequence of operations, respectively (R2)
(except when each of the sequences are infinite (R3)).

The integration of Real-Time Object-Z and CSP is formalised via the fol-
lowing derivations of failures. (The set of divergences of a class is empty as for
Object-Z/CSP. Problems with unbounded nondeterminism are avoided by an
identical restriction on hiding.)

(tr ,X) is a failure of C{�c �→�v} if

– there exists a finite real-time history of C whose initial state is satisfied by
the assignment of �v to �c,

– each event in tr represents the corresponding operation in the history to-
gether with a time of occurrence between the corresponding start and end
times, and

– for each event in X , there does not exist a real-time history which extends
the original real-time history by an operation corresponding to the event.

failuresrt(C{�c �→�v}) = {(tr ,X) | ∃(s, o, ts , te) ∈ R •
s ∈ S∗ ∧
{�c �→ �v} ⊆ s(1) ∧
#tr = #o ∧
(∀ i ∈ 1 . . #tr • (∃ t ∈ T •

ts(i) � t � te(i + 1) ∧
tr(i) = event(o(i)).t)) ∧

(∀ e ∈ X • (�st ∈ S , op ∈ O , t , t1, t2 ∈ T •
t1 � t � t2 ∧ e = event(op).t ∧
(s � 〈st〉, o � 〈op〉, ts � 〈t1〉, te � 〈t2〉) ∈ R))}

An Integration of Real-Time Object-Z and CSP 279

For Real-Time Object-Z classes to be combined using CSP operators, the set
of failures F derived for a class must satisfy the following properties [12].

(〈 〉, ∅) ∈ F (F1)
(tr1 � tr2, ∅) ∈ F ⇒ (tr1, ∅) ∈ F (F2)
(tr ,X) ∈ F ∧ Y ⊆ X ⇒ (tr ,Y) ∈ F (F3)
(tr ,X) ∈ F ∧ (∀ y ∈ Y • (tr � 〈y〉, ∅) ∈ F) ⇒ (tr ,X ∪ Y) ∈ F (F4)

These properties hold for the definition of failuresrt as shown below.

Proof of F1.
C{�c �→�v} is regarded as well-defined by Smith [15] only if there exists a
possible initial state of C satisfying the assignment of values to con-
stants, {�c �→ �v}. Hence, if a failures semantics is given to C{�c �→�v} then
∃(s, o, ts , te) ∈ R • {�c �→ �v} ⊆ s(1).
By R4, therefore, it follows that (〈s(1)〉, 〈 〉, 〈 〉, 〈t〉) ∈ R, for some t : T.
Since 〈s(1)〉 ∈ S∗, the trace of events corresponding to the operation
sequence 〈 〉 is 〈 〉, and ∀ e ∈ ∅ • P is true for any predicate P , it follows
that (〈 〉, ∅) ∈ failuresrt(C{�c �→�v}). �

Proof of F2.
If (tr1 � tr2, ∅) ∈ failuresrt(C{�c �→�v}) then, by the definition of failuresrt ,
∃(s, o, ts , te) ∈ R • {�c �→ �v} ⊆ s(1) ∧ (∀ i ∈ 1 . . #(tr1 � tr2) • (∃ t ∈ T •
ts(i) � t � te(i + 1) ∧ (tr1 � tr2)(i) = event(o(i)).t)).
If s = s1 � s2, o = o1

� o2, ts = ts1 � ts2 and te = te1
� te2 such that

#o1 = #tr1 = #ts1 and #s1 = #o1+1 = #te1 then (s1, o1, ts1, te1) ∈ R
by R4.
Since s1(1) = s(1) it follows that {�c �→ �v} ⊆ s1(1). Also, s1 ∈ S∗

and (∀ i ∈ 1 . . #tr1 • (∃ t ∈ T • ts1(i) � t � te1(i + 1) ∧ tr1(i) =
event(o1(i)).t)). Hence, since ∀ e ∈ ∅ • P is true for any predicate P , it
follows that (tr1, ∅) ∈ failuresrt(C{�c �→�v}). �

Proof of F3.
Since (∀ e ∈ X • P) ⇒ (∀ e ∈ Y • P) for any predicate P when
Y ⊆ X , if (t ,X) ∈ failuresrt(C{�c �→�v}) and Y ⊆ X then (t ,Y) ∈
failuresrt(C{�c �→�v}). �

Proof of F4.
If (tr ,X) ∈ failuresrt(C{�c �→�v}) then, by the definition of failuresrt ,
∃(s, o, ts , te) ∈ R • s ∈ S∗ ∧ {�c �→ �v} ⊆ s(1) ∧ #tr = #o ∧ (∀ i ∈
1 . . #tr • (∃ t ∈ T • ts(i) � t � te(i + 1) ∧ tr(i) = event(o(i).t)).
Since ∀ e ∈ ∅ • P is true for any predicate P , it then follows that
(tr � 〈y〉, ∅) ∈ failuresrt(C{�c �→�v}) unless �st ∈ S , op ∈ O , t , t1, t2 ∈ T •
t1 � t � t2 ∧ y = event(op).t ∧ (s�〈st〉, o�〈op〉, ts �〈t1〉, te �〈t2〉) ∈ R.
Therefore, if ∀ y ∈ Y • (tr � 〈y〉, ∅) ∈ failuresrt(C{�c �→�v}) then
(tr ,X ∪ Y) ∈ failuresrt(C{�c �→�v}). �

280 Graeme Smith

5 Alternative Approaches Based on Object-Z

The integration of Real-Time Object-Z and CSP enables specifications of concur-
rent systems with real-time properties which interact with continuous variables
in their environment. Having Object-Z as the basis of the integration enables
complex data structures and data manipulations within the components of such
systems to be constructed incrementally. Both inheritance and polymorphism
are useful in this respect.

For example, suppose that the weigh units need to additionally control a gate
at the end of the weighbridge to separate cows of different weight. This would
be necessary, for instance, to remove older calves from their mothers. In times of
drought, calves are known to drink milk from their mother for extended periods
of time often to the detriment of the mother’s health.

To avoid complicating the specification of the WeighUnit class, this aspect of
the weighbridge could be added via inheritance as follows. We assume there are
two gates, identified by the numbers 1 and 2, and that cows whose weights lie
above W1 : R+ but below W2 : R+ should go through gate 1. All others should
go through gate 2.

GateControlUnit
WU

gate : {1, 2}

Weigh
∆(gate)

gate ′ = 1 ⇔ W1 < (
∫ τ ′

τ
weight?)/(τ ′ − τ) < W2

The class inherits WU , i.e., the class WeighUnit extended with a number as in
Section 2, and adds a state variable gate denoting the gate which is currently
opened. If desired, this variable could be related via a timed trace predicate to
continuous output variables representing signals to the gate mechanisms. The
operation Weigh is extended so that gate will be set to 1 when the recorded
weight is in the range W1 . . .W2, and set to 2 otherwise.

If we then wanted to specify a system where weighbridges may optionally be
connected to gates, we could use polymorphism as follows.

WeighingSystem(n,w1, . . . ,wn) = (|||ni=1 ↓WU{weight?�→wi ,number �→i}) X‖Y SU

where X = {| Weigh,SendData |} and Y = {| SendData,UpdateDay |}. The
notation ↓WU denotes the class WU or any class inherited from WU (in this
case, the class GateControlUnit). The actual class of each instance is chosen
nondeterministically.

Given the usefulness of these structuring concepts for larger-scale systems,
we focus our discussion, in this section, on alternative approaches to specifying
concurrent real-time systems which are based on Object-Z.

An Integration of Real-Time Object-Z and CSP 281

5.1 Other Approaches Using Real-Time Object-Z

The issue of concurrency in Real-Time Object-Z is addressed by Smith and
Hayes [20]. One option explored is the use of object instantiation (as in standard
Object-Z). Given an object a of a class C (declared as a : C), we can refer to a
variable or constant x of the object by the notation a.x . Similarly, we can state
that the object satisfies its class’s initial condition or undergoes operation Op
of its class by a.INIT and a.Op respectively. Adopting this approach, we might
specify the weighing system as follows.

WeighingSystem

wu : P WU
su : SU

∀ a, b : wu • a.number = b.number ⇒ a = b

INIT

∀ a : wu • a.INIT

su.INIT

Weigh == [a : wu] • a.Weigh
SendData == [a : wu] • a.SendData || su.RecData
UpdateDay =̂ su.UpdateDay

This class comprises a set of objects of class WU , each with a unique number,
and an object of class SU . We assume that the real-time properties of the objects’
classes are implicitly maintained. The initial condition and operations of the class
are constructed from those of the component classes using Object-Z operation
operators [16, Chapter 3].

Synchronisation, including communication, is explicitly modelled using the ‖
operator. This operator conjoins its argument operations and equates any inputs
in one with outputs in the other when they have common basenames. Similarly,
concurrent occurrences of operations (whether as part of synchronisation or not)
are explicitly specified via the conjunction of operations.

As pointed out by Smith and Hayes, however, this approach is undesirable
for two reasons.

– Explicitly stating all combinations of operations which can occur concur-
rently may become unwieldy for large systems comprising many components.

– Conjoined operations are forced to have the same start and end times. Hence,
the partial overlap of operations cannot be specified.

An alternative approach explored by Smith and Hayes is the definition of
a parallel composition operator for combining classes. This operator is similar
to the CSP operator in that it ensures the synchronisation of common-named
operations. However, any synchronising operations must still have the same start
and end times.

282 Graeme Smith

A more fundamental problem with this approach is that the single opera-
tor introduced hinders direct specification of many systems. For example, the
weighing system specification in this paper makes use of CSP’s interleaving op-
erator |||. Using parallel composition alone, in this case, would require Weigh
and SendData operations to include the weigh unit’s number as a parameter (to
avoid weigh units synchronising on these operations).

The approach could be extended with an interleaving operator, as well as
other operators such as renaming and hiding found in CSP. However, the result
would not improve on an integration with CSP itself as detailed in this paper.
Furthermore, the introduction of new notations, as opposed to the integration
of existing notations, result in an approach which is both less familiar and less
amenable to use with existing tools and verification and refinement techniques.

5.2 Integrating Object-Z/CSP with the Timed Trace Notation

An alternative to integrating Real-Time Object-Z with CSP would be to in-
tegrate Object-Z/CSP with the timed trace notation giving a timed trace se-
mantics to specifications. In such an approach, timed trace predicates could be
used to restrict the time of occurrence of events within an Object-Z/CSP system
specification.

For example, given the Object-Z/CSP specification of the weighing system in
Section 2, the following effect predicates might be added to ensure the UpdateDay
event occurs as required.

〈δ = 24 ∗ hour〉 ⊆ 〈true〉 ; 〈UpdateDay〉 ; 〈true〉
〈UpdateDay〉 ; 〈¬ UpdateDay〉 ; 〈UpdateDay〉 ⊆ 〈δ = 24 ∗ hours〉

The first predicate (identical to that in the Real-Time Object-Z specification
in Section 3) ensures that UpdateDay occurs at least once in every 24 hours.
The second predicate ensures that the separation between UpdateDay events
is precisely 24 hours. (Note that the intervals 〈UpdateDay〉 here correspond to
event occurrences and hence comprise a single point of time only.)

One problem with this approach is that because we are constraining CSP
processes, rather than Object-Z classes, we can only specify timing constraints
on operation occurrences. However, it is also often desirable to specify timing
constraints on state variables as evidenced by the case studies by Smith and
Hayes [19,20].

A more serious problem becomes obvious if we try to specify the timing
constraints on the events Weigh and SendData. These constraints need to be
specified for each weigh unit and not just for the system as a whole. For example,
we need to ensure that each weigh unit performs SendData every 10 minutes.
This can only be done if we can distinguish Weigh events from individual weigh
units at the system level. This could be done only by adding their number, or
some other unique identifier, as a parameter to the event.

In general, however, we cannot, in this approach, add timing constraints
to components of a specification before composing them. This would give the
components a timed trace semantics and hence invalidate the use of standard

An Integration of Real-Time Object-Z and CSP 283

CSP operators. Therefore, the approach is not compositional in the sense that
a system specification, together with timing constraints, could not be used as a
component in the specification of another system. This limits the use of such an
approach for specifying larger-scale systems.

5.3 Integrating Object-Z with Timed CSP

A final alternative is to integrate Object-Z with Timed CSP [1]. Timed CSP
extends CSP with operators for modelling delays, timeouts and timed interrupts.
The approach in this case would be to associate a Timed CSP process definition
with each Object-Z class in order to control the timing of events associated with
operations. Such an approach has been adopted in RT-Z [22], an integration of
Z and Timed CSP, and TCOZ [11], an integration of Object-Z and Timed CSP.

Since CSP (and, hence, Timed CSP) processes are conceptually driven by
their environment, the timing operators are limited in order that the maximum
or exact time between events cannot be specified. Otherwise, a process could re-
strict its environment. Therefore, the timing properties on the operations Weigh
and UpdateDay of the classes WeighUnit and StoreUnit , respectively, cannot be
readily captured with this approach.

They can be captured, however, if we can guarantee the event in question
is not refused by the process’s environment. One way of doing this is to make
the event internal to the process by hiding it. For example, the constraint on
StoreUnit is captured by the following process.

SUBehav = (µR • RecData?data → R)
|||
(µU • Wait 24 ∗ hour; UpdateDay → U)
\{UpdateDay}

This process allows RecData events to occur as often as necessary, and each
UpdateDay event to occur only after a delay of 24 hours. Since the latter event
is internal and cannot be refused by the environment, it occurs immediately after
the 24 hour delay.

This approach is not suitable for the timing constraint on SendData of class
WeighUnit however. This event cannot be hidden since it needs to synchronise
with the corresponding event of StoreUnit . To specify this constraint, we could
complement the process description with explicit predicates on the (timed) fail-
ures of the process. Alternatively, we could place a constraint on the environment
of WeighUnit stating that it never refuses a SendData event. The use of such
environmental constraints is discussed by Schneider [13].

Another approach is to introduce additional operators, such as the “deadline”
command of TCOZ [10], to model the fact that events must occur before or at
particular times. The use of such additional operators, however, goes against
our desire to integrate existing notations for reasons of familiarity and reuse of
existing tools and techniques. In particular, the addition of a dealine command
changes the specification paradigm of Timed CSP to one in which processes are
able to “force” synchronising events in their environment to occur. This makes

284 Graeme Smith

it unlikely that methods of compositional refinement developed for Timed CSP
would be applicable. In contrast, our approach uses untimed CSP and time is
represented simply as an event parameter. Hence, CSP refinement methods are
still applicable.

Timed CSP also differs from the approach of this paper in that it does not
support modelling constraints on continuous variables. In addition, the style of
specification is fundamentally different. Timing constraints are modelled in a
very operational fashion via delays, timeouts and interrupts. This can some-
times be cumbersome. In contrast, using the timed trace notation of Real-Time
Object-Z, timing constraints can be modelled declaratively as predicates on time
intervals. The approach is more abstract resulting in more concise specifications.

6 Conclusion
In this paper, we have brought together two tracks of research on integrat-
ing formal methods (Object-Z/CSP and Real-Time Object-Z) and, in doing
so, three modelling paradigms: state-based (Object-Z), event-based (CSP) and
trace-based (the timed trace notation). The result is a specification notation
that is capable of modelling complex data structures, concurrency, real-time
constraints and continuous variables.

By developing a semantic integration where the individual notations are sep-
arated in specifications, we have aimed at increasing the accessibility of the
approach to specifiers already familiar with one or more of the notations, and
the amenability of using existing tools and verification and refinement techniques
with the approach. The latter is an area of future work.

Acknowledgements
Thanks to Ian Hayes and Kirsten Winter for comments on an earlier draft of
this paper. Thanks also to Jim Davies, Steve Schneider and Carsten Sühl for
improving my understanding of Timed CSP. This work is funded by Australian
Research Council Large Grant A49801500, A Unified Formalism for Concurrent
Real-Time Software Development .

References

1. J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical Computer
Science, 138(2):243–271, 1995.

2. J. Derrick and G. Smith. Structural refinement in Object-Z/CSP. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, 2nd International Confer-
ence on Integrated Formal Methods (IFM’00), volume 1945 of Lecture Notes in
Computer Science, pages 194–213. Springer-Verlag, 2000.

3. R. Duke and G. Rose. Formal Object-Oriented Specification using Object-Z.
MacMillan, 2000.

4. C.J. Fidge, I.J. Hayes, and B.P. Mahony. Defining differentiation and integra-
tion in Z. In J. Staples, M.G. Hinchey, and Shaoying Liu, editors, IEEE Inter-
national Conference on Formal Engineering Methods (ICFEM ’98), pages 64–73.
IEEE Computer Society Press, 1998.

An Integration of Real-Time Object-Z and CSP 285

5. C.J. Fidge, I.J. Hayes, A.P. Martin, and A.K. Wabenhorst. A set-theoretic model
for real-time specification and reasoning. In J. Jeuring, editor, Mathematics of Pro-
gram Construction (MPC’98), volume 1422 of Lecture Notes in Computer Science,
pages 188–206. Springer-Verlag, 1998.

6. C. Fischer. How to combine Z with a process algebra. In J.P. Bowen, A. Fett, and
M.G. Hinchey, editors, 11th International Conference of Z Users, volume 1493 of
Lecture Notes in Computer Science, pages 5–23. Springer-Verlag, 1998.

7. C. Fischer and G. Smith. Combining CSP and Object-Z: Finite or infinite trace
semantics? In T. Higashino and A. Togashi, editors, Formal Description Techniques
and Protocol Specification, Testing, and Verification (FORTE/PSTV ’97), pages
503–518. Chapman and Hall, 1997.

8. C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR.
In K. Araki, A. Galloway, and K. Taguchi, editors, 1st International Conference
on Integrated Formal Methods, pages 315–334. Springer-Verlag, 1999.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. B.P. Mahony and J.S. Dong. Sensors and actuators in TCOZ. In J. Wing, J.C.P.

Woodcock, and J. Davies, editors, World Congress on Formal Methods (FM’99),
volume 1709 of Lecture Notes in Computer Science, pages 1166–1185. Springer-
Verlag, 1999.

11. B.P. Mahony and J.S. Dong. Timed Communicating Object Z. IEEE Transactions
on Software Engineering, 26(2):150–177, 2000.

12. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
13. S. Schneider. Concurrent and Real-Time Systems: The CSP Approach. John Wiley

& Sons, 1999.
14. G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of

Computing, 7(3):289–313, 1995.
15. G. Smith. A semantic integration of Object-Z and CSP for the specification of

concurrent systems. In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Formal
Methods Europe (FME’97), volume 1313 of Lecture Notes in Computer Science,
pages 62–81. Springer-Verlag, 1997.

16. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

17. G. Smith and J. Derrick. Refinement and verification of concurrent systems speci-
fied in Object-Z and CSP. In M.G. Hinchey and Shaoying Lui, editors, First Inter-
national Conference on Formal Engineering Methods (ICFEM ’97), pages 293–302.
IEEE Computer Society Press, 1997.

18. G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems – an integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249–284, 2000.

19. G. Smith and I.J. Hayes. Towards real-time Object-Z. In K. Araki, A. Galloway,
and K. Taguchi, editors, 1st International Conference on Integrated Formal Meth-
ods (IFM’99), pages 49–65. Springer-Verlag, 1999.

20. G. Smith and I.J. Hayes. Structuring Real-Time Object-Z specifications. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, 2nd International Confer-
ence on Integrated Formal Methods (IFM’00), volume 1945 of Lecture Notes in
Computer Science, pages 97–115. Springer-Verlag, 2000.

21. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition,
1992.

22. C. Sühl. RT-Z: An integration of Z and timed CSP. In K. Araki, A. Galloway, and
K. Taguchi, editors, 1st International Conference on Integrated Formal Methods
(IFM’99), pages 29–48. Springer-Verlag, 1999.

	1 Introduction
	2 Overview of Object-Z/CSP
	3 Overview of Real-Time Object-Z
	4 Semantic Integration of Real-Time Object-Z and CSP
	5 Alternative Approaches Based on Object-Z
	5.1 Other Approaches Using Real-Time Object-Z
	5.2 Integrating Object-Z/CSP with the Timed Trace Notation
	5.3 Integrating Object-Z with Timed CSP

	6 Conclusion
	References

