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Abstract. The timed refinement calculus is a predicate-transformer-
based formalism for the specification and refinement of real-time, reac-
tive systems. Although it has been successfully applied to a number of
case studies, its scalability and ability to effectively model concurrent
and distributed real-time systems is inhibited by its lack of a suitable
parallel composition operator. In particular, previous definitions of par-
allel composition for the formalism lack associativity or do not behave
correctly when one of the components aborts. In this paper, we provide
a new definition which is well-behaved under certain restrictions.

1 Introduction

The refinement calculus [3, 14] provides a formal approach to the abstract spec-
ification and stepwise development of sequential programs. A program is mod-
elled as a predicate transformer which, following the approach of Dijkstra [4],
transforms a required property of the final state of a program (referred to as
a postcondition) into the property that an initial state of the program must
satisfy in order to achieve that required property (referred to as the weakest
precondition).

In order to specify real-time and concurrent systems, however, it is necessary
to model reactive programs . Although some work has been done in the framework
of the refinement calculus [2], in general, such programs cannot be described
readily in terms of initial and final states alone. Hence, Mahony and Hayes [13,
10] adapted the predicate transformer approach of the refinement calculus to
describe a program in terms of an assumption about the environment in which
the program acts and the effect of the program under that assumption.

The major difference between the refinement calculus and the work of Ma-
hony and Hayes is that, in the former, pre and postconditions describe the initial
and final system states respectively, whereas, in the latter, assumptions and ef-
fects describe the system over all time. This allows entire system histories to
be specified, making Mahony and Hayes’s approach, referred to as the timed
refinement calculus , appropriate for the specification of real-time and embedded
systems.

Unfortunately, the scalability and ability to effectively model concurrent and
distributed real-time systems is inhibited in the timed refinement calculus by the



lack of a suitable parallel composition operator. Although a definition for parallel
composition with one-way communication (usually referred to as piping) exists,
previous attempts at defining such an operator with bi-directional communica-
tion [11, 12, 9] have not been successful: either the operator was not associative
or did not cause the composite system to abort when one of its components
aborted [9]. This latter property is central to the timed refinement calculus and
distinguishes it from approaches of the assumption/commitment paradigm.

In this paper, we present a new definition of parallel composition with bi-
directional communication which satisfies the desired properties under certain
restrictions. In Section 2, we discuss related work; specifically the assumption/
commitment approaches. In Section 3, we introduce the timed refinement cal-
culus notation through a simple example and examine the properties of the
existing piping operator. In Section 4, we build on the definition of the piping
operator to present our new definition of parallel composition and illustrate its
use. In Section 5, we present a refinement rule for introducing the operator into
specifications.

2 Related work

Among other approaches to specifying reactive systems, the approach in this
paper is closest to the assumption/commitment (or rely/guarantee) approaches
used by Abadi and Lamport [1], Jones [7, 8] and the Duration Calculus [16]
among others. In those approaches, a specification comprises an assumption A
and a commitment C . The semantics of such a specification is defined using
logical implication as A ⇒ C . Under this semantics, parallel composition with
bi-directional communication can be defined simply as conjunction [1].

Consider, however, composing two components in an environment which sat-
isfies the assumption of one of the components but not the other. Intuitively, the
assumption of the composite system is not met. In the assumption/commitment
approach, however, the semantics of the component whose assumption is satis-
fied is of the form (true ⇒ E1) and that of the component whose assumption is
not satisfied is of the form (false ⇒ E2). Hence, the semantics of the composite
system is (true ⇒ E1) ∧ (false ⇒ E2) which is equivalent to (true ⇒ E1), i.e.,
the assumption of the composite system is ‘satisfied’.

This is a result of the fact that the semantics of a component aborting,
(false ⇒ E ), and that of a component behaving chaotically, (A ⇒ true), are
not distinguished in the assumption/commitment approach. Both are logically
equivalent to true. While this is adequate for many kinds of systems, e.g., dis-
tributed systems, it is not suitable for systems where a number of processes are
running concurrently on a single processor. An aborting process, in this case,
could perhaps overwrite another process (or its workspace) causing it to abort
as well.

Adopting a predicate transformer approach in the timed refinement calcu-
lus enables us to distinguish processes which abort from those which behave
chaotically. The semantics of a specification with assumption A, effect E , and



the ability to modify variables ~x , is given by the following predicate transformer
[10].

λR • A ∧ (∀~x • E ⇒ R)

That is, the specification will achieve goal R in any environment in which, firstly,
the assumption A holds and, secondly, for all possible outputs ~x such that the
effect E holds, R also holds. This is the weakest assumption which the environ-
ment must satisfy in order that effect R is obtained.

Hence, the semantics of a process aborting (A is false), i.e., λR • false, is
different to the semantics of a component behaving chaotically (E is true), i.e.,
λR • A ∧ (∀~x • R).

3 Timed refinement calculus

In the timed refinement calculus, predicates are specified using the Z specifica-
tion language [17]. A timed-trace style is employed where all variables in the
predicates are represented as functions of time. For example, a Boolean variable
in (representing a digital input) is declared as follows.

in : T → B

Here T is the set of values of absolute time and B is the set of Boolean values.
We will assume that time is defined as the set of all non-negative real numbers,
i.e., T == R

+.
Consider, for example, specifying the effect of a NOR gate [11], the circuit

diagram and truth table of which is given in Figure 1.
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Figure 1: NOR gate

Assuming the NOR gate has an operating delay of delay time units, its
function from inputs to outputs is captured by the following function nor . We
arbitrarily specify that the value of the output is initially false.

delay : T

nor : ((T → B) × (T → B)) → (T → B)

delay > 0
∀ i1, i2 : T → B •

nor(i1, i2) = (λ t : T • if t < delay then false
else¬ (i1(t − delay) ∨ i2(t − delay)))



In order to prove certain properties about the NOR gate specification, it may
be useful to restrict the inputs to finitely variable signals, i.e., signals which only
change a finite number of times in any finite time interval [6]. In other words,
each finite interval of time consists of a (finite) sequence of intervals over which
the value of the signal is not changed. This is captured by the set fin var . (The
details of this definition are not central to understanding this paper and are
elided below.)

fin var : P(T → B)

. . .

The form of a specification in the timed refinement calculus is based on that
used by Morgan for the (sequential) refinement calculus [14]. A specification S
with an assumption A, effect E and list of output variables ~x is expressed as
follows.

S =̂ ~x : [A,E ]

The specified system S is guaranteed to provide the effect E whenever its en-
vironment satisfies assumption A. The assumption cannot constrain the output
variables ~x , so they may not occur free in A. Furthermore, the specified system
must be feasible, i.e., it cannot constrain the input variables. Therefore, all spec-
ifications must also satisfy the feasibility constraint A ⇒ (∃~x • E ) [10]. These
constraints and the absence of a notion of initial and final variable values are
the main differences from Morgan’s notation.

The complete specification of a NOR gate is therefore given as follows.

NOR =̂ out : [{in1, in2} ⊂ fin var , out = nor(in1, in2)]

In other words, provided that in1 and in2 are finitely variable then out will
provide the desired NOR function.

The fundamental rules for sequential system refinement are weakening of the
precondition and strengthening of the postcondition [3, 14]. Analogously, the
fundamental rules for refinement in the timed refinement calculus are weakening
of the assumption and strengthening of the effect [13, 10]. That is, given speci-
fications S1 and S2, then S1 is refined by S2, denoted S1 v S2, if, and only if,
A1 ⇒ A2 (i.e., A2 is at least as weak as A1) and A1 ⇒ (∀~x • E2 ⇒ E1) (i.e.,
whenever A1 is true, E2 is at least as strong as E1).

3.1 Piping

The piping operator [10] is illustrated in Figure 3. It allows communication of
outputs in one direction (from the left-hand component to the right-hand one).
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Figure 3: Piping



For generality, the communicated outputs are not hidden in the resulting
composition. If hiding is desired it can be achieved using the existing hiding
operator of the timed refinement calculus [10] which is defined as follows. (The
brackets |[ and ]| enclose the local environment in which ~x may be referenced.)

|[~x , ~y : [A,E ] \ {~x} ]| ≡ ~y : [A, ∃~x • E ]

The definition of the piping operator is given by Mahony [10]. The assumption
of the composition requires the assumption of the first component to be true and,
for any outputs satisfying the effect of the first component, the assumption of
the second component to be true. The effect of the composition is simply the
conjunction of the effects of the components. The piping operator ‘>>’ is hence
defined as follows.

~x : [A1,E1] >> ~y : [A2,E2] ≡ ~x , ~y : [A1 ∧ (∀~x • E1 ⇒ A2),E1 ∧ E2],
{~x} ∩ {~y} = ∅, ~y nfiA1, ~y nfi E1

In the sidecondition above, nfi means “not free in”. These “not free in” conditions
are necessary so that the assumption of the composite specification does not refer
to its outputs.

As required in the timed refinement calculus, the composite system aborts
whenever one of its components does. If the first component aborts, i.e., A1

evaluates to false, then the assumption of the composite system is false. If A1

is true then ∃~x • E1 is also true for the component ~x : [A,E ] to be feasible.
Hence, if A2 evaluates to false in some environment due to inputs other than ~x ,
the assumption of the composite system is again false.

The piping operator is also associative and monotonic with respect to refine-
ment.

4 Parallel Composition

Our approach to defining a bi-directional parallel composition operator follows
that of Müller and Scholz [15] who show how to compose specifications with
bi-directional communication using two operators: piping and feedback. In this
section, we first define a feedback operator and examine its properties, and then
use this operator, in combination with the existing piping operator, to define
our operator for parallel composition.

4.1 Feedback

A feedback operator for the timed refinement calculus is illustrated in Figure 4.
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Figure 4: Feedback



Again, for generality, the outputs which form the feedback loop are not hidden
by this operator.

The definition of the operator requires a subset of the inputs ~x0 to be iden-
tified with a subset of the outputs ~x . The assumption of the system after the
application of the feedback operator requires that all values of the outputs satis-
fying the effect also satisfy the assumption of the original component. In addition,
it requires that the original assumption on inputs other than ~x0 is satisfied. This
ensures that if the original component aborts in some environment due to the
values of inputs other than ~x0 then the feedback system will also abort in that
environment.

Given that inputs ~x0 have the same types as outputs ~x , the operator is defined
as follows.

[µ ~x0\~x ] • ~x , ~y : [A,E ] ≡
~x , ~y : [(∃ ~x0 • A) ∧ (∀ ~x0, ~x , ~y • E ∧ ~x = ~x0 ⇒ A),E ∧ ~x0 = ~x ]

If the effect E constructs the values of ~x from ~x0 and these values are different
from the corresponding values of ~x0 then it must incorporate a delay. Otherwise,
conjoining E with the predicate ~x0 = ~x will result in false, i.e., the specification
will be unimplementable. This requirement for a delay in feedback systems is
consistent with the results of Müller and Scholz [15].

This operator is not monotonic with respect to refinement. For example, given
a timed-trace variable y , if S1 =̂ x : [x0 = y , x = y ] and S2 =̂ x : [x0 = y , x = x0]
then since x0 = y ⇒ (∀ x • x = x0 ⇒ x = y), we know that S1 v S2. However,

[µ x0\x ] • S1= x : [(∃ x0 • x0 = y) ∧ (∀ x0 • x0 = y ⇒ x0 = y), x = y ∧ x0 = x ]
= x : [true, x = y ∧ x0 = x ]

is not refined by

[µ x0\x ] • S2= x : [(∃ x0 • x0 = y) ∧ (∀ x0 • x0 = x0 ⇒ x0 = y), x0 = x ]
= x : [false, x0 = x ]

It is monotonic, however, when the inputs ~x0 are not free in the assumption
A. Fortunately, this is the situation we are most likely to encounter in practice.
It would be unusual to want to make assumptions about outputs (feedback
variables) that we are going to construct.

In this case (∃ ~x0 • A) ⇔ A and since ~x and ~y do not occur free in A, we
can deduce that A ∧ (∀ ~x0, ~x , ~y • E ∧ ~x0 = ~x ⇒ A) ⇔ A. Hence, the operator’s
definition reduces to the following (obviously monotonic) definition.

[µ ~x0\~x ] • ~x , ~y : [A,E ] =̂ ~x , ~y : [A,E ∧ ~x0 = ~x ], ~x0 nfiA

4.2 Bi-directional parallel composition

Our bi-directional parallel composition operator ‘‖’ is defined in terms of piping
and feedback as illustrated in Figure 5.
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Figure 5: Bi-directional parallel composition

Building on the definition of piping, it could be defined as follows.

~x : [A1,E1] ‖ ~y : [A2,E2] ≡ [µ ~y0\~y ] • ~x , ~y : [A1 ∧ (∀~x • E1 ⇒ A2),E1 ∧ E2],
{~x} ∩ {~y} = ∅

The body of the definition (occurring after the ‘[µ ~y0\~y ] •’) is identical to the
definition of piping. If ~y0 occurs free in the assumption of the body, the operator
is not monotonic with respect to refinement for the same reason as the feedback
operator.

If we place the restriction that ~y0 is not free in the assumption of the body
then, as before, we have monotonicity. Furthermore, the definition of parallel
reduces to that of piping with the extra constraint ~x0 = ~x in the right-hand
process as follows.

~x : [A1,E1] ‖ ~y : [A2,E2]≡ [µ ~y0\~y ] • ~x , ~y : [A1 ∧ (∀~x • E1 ⇒ A2),E1 ∧ E2]
≡ ~x , ~y : [A1 ∧ (∀~x • E1 ⇒ A2),E1 ∧ E2 ∧ ~y0 = ~y ]
≡ ~x : [A1,E1] >> ~y : [A2,E2 ∧ ~y0 = ~y ]

Hence, the operator is also associative and the composite system aborts when
one of its components aborts (since these are properties of piping).

This restriction requires that A1 and E1 not refer to ~y0 (since these predicates
occur in the assumption of the body of the definition). It is too restrictive to be
of any use in practice. Consider, however, the following property of the feedback
operator. Given a specification ~x , ~y : [A,E ], if the effect E and the predicate
~x = ~x0 together with the assumptions other than those on the feedback variables,
i.e., ∃ ~x0 • A, imply the assumption A, i.e., E ∧ ~x = ~x0 ∧ (∃ ~x0 • A) ⇒ A then

[µ ~x0\~x ] • ~x , ~y : [A,E ] ≡ [µ ~x0\~x ] • ~x , ~y : [∃ ~x0 • A,E ]

This follows since the assumption of [µ ~x0\~x ] • ~x , ~y : [A,E ]

(∃ ~x0 • A) ∧ (∀ ~x0, ~x , ~y • E ∧ ~x0 = x ⇒ A)

is equivalent to the assumption of [µ ~x0\~x ] • ~x , ~y : [(∃ x0 • A),E ]

(∃ ~x0 • (∃ ~x0 • A)) ∧ (∀ ~x0, ~x , ~y • E ∧ ~x0 = x ⇒ (∃ ~x0 • A))

since if E ∧ ~x = ~x0 ∧ (∃ ~x0 • A) ⇒ A then E ∧ ~x = ~x0 ⇒ (∃ ~x0 • A) implies
E ∧ ~x = ~x0 ⇒ A.

So in cases where E ∧ ~x = ~x0 ∧ (∃ ~x0 • A) ⇒ A, we can effectively remove
the references to ~x0 in the assumption of ~x : [A,E ] (using existential quan-
tification) before applying the feedback operator and still obtain a specification



semantically equivalent to that which would have been obtained with the original
component.

Hence an alternative definition of the parallel operator which is monotonic
and associative and for which the composite system aborts when one of its
components does is as follows.

~x : [A1,E1] ‖ ~y : [A2,E2] ≡
[µ ~y0\~y ] • ~x , ~y : [∃ ~y0 • A1 ∧ (∀~x • E1 ⇒ A2),E1 ∧ E2],

{~x} ∩ {~y} = ∅

E1 ∧ E2 ∧ ~y0 = ~y ∧ (∃ ~y0 • A1 ∧ (∀~x • E1 ⇒ A2)) ⇒ A1 ∧ (∀~x • E1 ⇒ A2)

The second sidecondition is simply the property E ∧ ~x = ~x0 ∧ (∃ ~x0 • A) ⇒ A
with A, E and ~x = ~x0 replaced by the corresponding predicates from the operator
definition.

4.3 Example

As an example of the use of the parallel composition operator, consider combin-
ing two NOR gates to form a flip-flop [11] as in Figure 6.

out
in2

1in
out

Figure 6: Circuit diagram of flip-flop.

The flip-flop can be specified in terms of piping and feedback. This can be
seen more clearly if we restructure Figure 6 as shown in Figure 7.

out

1in

in
2

out

Figure 7: Alternative circuit diagram of flip-flop.

The component NOR gates are specified as follows.

NOR1 =̂ NOR[in2\out0]
NOR2 =̂ NOR[in1, out\out , out ]

Hence, the flip-flop is specified as FlipFlop =̂ NOR1 ‖ NOR2 provided that the
sideconditions for the use of the parallel operator hold.



The first sidecondition is trivially true. The antecedent of the second side-
condition

out = nor(in1, out0) ∧ out = nor(out , in2) ∧ out0 = out
(∃ out0 : T → B •

{in1, out0} ⊂ fin var ∧
(∀ out : T → B • out = nor(in1, out0) ⇒ {in2, out} ⊂ fin var))

implies out = nor(in1, out) ∧ out = nor(out , in2) ∧ {in1, in2} ⊂ fin var , since
when in1 and out0 are finitely variable then nor(in1, out0) is finitely variable.
(This follows directly from the definition of nor .)

If in1 and in2 are finitely variable, then the NOR gate outputs, out and
out , must also be finitely variable. This is a result of these outputs having a
fixed initial value and only being able to change delay time units after an input
has changed. (Without a delay in the NOR gates, whenever in1 and in2 were
both false, out and out would have opposite values, but could change their
values simultaneously at any time. Hence, they would not necessarily be finitely
variable.)

Hence the above predicate implies {out , out, in1, in2} ⊂ fin var which triv-
ially implies the consequent of the second sidecondition

{in1, out} ⊂ fin var ∧
(∀ out : T → B • out = nor(in, out) ⇒ {in2, out2} ⊂ fin var)

5 Refinement

Given the definition of parallel composition of Section 4, the following rule is
useful for introducing it during refinement.

~x , ~y : [A,E1 ∧ E2]
[ {~x} ∩ {~y} = ∅ ]

~x : [A,E1] ‖ ~y : [A,E2]

This rule is valid since A ∧ (∀~x • E1 ⇒ A) is equivalent to A and hence the
second sidecondition for the parallel composition operator reduces to E1 ∧ E2 ∧
~y0 = ~y ∧ (∃~y • A) ⇒ A. Since ~y are not free in A (since outputs cannot be free
in assumptions), this reduces to E1 ∧ E2 ∧ ~y0 = ~y ∧ A ⇒ A which is trivially
true.

6 Conclusion

We have defined a bi-directional parallel composition operator for the timed
refinement calculus and shown how it can be used to construct specifications
from component specifications. We have also presented a refinement rule which
allows it to be introduced during specification development. The operator is
monotonic with respect to refinement and associative and results in a composite
system aborting when any one of its components aborts.
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