
Rely/Guarantee Reasoning for Noninterference in
Non-Blocking Algorithms

Nicholas Coughlin and Graeme Smith
School of Information Technology and Electrical Engineering

The University of Queensland, Australia
n.coughlin@uq.edu.au, smith@itee.uq.edu.au

Abstract—Noninterference characterizes a security property
in which an attacker cannot determine the inputs to a system
based on outputs of a lower classification. Value-dependent
noninterference enables the analysis of systems in which these
classifications may depend on the system’s state and evolve
throughout execution. Existing approaches to enforcing such a
property for concurrent systems are constrained in their capa-
bility to express how the concurrent components modify shared
variables and, therefore, the value-dependent classifications. Such
approaches typically make use of externally verified annotations
or coarse locking primitives to express limited constraints on
variables, such as read and write permissions. Consequently,
these techniques are insufficient for the analysis of programs that
feature complex concurrent behaviours or require fine-grained
synchronisation, as seen in non-blocking algorithms.

This paper presents a compositional logic for enforcing
value-dependent noninterference properties for complex con-
current algorithms, including non-blocking algorithms. It uses
rely/guarantee reasoning to establish how classifications may be
modified by concurrent components. Additionally, the logic allows
for the specification of security policies at a component level
and ensures their valid composition. These results have been
formalised in Isabelle/HOL.

I. INTRODUCTION

Approaches to demonstrating secure information flow have
been researched extensively, due to their crucial nature in
building secure systems capable of handling data of various
sensitivities. Noninterference [1] formally characterizes an
information flow security property in which an information
source of a particular classification cannot influence sinks
at lower classifications. As a result, a system exhibiting
noninterference would prevent an attacker from determining
secret values given a series of public outputs.

Type systems [2], [3] have been thoroughly explored as
a method of demonstrating noninterference properties. For
concurrent programs, these have utilised rely/guarantee rea-
soning [4] in which assumptions (or rely conditions) about a
component’s environment can be used in reasoning about that
component provided all other components guarantee that the
assumption holds. This provides a scalable analysis technique
in which (sequential) components are considered in isolation
and their results composed to demonstrate a noninterference
property for the entire system. Existing approaches using
rely/guarantee reasoning for non-interference, however, place
significant restrictions on supported programs.

For example, Mantel et al. [5] propose a type system
for concurrent programs which have static classifications for

variables. This approach employs rely/guarantee reasoning by
allowing a program to be annotated with read/write permis-
sions for shared variables, either via a user or external process.
These annotations, being limited to read/write permissions, are
not sufficient for capturing the kinds of assumptions needed
in many concurrent systems. Furthermore, while they simplify
the type checking process, they do so at the cost of an
additional proof obligation establishing the validity of the
annotations and their compatibility between components.

Murray et al. [6] extend this approach to facilitate value-
dependent noninterference in which a variable’s classification
may depend on the value of other variables, referred to as
control variables. Such value-dependent properties are typi-
cally highly dependent on establishing functional correctness
to accurately reason about control variables and their resulting
classifications throughout execution [7]. While this approach
extends Mantel et al.’s to a wider range of programs, it
still suffers the same limitations: assumptions and guarantees
are limited to read/write permissions, and their validity and
compatibility between components needs to be established.
These concerns have been partially addressed in later work
by Murray et al. [8], [9] by allowing for more general
rely/guarantee conditions coupled with locking primitives. The
latter ensure assumptions that are made when a component
holds a lock are guaranteed by all other components when they
do not hold the lock. The fact that only one component can
hold a given lock at a time greatly reduces the proof burden
for the compatibility of annotations between components.

For performance, however, many applications utilise non-
blocking algorithms which avoid the use of locks on shared
variables and data structures [10]. Such algorithms are used
extensively in operating systems and hence underlie all other
applications. For this reason, it is crucial that we have means
of detecting potential security leaks caused by them.

In this paper, we present a logic for the compositional
verification of value-dependent noninterference, for concurrent
programs with shared memory and fine-grained synchroni-
sation, such as non-blocking algorithms. This is a notable
improvement on other work in the field, as it supports general
rely/guarantee conditions when establishing functional prop-
erties of the program; as well as component level security
policies, facilitating non-trivial information flow between a
program’s components; and is entirely self-contained, avoid-
ing the introduction of additional proof obligations exter-



initially:
x := 0; z := 0

write:
x := low in

secret write:
z := z + 1;
x := high in;
...
x := 0;
z := z + 1

read:
do

do
r1 := z;

while (r1 % 2 ̸= 0)
r2 := x;

while (z ̸= r1)
low out := r2

secret read:
high out := x

Fig. 1. Readers/writer example

nal to the logic. These results have been formalised in Is-
abelle/HOL [11]. Additionally, we introduce restrictions on
these rely/guarantee conditions, assisting in automation of
the logic. In Section II, we demonstrate, through a simple
example, where existing logics for concurrent systems fail. In
Section III, we provide an overview of our work, establishing
our programming language and principal definitions. In Sec-
tion IV, we detail the rely/guarantee theory with which we
attain a compositional logic. In Section V, we establish our
logic for demonstrating value-dependent noninterference on
sequential components, and apply it to a simple application
in Section VI. In Section VII, we describe modifications to
simplify application of the logic. Finally, in Section VIII we
detail related work and in Section IX we conclude the paper.

II. APPLICATION

Consider the code in Figure 1 where variables z and x are
shared between all concurrent components, and all other vari-
ables are local. A single writer component places information
in a buffer x using either write or, when the information
is classified, secret write. The latter operation increments a
variable z before placing information in x and then increments
z again after the buffer has been read (the detection of which
is elided in Figure 1) and the buffer cleared (by setting it to
0). Since z is initially 0, this ensures that z is odd whenever
there is classified information in the buffer x.

The operation secret read allows the buffer to be read at
any time and can only be accessed by privileged components;
all other components must read the buffer using read. We
assume an attacker is only able to inspect the result of
read, via low out. This operation ensures that non-privileged
components do not access classified information as follows.
The value of z is repeatedly read into a local variable r1 until
an even value is read. The information in the buffer is then
read into a local variable r2. Finally, a check is made that the
value of z has not changed since it was last read into r1. If this
is the case, the information in r2 is not classified and hence
can be output to the calling component. If, however, z has

changed, it is possible that the information in r2 is classified
and the operation restarts from the beginning.

The check that z has not changed is made by comparing
z with r1. This check is sufficient provided that z always
increases (something we know is true from secret write which
is the only operation to change z). To reason in isolation
about a component calling read requires two things: a value-
dependent security policy stating that x does not contain
classified information when z is even, and an assumption that
z only increases. The former is not supported by the approach
of Mantel et al. [5] which only allows static classifications of
variables. It is supported by the approaches of Murray et al.
[6], [8], [9]. However, none of the existing approaches support
assumptions about the change of a variable: Mantel et al. and
the early work of Murray et al. [6] are limited to assumptions
on read/write permissions to a variable, and the later work of
Murray et al. [8], [9] only supports assumptions on a single
state (an assumption about the change of a variable needs to
involve at least two states).

More importantly, the later work of Murray et al. re-
quires that assumptions be associated with acquiring locks.
The secret write and read operations are based on a Linux
read-write mechanism called seqlock [12], and is a typical
example of a non-blocking algorithm. Such algorithms allow
components to concurrently run the same code with no, or
minimal, use of locking. The idea is that, for efficiency, the
secret write operation can operate without locking (and hence
without delay), and multiple non-privileged components can
call the read operation simultaneously: no component is ever
blocked while waiting to obtain a lock. It is the purpose of this
paper to provide support for reasoning about noninterference
in such non-blocking algorithms.

III. OVERVIEW

This section provides a high level description of the logic
proposed in this paper.

A. Language

We make use of a simple while-language for the purposes
of our logic. Variables either belong to the set Global and
are shared between all components, or the Local set. All
components have the same set of Local variable names,
however, they refer to distinct memory regions. Throughout
examples, as seen in Figure 1, we refer to Local variables by
r1, r2, r3. Other variables are assumed to be Global. We refer
to inputs and outputs of the system by ending their variable
names in in and out respectively. We let b refer to a boolean
expression and let e represent a value expression, with the
constraint they are deterministic and their execution time is
data-independent. Our language is defined as follows1.

c ≡ x := e | skip | c; c |
if b then c else c | while b do c

1The do c while (b) construct used in the code of Figure 1 is simply a
shorthand for c ; while (b) do c.



r1 := z
if r1 = 0 then

r2 := x
else

r2 := 0
low out := r2

Fig. 2. Conditional example

We restrict classifications to operate over a two-point se-
curity lattice, containing High and Low, structured such that
Low ⊑ High and High ̸⊑ Low. Figure 2 demonstrates an
example where a variable x is read conditionally, based on the
value of z, and the result written to an output low out. In this
example, we intend x to have a value-dependent classification,
such that it is Low when z = 0. Moreover, we consider the
variable low out to always be classified as Low. Hence, this
example does not leak information, under the assumption that
no other component changes the value of z, and subsequently
the classification of x, after z is read and before the read of x.

B. Sequential Logic

Our logic operates over individual sequential components,
with a context consisting of the tuple P and Γ. Judgements
are of the form ⊢ {P,Γ} c {P′,Γ′} for a component c.

P encodes a predicate over the current state, in a similar
approach to a Hoare logic. In Figure 2, it would encode the
test outcome in each respective branch. As a result, it would
hold z = 0 in the then-branch, enabling reasoning about the
classification of x at the point it is read.

Value-dependent classifications are encoded as predicates,
as in Murray et al. [6], [8]. Γ encodes the local information
flow context, retaining the classification of values held in
variables based on local writes. To achieve this, it is structured
as a mapping from variables to classification predicates. In
Figure 2, it is necessary to establish that the data held in r2
is of a Low classification to enable the final write to variable
low out. This is achieved via Γ, as both if-statement branches
are able to demonstrate r2 holds a Low value and update Γ(r2)
to map to True, encoding Low.

C. Rely/Guarantee Reasoning

The system is assumed to consist of a static set of sequential
components, each of which require a valid logic judgement.
Rely/guarantee reasoning is then employed to compose these
judgements and establish an information flow property over the
entire system. To achieve this, two forms of rely/guarantee an-
notations are introduced for each component. The first enforces
functional correctness properties, which we detail here, whilst
the second describes information flow between components,
which we provide an overview of in Section III-D.

For functional correctness, each component is coupled with
a rely, ℛ, and guarantee, 𝒢. These definitions follow the
standard style of rely/guarantee reasoning, where ℛ and 𝒢
are relations on memories. A component assumes all others,

collectively referred to as the environment, conform to the
relation ℛ and guarantees its own actions conform to 𝒢.

Applying this to the sequential logic, P and Γ must be
stable with respect to the rely condition ℛ, i.e., they cannot be
invalidated by any interleaved actions from the environment.
To illustrate, the predicate z = 0 would be stable only if ℛ
prevented the environment from modifying z. Additionally, the
logic must ensure a component’s actions conform to its own
guarantee relation.

For rely/guarantee reasoning a proof of compatibility be-
tween the relations is necessary, such that, for any two
components in the system, the rely relation of one contains
the guarantee relation of the other. As the ℛ and 𝒢 relations
apply to the entire execution of a component, this proof of
compatibility is relatively straightforward.

Applying this to the running example, it is necessary to
show the environment will not redefine z between its read and
the later read of x. Under one definition, the environment could
be constrained by z = z′, a relational predicate encoding of ℛ,
stating that z is not modified. Consequently, it will preserve
the value of z under all conditions, resulting in the predicate
z = r1 being considered stable.

Alternatively, the constraints on the environment could be
weakened to z = 0 ⇒ z = z′, stating that the environment will
not modify z once it is equal to 0. Hence, the predicate must
be weakened to achieve stability whilst preserving information,
attaining r1 = 0 ⇒ z = r1. It is then possible to demonstrate
r1 = z and, subsequently, x’s classification as Low for the
then-branch.

D. Security Policies

In this work, information flow properties are encoded as
security policies, mapping Global variables to classification
predicates. Our approach supports the enforcement of a global
security policy, ℒ, which is intended to hold throughout
all stages of the system’s execution. In the running exam-
ple, this would encode the value-dependent classifications as
ℒ(low out) ≡ True and ℒ(x) ≡ z = 0.

This security policy serves two purposes, as it describes
the classifications of inputs and outputs of the system, in
addition to providing a means for components to coordinate
their information flow. However, there are cases where a single
global policy is insufficient.

For example, consider a privileged component, capable of
storing High information to a variable, where all others can
only store Low. It is not possible to encode this situation given
a single policy, as a more restrictive policy must be enforced
on the privileged component’s environment. This can be seen
in Figure 1, where only secret write may write a High value.

To support such a scenario, the approach allows for the
specification of two security policies for each component: ℒG,
which constrains the component’s own writes; and ℒR, which
restricts the writes due to the environment. These policies
are constrained to correspond to the desired global policy ℒ
along with proofs of compatibility, similar to the functional
correctness rely/guarantee relations.



IV. COMPOSITIONAL NONINTERFERENCE

We first detail the semantics of our concurrent system, along
with our definition of secure information flow at a global
level. Following this, we describe our compositional technique,
which extends prior work [6] to enable a wider variety of
security policies in a self-contained logic. The definitions and
theorems presented here can be considered a specialisation
of the rely/guarantee parallel rule [4], describing how to
appropriately compose the analysis of individual threads.

A. Preliminaries

Let ⟨c,mem⟩ denote the configuration of a component,
where c is the executing code of the component and mem
encodes memory as a mapping from variables to values. The
memory in this configuration has a domain that includes Local
and Global variables. We use → to denote a transition over
local configurations using small step semantics, which are
assumed to be deterministic.

Let (comp,memG) denote the state of the system, where
memG encodes the memory for only Global variables and
comp consists of a list of sequential components. These
components are represented as a tuple, (c,memL), such that
c is the program code and memL encodes the memory for
Local variables. We define transitions for global configurations
as →i, where i refers to the index of the local component
performing an action.

i < |comp|
comp[i] = (c,memL)

⟨c,memG + memL⟩ → ⟨c′,mem′
G + mem′

L⟩
(comp,memG) →i (comp[i ↦→ (c′,mem′

L)],mem′
G)

(1)

We use m1+m2 to represent the merging of two mappings,
under the assumption that their domains do not overlap. We
also introduce l[i] for accessing index i of list l, # as list
concatenation, and |l| for the length of list l. Additionally, we
define a list update as l[i ↦→ e] which updates the ith position of
l to value e. The structure of our global transitions provides
each component with a local memory and clearly enforces
their separation.

In this work, we assume a fixed schedule, preventing exe-
cution behaviour from influencing later scheduling decisions.
Moreover, we assume a fixed set of components. As a result,
we can express the scheduler as a list of component indices
and define its execution in terms of (1).

(comp,memG) −→[] (comp,memG) (2.1)

(comp,memG) →i (comp′,mem′
G)

(comp′,mem′
G) −→t (comp′′,mem′′

G)

(comp,memG) −→i#t (comp′′,mem′′
G)

(2.2)

B. Security Policies

To facilitate value-dependent classifications with composi-
tionality, our approach employs several static security poli-
cies. These policies map variables to predicates stating the
conditions under which the variable is considered to hold Low

information. For example, a security policy mapping x to c = 0
would require x to hold Low information whenever c is 0.

Similar to prior work [6], we introduce a global security
policy ℒ, which the system conforms to at all stages through-
out execution. However, to capture a wider variety of secure
behaviours, we allow ℒ to be broken down into further policies
at the component level. Each component may introduce poli-
cies ℒR and ℒG, named to parallel the rely/guarantee relations,
such that ℒG constrains information flow due the component’s
own writes, whilst ℒR constraints those of other components.
Moreover, to ensure components still conform to the global
security policy ℒ, all component level policies must match
the global, such that ∀ x · ℒ(x) = ℒR(x) ∧ ℒG(x).

Noninterference is commonly established via low equiva-
lence between two program configurations under a bisimula-
tion. This property enforces equivalence between the two con-
figurations for all variables classified as Low. Consequently, it
is not possible to distinguish the two program configurations
via inspection of only Low variables.

We introduce the following definition of low equivalence
between two memories, given a security policy l for a set of
variables V .

mem1 =l,V mem2 ≡ (3)
∀ x ∈ V. eval mem1 (l x) ∨ eval mem2 (l x) ⇒

mem1 x = mem2 x

where eval mem P is the evaluation of predicate P on mem.
This representation of low equivalence allows for the two

memories to disagree on the classification of a variable,
however, it will always take the lowest classification of the
two, preventing a potential leak from the perspective of both
memories. It is a notable extension, compared to other work,
as the variables referenced in the security policies are uncon-
strained. We use the shorthand mem1 =l mem2 to represent
low equivalence on all variables.

This definition may introduce a side-channel attack, de-
pending on the model of the attacker and the system. For
example, consider a system where an attacker is permitted to
read variables with value-dependent classifications only when
these classifications evaluate to Low, but is denied access
otherwise. In the event that High information influences these
permissions, an attacker may be capable of distinguishing two
executions based on differences in permissions. We would
consider this a leakage via this hypothetical permission system,
rather than an issue with our definition of low equivalence.
Consequently, we constrain the attacker to only accessing
outputs of the system that are statically classified as Low. Vari-
ables with value-dependent classification are instead used for
describing information flow between the system’s components.

C. Relations

To achieve a simple compositional approach, based on
rely/guarantee reasoning, we introduce rely and guarantee
relations that encapsulate the security policy definitions, ℒR

and ℒG, in addition to the relations ℛ and 𝒢 constraining
program behaviour.



As these encapsulating relations, which we refer to as
ℛp and 𝒢p, include both bisimulation and behavioural
properties, it is necessary to encode them as relations
over pairs of bisimilar memories. To illustrate, given
((mem1,mem2), (mem′

1,mem′
2)) ∈ 𝒢p, the component would

transition mem1 to mem′
1 and mem2 to mem′

2 whilst potentially
establishing bisimulation properties between mem′

1 and mem′
2

given suitable properties between mem1 and mem2.

ℛp ≡ {((mem1,mem2), (mem′
1,mem′

2))· (4)
(mem1,mem′

1) ∈ ℛ ∧
(mem2,mem′

2) ∈ ℛ ∧
mem′

1 =ℒ mem′
2 ∧

mem′
1 =ℒR,Vd mem′

2}

𝒢p ≡ {((mem1,mem2), (mem′
1,mem′

2))· (5)
(mem1,mem′

1) ∈ 𝒢 ∧
(mem2,mem′

2) ∈ 𝒢 ∧
mem′

1 =ℒ mem′
2 ∧

mem′
1 =ℒG,Vd mem′

2}
where Vd = diff mem1 mem′

1 ∪ diff mem2 mem′
2.

We define ℛp and 𝒢p for each component, based on the
definitions above. These definitions first enforce the com-
ponent’s ℛ and 𝒢 relations across all transitions, ensuring
rely/guarantee reasoning is fully supported by the logic. This
is crucial to establishing a self-contained analysis capable of
capturing a variety of synchronisation behaviours, in contrast
to other approaches where annotations or locks are employed.

Two low equivalence properties are required to constrain
information flow. The first, mem′

1 =ℒ mem2, ensures both the
component and the environment preserve the global security
policy ℒ across all variables. Consequently, a local analysis
can always assume this security property holds at a minimum.
The remaining property enforces the more specific component
level security policy, ℒR or ℒG, restricted to only those
variables that have been modified, Vd.

This enables information flow reasoning at a component
level to distinguish between the environment and itself, as
motivated in Section III-D. As a result, a component can
guarantee a more restrictive classification ℒG(x) when writing
to x, in comparison with ℒ(x), or assume a more restrictive
policy on the environment’s writes to x, ℒR(x).

Note it would be possible to use the individual properties
(ℒR, ℒG, ℛ, 𝒢) rather than the relations ℛp and 𝒢p throughout
the following definitions. However, merging them simplifies
definitions and corresponding proofs as it assists in the reuse
of standard rely/guarantee properties and theorems.

D. Compositional Bisimulation

We can now define the bisimulation at both a global and
component level. We use the syntax (c1,mem1) ℬ (c2,mem2)
to represent a bisimulation ℬ within which component c1
and memory mem1 are related to component c2 and memory

mem2. For a component with guarantee 𝒢p, we introduce the
definition of a bisimulation extended to enforce its guarantee.

bisim ℬ 𝒢p ≡ (6)
sym ℬ ∧ ∀ c1 mem1 c2 mem2 c′1 mem′

1.

(c1,mem1) ℬ (c2,mem2) ⇒
⟨c1,mem1⟩ → ⟨c′1,mem′

1⟩ ⇒
(∃ c′2 mem′

2.

⟨c2,mem2⟩ → ⟨c′2,mem′
2⟩ ∧

((mem1,mem2), (mem′
1,mem′

2)) ∈ 𝒢p ∧
(c′1,mem′

1) ℬ (c′2,mem′
2))

where sym ℬ ≡ ∀ x y · (x, y) ∈ ℬ ⇒ (y, x) ∈ ℬ
Moreover, we introduce stability for the bisimulation, en-

suring the relation is preserved across memory changes due to
the environment, based on a component’s rely ℛp.

stable ℬ ℛp ≡ (7)
∀ c1 mem1 mem′

1 c2 mem2 mem′
2.

(c1,mem1) ℬ (c2,mem2) ⇒
((mem1,mem2), (mem′

1,mem′
2)) ∈ ℛp ⇒

(c1,mem′
1) ℬ (c2,mem′

2)

We couple these definitions into a single property for a
secure component, given its relations, ℛp and 𝒢p, as well as
initial conditions P, denoted as a set of memory pairs.

secure c P ℛp 𝒢p ≡ (8)
∀(mem1,mem2) ∈ P · ∃ ℬ.

bisim ℬ 𝒢p ∧ stable ℬ ℛp ∧
(c,mem1) ℬ (c,mem2)

Given such a bisimulation exists for all components, we
can then compositionally establish a bisimulation over the
entire system. It is necessary to express compatibility between
components, such that given a component, all others will
conform to its rely relation.

compat ℛps 𝒢ps ≡ (9)
∀ i < |ℛps| · ∀ j < |𝒢ps| · i ̸= j ⇒ 𝒢ps[j] ⊆ ℛps[i]

where we introduce the notation ℛps and 𝒢ps to refer to lists
of ℛp and 𝒢p respectively, such that ℛps[i] refers to the rely
relation for the ith component. This definition of compatibility
is standard for rely/guarantee reasoning.

Finally, we introduce the definition of a globally secure
system, which preserves the global security policy ℒ given
the evaluation of any schedule t, including partial schedules.

secureG comp ≡
∀mem1 mem2 · mem1 =ℒ mem2 ⇒

∀ t comp′ mem′
1·

(comp,mem1) −→t (comp′,mem′
1) ⇒

(∃mem′
2 · (comp,mem2) −→t (comp′,mem′

2) ∧
mem′

1 =ℒ mem′
2)

(10)



Theorem 1: Given a component, c, along with its individual
rely/guarantee relations, ℛ and 𝒢, and its security policies,
ℒR and ℒG, it is possible to derive its rely/guarantee relations
over paired memories, ℛp and 𝒢p. Therefore, given a series of
components, comp, and their derived rely/guarantee relations,
ℛps and 𝒢ps, along with proofs that these components exhibit
the desired bisimulation, secure, and compatibility properties,
the global security property secureG can be established.

compat ℛps 𝒢ps

P ≡ {(mem1,mem2) · mem1 =ℒ mem2}
∀ i < |comp| · secure comp[i] P ℛps[i] 𝒢ps[i]

secureG comp
Theorem 1 can be established using a similar approach

to establishing the rely/guarantee parallel rule. We show the
global property holds by defining a global bisimulation in
terms of the local bisimulations provided in the premisses and
inducting on the schedule t in secureG. The base case of
an empty schedule is trivial, as the global security policy is
known to hold initially.

For the inductive case, a component is selected and exe-
cuted. It is necessary to establish the global security policy
on the resulting memory state, as required by secureG, and
reestablish the secure properties for all components.

Given the bisim property for the selected component,
we can show that the post configuration remains within its
bisimulation, reestablishing its secure bisimulation property.
Moreover, this transition is constrained by 𝒢ps[i], and there-
fore enforces the global security policy ℒ, as required by
secureG. For all other components, we employ the com-
patibility premise to show the transition satisfies their rely
relations. Therefore, it is possible to reestablish their secure
bisimulation properties.

Consequently, a local analysis capable of establishing
secure comp[i] P ℛps[i] 𝒢ps[i] for all components in the system
and corresponding proofs of compatibility can demonstrate a
global security property.

V. SEQUENTIAL LOGIC

We introduce a logic based on this theory capable of
demonstrating the desired local security property. As this
logic operates on a single set of ℛ, 𝒢, ℒ, ℒR and ℒG

specifications we assume they are available throughout the
following definitions.

A. Logic Context

The logic encodes a forward pass over a component’s code,
maintaining a context across actions and environment steps
throughout. This context consists of P, a predicate over the
local and global memory, and Γ, a partial mapping from
variables to the classification of the values they hold. Hence,
Γ tracks value classifications within a component, whilst the
security policies ℒ, ℒR and ℒG define information flow at a
global, compositional level. P is required to enable context-
aware reasoning over these value-dependent classifications.

We define the initial context as P ≡ True and an empty
mapping for Γ, encoding the weakest possible context. How-
ever, any wellformed context, which we define in Section V-C,
would be acceptable.

To manipulate the context, we introduce update functions
for assignments and the environment. These updates require
the introduction of temporary variables to retain information
across reassignment and express complex rely conditions. To
illustrate this, consider the implications of an assignment
x := e. Any references to x in P and Γ must be removed,
and the new definition of x added to P. To achieve this and
retain existing information, we replace prior references to x
with a fresh temporary variable t. This is a slight modification
of strongest postcondition for an assignment to appropriately
handle the divided context of P and Γ.

{P,Γ}+ [x := e] ≡ {P[t/x] ∧ x = e[t/x],Γ[t/x]} (11)

where Γ[t/x] replaces all references to x in Γ’s range with
references to t.

B. Classifications

Similar to prior work in value-dependent logics [6], [8],
[9], variable classifications are expressed as predicates, such
that a variable is considered Low if its classification predicate
evaluates to true. Throughout the logic’s rules, these classifica-
tion predicates may be derived from ℒR, ℒG or ℒ, depending
on the context. Additionally, we enforce the constraint that a
variable may not refer to itself in its classification, formally
x ̸∈ vars l where l ∈ {ℒ(x),ℒG(x),ℒR(x)} and vars e denotes
the free variables referenced in an expression or predicate. This
simplifies the logic’s rules without being overly restrictive.

When modifying a variable x, a component should consider
ℒG(x), the security policy governing its writes. However, it is
not immediately obvious which security policy to use when
reading x, as security policies ℒR and ℒG apply to writes
from the environment and component respectively, and the
most recent write could be derived from either. In this worst
case, it is necessary to consider the global policy ℒ(x) as this
encompasses both situations.

It is possible to determine more accurate classifications
via Γ, as it maps variables to their value’s classification.
Consequently, Γ may hold a more specific classification for
the read of a variable, such as capturing situations where a
variable is considered to be High in ℒ but has been written Low
locally. To simplify the use of Γ, we introduce a total mapping
Γ⟨x⟩, which defaults to the worst case of ℒ if necessary.

Γ⟨x⟩ ≡

⎧⎨⎩ Γ(x) if x ∈ dom Γ
ℒ(x) if x ∈ Global
False otherwise

(12)

We treat Local variables as if they cannot be read by another
component or attacker. As a result, they are able to hold values
of any classification, encoded by the predicate False. More-
over, we introduce notation for determining the classification



of an expression, which evaluates to a conjunction over the
classifications of its reads.

Γ ⊢ e : t ≡ t =
⋀︁

y∈vars e

Γ⟨y⟩ (13)

Additionally, we introduce comparisons on classifications
via predicate entailment. For example, if it can be shown
that ℒ(y) is true in all contexts where ℒ(x) is true, formally
ℒ(x) ⇒ ℒ(y), the classification of y is considered lower than
x. Consequently, it is always safe to perform the assignment
x := y, as any context where x is Low would imply y is
Low. Furthermore, these comparisons can be made context
aware through the consideration of the current program state
predicate P using P ∧ ℒ(x) ⇒ ℒ(y). For brevity, we employ
the abbreviation t ≤:P t′ ≡ P ∧ t′ ⇒ t.

C. Wellformedness
We introduce a series of wellformedness properties for the

logic context enforcing stability from the perspective of the
rely specification ℛ and ℒR. These allow us to establish
the stable property defined in Section IV-D, and hence that
environment steps cannot invalidate the context or the local
logic’s judgements. First, we require stability on our state
predicate P with respect to ℛ, in the traditional sense from
rely/guarantee reasoning.

stable P P ≡ ∀mem mem′. (14)
eval mem P ∧ (mem,mem′) ∈ ℛ ⇒ eval mem′ P

Second, it is necessary to consider how the environment
may invalidate Γ. Consider a mapping Γ(x) = t stating that the
variable x holds a value with classification t. If the environment
modifies x, its new value is constrained by the security policy
ℒR(x), regardless of t. Hence, the new classification of x’s
value must be considered as t ∧ ℒR(x), stating the value is
Low if its value t was Low prior to any potential environment
steps and if the environment’s writes were also Low values,
ℒR(x). Therefore, if it is possible to demonstrate ℒR(x) is true
in the current state P, the classification of x’s value can be
considered unmodified. Furthermore, the classification of x’s
value is trivially unmodified if the environment is prevented
from writing to x due to constraints in ℛ. We encode these
properties as the set of variables low or eq, which forms the
domain of a stable Γ.

low or eq P ≡ {x · P ⇒ ℒR(x) ∨
∀mem mem′·

eval mem P ∧ (mem,mem′) ∈ ℛ ⇒
mem x = mem′ x}

(15)

Furthermore, the predicates in Γ’s range may refer to
variables modified by an environment step. Consequently,
the environment may modify the interpretation of a value’s
classification. To account for this, we introduce a stability
property for Γ’s predicates.

stable Γ P Γ ≡ ∀mem mem′.

eval mem P ∧ (mem,mem′) ∈ ℛ ⇒
∀ x ∈ dom Γ · eval mem Γ(x) = eval mem′ Γ(x)

(16)

As the predicates in Γ track classifications, they may not
hold sufficient information to demonstrate restrictions on the
environment steps. Hence, it is necessary to restrict the initial
memory mem by P. Moreover, it is necessary to require equiv-
alent interpretations of predicates in Γ across an environment
step rather than implication as seen in the stability property
for P. This is required as it is possible that eval mem Γ(x)
is false to encode a High value. If implication were used, the
interpretation of Γ(x) on the modified memory mem′ would, in
this case, be unconstrained. These wellformedness properties
are encapsulated in the definition context wf P Γ.

context wf P Γ ≡ (17)
stable Γ P Γ ∧ stable P P ∧ dom Γ ⊆ low or eq P

D. Rely/Guarantee Relations
To simplify the definition and application of the logic’s

rules, we introduce common constraints on the ℛ and 𝒢
relations. The first of these restricts ℛ to exhibit transitivity
and reflexivity. Transitivity allows for the consideration of
multiple environment steps at once, whilst reflexivity encodes
the possibility of no environment steps. 𝒢 is restricted to
exhibit reflexivity, avoiding constraints which would limit the
current component’s actions to those that mutate the global
state.

Definitions thus far have employed the memory relation
encodings of the rely/guarantee conditions, whilst the context
encoding has employed predicates. To bridge this divide for
concrete steps in the logic, we make use of the relational
predicate encodings R and G for ℛ and 𝒢 respectively. For
example, a relation predicate z ≤ z′ specifies an equal or
increasing z, where the primed variant refers to the modified
variable.

Given R, it is possible to derive an update function for the
context, ensuring the resulting state conforms to context wf
and, therefore, remains valid across any number of environ-
ment steps. To achieve this, we first define a mapping m from
Global variables to fresh temporary variables. Additionally,
we define a mapping m′ from primed Global variables to their
unprimed counterparts. Applying these mappings to P and R
respectively, establishes a predicate that will be stable in R as
defined by stable P.

P + R ≡ P[ ↦→ m] ∧ R[↦→ (m + m′)] (18)

where P[ ↦→ m] denotes mapping m applied to predicate P.
P + R is stable as P[↦→ m] will contain no references to

Global variables and R[↦→ (m + m′)] is stable due to the
transitive property of ℛ.

To illustrate, consider the example of R ≡ z ≤ z′ and
P ≡ r = z ∧ x = 0. The mapping m may be defined as
m ≡ [z → t1, x → t2]. Therefore, an application of this
update would produce P + R = (r = t1 ∧ t2 = 0) ∧ (t1 ≤ z).
The constraint on r and z is weakened across the update, from
= to ≤ whilst information regarding x has been lost, due to a
lack of restrictions in R.

This approach can also be applied to attain a stable Γ. Pred-
icates within Γ are updated using the mapping m, preserving



relationships between P and Γ. The resulting predicates in Γ
are obviously stable as they do not refer to Global variables.
Additionally, it is necessary to consider the domain of Γ. We
employ the stable predicate P + R to determine the set of
low or eq variables and restrict the domain accordingly.

{P,Γ}+ R ≡ (19)
{P + R, 𝜆 x ∈ low or eq (P + R) · Γ(x)[↦→ m]}

The resulting context satisfies all three wellformedness
properties, and is therefore stable across environment steps.
However, these definitions have obvious flaws from the per-
spective of automation. This can be primarily seen in the
modification of P, which will be extended by R at every pos-
sible interleaving of environment steps. Given a large R, this
quickly becomes prohibitively expensive without intervention
to simplify the state. We employ this inefficient representation
to simplify our soundness proof and retain a general logic. We
introduce alternative definitions of {P,Γ} + R to reduce this
cost in the Section VII.

When considering G, it is necessary to prove the compo-
nent’s actions conform to its guarantee. This can be done via
predicate reasoning. Note that only a Global assignment has to
be considered, as no other action will modify global memory.

guar P (x := e) ≡ (20)
P ∧ x′ = e ∧ (∀ y · y ̸= x ⇒ y = y′) ⇒ G

E. Rules

The SKIP and SEQ rules follow the standard structure seen
in Hoare logic. For the CONSEQ rule, we introduce an ordering
on contexts.

P,Γ ≥ P′,Γ′ ≡ (21)
context wf P Γ ⇒ context wf P′ Γ′ ∧
∀ x. Γ⟨x⟩ ≤:P Γ′⟨x⟩ ∧ P ⇒ P′

The ordering enforces preservation of wellformedness
across the states, therefore preserving wellformedness across
the entire CONSEQ rule. Moreover, it enforces an ordering
on P via entailment, in a similar approach to the CONSEQ
rule in Hoare logic. Finally, it enforces an ordering on Γ via
classification comparison ensuring the classifications in the
stronger state are lower than those in the weaker. As a result,
any valid information flow in the weaker state will be valid in
the stronger.

The IF rule restricts the classification of the guard to
being Low, therefore avoiding potential side-channels due to
different branch outcomes or timing differences. The guard
result is introduced into the respective branch, along with an
application of +R to enforce stability. A similar approach
is used for the WHILE rule, establishing a Low guard and
encoding the loop invariant. Both of these rules are not
immediately applicable to automation in this form and can
be specialized via combination with the CONSEQ rule as in
prior work [6].

The simplest assignment rule, ASSIGNL, considers writes
to Local variables. Due to their static High classification,

SKIP ⊢ {P,Γ} skip {P,Γ}

⊢ {P,Γ} c1 {P′,Γ′} ⊢ {P′,Γ′} c2 {P′′,Γ′′}
SEQ

⊢ {P,Γ} c1; c2 {P′′,Γ′′}

⊢ {P1,Γ1} c {P′
1,Γ

′
1}

P2,Γ2 ≥ P1,Γ1

P′
1,Γ

′
1 ≥ P′

2,Γ
′
2CONSEQ

⊢ {P2,Γ2} c {P′
2,Γ

′
2}

Γ ⊢ b : t
P ⇒ t

⊢ {(P ∧ b,Γ) + R} c1 {P′,Γ′}
⊢ {(P ∧ ¬ b,Γ) + R} c2 {P′,Γ′}

IF ⊢ {P,Γ} if (b) then c1 else c2 {P′,Γ′}

Γ ⊢ b : t
P ⇒ t ⊢ {(P ∧ b,Γ) + R} c {P,Γ}

WHILE ⊢ {P,Γ} while (b) do c {{P ∧ ¬ b,Γ}+ R}

x ̸∈ Global Γ ⊢ e : t
ASSIGNL ⊢ {P,Γ} x := e {{P,Γ[x → t]}+ [x := e] + R}

x ∈ Global
Γ ⊢ e : t

t ≤:P ℒG(x)
fall P Γ (x := e)
guar P (x := e)

ASSIGNG ⊢ {P,Γ} x := e {{P,Γ[x → t]}+ [x := e] + R}
Fig. 3. Rules of the logic.

it is not necessary to perform classification comparisons for
these assignments. Hence, the context is updated with the new
classification t for the value in x, followed by updates for the
assignment and environment.

The second assignment rule, ASSIGNG, considers writes
to Global variables. As this operation is constrained by the
guarantee properties and information flow, it is the most
intricate. First, it is necessary to consider the information flow
due to the assignment, achieved via a classification comparison
between the expression’s classification and the guaranteed
classification, ℒG.

Second, it is necessary to consider the effects of this
assignment on the classifications of other variables. Consider
the case of y := r; x := 0, where ℒ(y) ≡ x = 0. After the
execution of this snippet, the global security policy will claim
y holds Low information, as ℒ(y) will be true. However, this
may not be the case, as r may have held High information.
Consequently, it is possible to violate the security policy
indirectly, due to changes in classifications, rather than direct
information flow.

To account for this, we enumerate all variables whose global
security policy may be influenced by x := e, achievable by
inspecting the free variables referenced in their respective ℒ
predicates. Given an influenced variable y, we can establish a
rising or equal classification across the assignment x := e via



the comparison ℒ(y) ≤:P ℒ(y)[e/x]. If this does not hold, the
global classification of y may be falling. Hence, it is necessary
to restrict the classification of its value, corresponding to r in
the prior example. Given this classification is Low whenever
the new classification of y is Low, the indirect leak can
be prevented. Again, this is established via a classification
comparison Γ⟨y⟩ ≤:P ℒ(y)[e/x]. We merge these comparisons,
attaining the definition fall.

fall P Γ (x := e) ≡ (22)
∀ y · x ∈ vars ℒ(y) ⇒ (Γ⟨y⟩ ∨ ℒ(y)) ≤:P ℒ(y)[e/x]

The third proof obligation pertains to the component’s
guarantee G, which has been described in Section V-D.

F. Soundness

The compositional theory in Section IV and the logic’s
rules have been encoded in Isabelle/HOL, building off prior
work from [5] and [6]. The encoding and proof of sound-
ness total ∼3K lines. We have shown the logic establishes
a local bisimulation, which satisfies the constraints seen in
secure. The bisimulation enforces a local security policy
ℒΓ ≡ 𝜆 x · ℒ(x) ∨ Γ⟨x⟩, such that x is considered Low if
it is required by the global security policy or can be shown
locally via Γ.

(c,mem1) ℬ (c,mem2) ≡ (23)
⊢ {P,Γ} c {P′,Γ′} ∧ context wf P Γ ∧
eval mem1 P ∧ eval mem2 P ∧
mem1 =ℒΓ mem2

The bisimulation is clearly symmetric, due to the symmetry
of low equivalence. Moreover, it is possible to establish
stability due to the wellformedness property. Establishing the
bisimulation property is an involved process, consisting of an
induction over the language’s small-step semantics. The logic’s
proof obligations are then sufficient to establish the various
intermediate states satisfy the component’s guarantees and re-
establish the bisimulation.

Therefore, the global security property can be established
via analysis of individual components and proof of compati-
bility for the externally provided rely/guarantee conditions and
security policies, coupled with Theorem 1. The full encoding is
available at https://bitbucket.org/n coughlin/rg-if/src/master/.

VI. APPLICATION REVISITED

As a demonstration of the logic, we apply it to the exam-
ple from Section II, partially reproduced in Figure 4. Each
operation is treated as being run by an individual component,
with default initial conditions. We introduce an initial predicate
∃ n. z = 2 * n for secret write only.

We first establish the security policy, along with rely and
guarantee conditions. Data flows from one of the two in-
puts high in or low in to one of the two outputs high out
or low out. The security policy should prevent the flow of
information from high in to low out. To express this, we
establish ℒ(high in) ≡ ℒ(high out) ≡ False and ℒ(low in) ≡

write:
x := low in

secret write:

z := z + 1;
x := high in;
...
x := 0;
z := z + 1

read:

do
do

r1 := z;
while (r1 % 2 ̸= 0)
r2 := x;

while (z ̸= r1)
low out := r2

secret read:
high out := x

Fig. 4. Readers/writer example

ℒ(low out) ≡ True. Communication between the two threads
occurs via x and z, such that x holds High information
when z is odd and Low otherwise. This can be expressed as
ℒ(x) ≡ ∃ n. z = 2 * n. We set ℒ(z) ≡ True, as it never holds
High data.

For rely and guarantee conditions, we need to establish that z
is always increasing for read to function correctly. Moreover,
it is evident that only secret write will write a High value
to x. As a result, we can restrict all other components from
writing High values to x in the security policy, simplifying the
application of the logic to secret write.

Gsecret write ≡ z′ ≥ z

Gotherwise ≡ z = z′

Rread ≡ z′ ≥ z

Rsecret write ≡ z′ = z

Rotherwise ≡ True

ℒG(x)secret write ≡ ∃ n. z = 2 * n

ℒG(x)otherwise ≡ True

ℒR(x)secret write ≡ True

ℒR(x)otherwise ≡ ∃ n. z = 2 * n

It is straightforward to demonstrate compatibility between
these specifications. For the rely/guarantee specifications, only
Rread introduces a restriction. This is obviously true given both
possible G specifications, as z′ ≥ z ∨ z = z′ ⇒ z′ ≥ z.
The security policies only differ between components for x.
In this case, it is obvious that ℒR(x)secret write ⇒ ℒG(x)otherwise

and ℒR(x)otherwise ⇒ ℒG(x)secret write. As security policies are
shared for other variables, their proofs are trivial.

We will first consider the write component. As x is a
global, it is necessary to apply ASSIGNG. These examples
feature various uses of this rule, so we introduce the following
structure to its proof obligations:

∙ Information flow: Γ ⊢ e : t, P ∧ ℒG(x) ⇒ t
∙ Falling classifications: fall P Γ (x := e)
∙ Guarantee: guar P (x := e)

For x := low in, these proof obligations are trivial. The clas-
sification of the expression low in is True via a consultation
of ℒ. As a result, P ∧ ℒG(x) ⇒ True can be discharged. As x
cannot influence classifications, it cannot cause a classification
to fall, eliminating this proof obligation. Additionally, the
guarantee for the write component only constrains z, so a

https://bitbucket.org/n_coughlin/rg-if/src/master/


write to x can be ignored. As there are no further instructions
in this component, it has been verified.

We will now consider secret write. As this component is
more complex, we will establish the logic context between
each line. We use the shorthand x :: t to represent mappings
in Γ.

{∃ n. z = 2 * n}
z := z + 1
{∃ n. z = 2 * n + 1 ∧ z :: True}
x := high in
{∃ n. z = 2 * n + 1 ∧ z :: True ∧ x :: False}
...
x := 0
{∃ n. z = 2 * n + 1 ∧ z :: True ∧ x :: True}
z := z + 1

Again, we can establish the local security property for
this component through application of the ASSIGNG rule.
Considering the first assignment to z, we must work through
the three proof obligations outlined above. For the information
flow test, ℒ(z) ≡ True, resulting in a trivially Low expression.
For the falling classification obligation, it is necessary to show
the classification of x is not falling. As we know ∃ n. z = 2*n,
we can show ℒ(x) is true prior to the assignment, indicating
it is not falling. Finally, we can show the value of z is
increasing, satisfying the guarantee. We then compute a post
state, with the new value of z. Due to the rely condition, we can
establish that no other component will modify z, allowing for
the preservation of all information across environment steps.

For the first assignment to x, we only have to con-
sider the information flow test, for reasons outlined
prior in write. This introduces the proof obligation
∃ n. z = 2 * n + 1 ∧ ∃ n. z = 2 * n ⇒ False, as ℒ(high in) ≡
False and ℒ(x) ≡ ∃ n. z = 2 * n. This is true, due to the
contradiction on the left side of the implication. The post state
for this action introduces an entry for x in Γ. As all other
components are restricted to writing Low values to x, evident
in ℒR(x) ≡ True, it’s Γ mapping can be preserved.

For the next assignment to x, we have a trivially Low expres-
sion. As a result, all proof obligations are straightforward to
discharge. In the post state, the mapping for x in Γ is updated
to True accordingly. Again, this mapping can be preserved due
to ℒR(x) ≡ True.

Finally, we have the second assignment to z. Similar to
the first assignment, it is trivial to demonstrate the informa-
tion flow check and guarantee specification. However, this
assignment will result in the classification of x falling, as it
is High in the pre state and Low in the post. Therefore, it is
necessary to show Γ⟨x⟩ ≤:P ℒ(x)[z+1/z] which corresponds to
P ∧ ℒ(x)[z+1/z] ⇒ Γ⟨x⟩ or (∃ n. z = 2*n+1) ∧ (∃ n. z+1 =
2 * n) ⇒ True in the current state, which is obviously true.
Note that this is only possible due to the preservation of x in
the domain of Γ due to the component specific security policy.

For secret read we apply the ASSIGNG rule to high out :=
x. This case is trivial, as the classification of high out is False,
discharging the proof obligation. Similar to prior cases, we can

ignore the other two proof obligations.
The read component introduces the most complexity. It

relies on the increasing value of z to detect an interleaving
with secret write to roll back and re-attempt the read.

We introduce the following rule for do loops, which is a
composition of SEQ and WHILE.

Γ′ ⊢ b : t
P′ ⇒ t

⊢ {P,Γ} c {P′,Γ′}
⊢ {{P′ ∧ b,Γ′}+ R} c {P′,Γ′}

DO ⊢ {P,Γ} do c while (b) {{P′ ∧ ¬ b,Γ′}+ R}
Note that, given {P′ ∧ b,Γ′} + R ≥ P,Γ and the first

proof over c, ⊢ {P,Γ} c {P′,Γ′}, it is possible to establish
the second proof over c via the CONSEQ rule. This will be
the case for both loops in read, as they have initial conditions
that correspond to the weakest logic context, in which P is
True and Γ contains no mappings.

do
do

r1 := z
{r1 ≤ z ∧ r1 :: True}

while (r1%2 ̸= 0)
{r1 ≤ z ∧ r1%2 = 0 ∧ r1 :: True}
r2 := x
{r1 ≤ tz ∧ tz ≤ z ∧ r2 :: ∃ n. tz = 2 * n ∧ · · · }

while (z ̸= r1)
{r1 ≤ tz ∧ tz ≤ t′z ∧ t′z = r1 ∧ t′z ≤ z ∧ r1%2 = 0 ∧ · · · }
{r1 ≤ tz ∧ tz ≤ r1 ∧ r1%2 = 0 ∧ r2 :: ∃ n. tz = 2 * n}
low out := r2

For r1 := z, we make use of ASSIGNL to compute the
classification of z and the post state. As ℒ(z) ≡ True, the
appropriate Γ mapping for r1 is introduced. Moreover, as we
can only establish z is incrementing, our post state r1 = z
is weakened to r1 ≤ z. We can then discharge the remaining
proof obligations for this first loop, as Γ′ ⊢ r1%2 ̸= 0 : True,
based on the recently introduced mapping for r1. The negation
of this guard is then added to our post state.

We then apply ASSIGNL to r2 := x. As ℒ(x) ≡ ∃ n. z =
2*n, this predicate is added to Γ for r2. To enforce wellformed-
ness over this context, whilst retaining sufficient information
for the example, +R must introduce a temporary variable tz
to encapsulate the value of z during this operation. This tz
replaces references to z in P and Γ, including the new entry
for r2. Additionally, the temporary value is constrained based
on the rely by introducing tz ≤ z. The resulting predicate is
stable under an increasing z.

We retain r1 :: True in our context, resulting in Γ′ ⊢
z ̸= r1 : True, solving the remaining proof obligations for
the outer loop. In the resulting post state, we gain z = r1,
however, this will be modified by +R to enforce stability,
resulting in the introduction of a new temporary t′z. We
simplify these redundant temporary variables for the purposes
of presentation.

We can now apply the ASSIGNG rule to low out := r2.
Similar to prior applications, it is not necessary to consider



the falling case or the guarantee. However, it is necessary
to demonstrate P ∧ ℒ(low out) ⇒ Γ⟨r2⟩. Given the current
context, this will be r1 ≤ tz ∧ tz ≤ r1 ∧ r1%2 = 0 ∧ True ⇒
∃ n. tz = 2*n. As the antecedent implies r1 = tz, this simplifies
to r1%2 = 0 ⇒ ∃ n. r1 = 2 * n which is true.

As a result, all components of the system exhibit the
local security property and the rely/guarantee specifications
compose. Therefore, the global security property holds.

VII. AUTOMATION

Type system approaches to establishing noninterference
benefit from a high degree of automation. Context-aware
value-dependent variants do not present trivial implementa-
tions due to the necessity in establishing and maintaining a
predicate P throughout the analysis. Prior approaches have
employed interactive reasoning in theorem provers [6] and
automation via symbolic execution coupled with SMT solvers
[9], such as Z3 [13], to account for this complexity. We outline
a series of simplifications to facilitate similar automation.

A. Restrictions on Variables

A significant barrier to automation is the environment step
function +R, due to increases in P’s size and complexity in the
form of temporary variables and addition of R. To compensate
for this, we structure the relational predicate R by introducing
the set Rvar. This set consists of elements of the form (x, c, r),
where x is a variable, c is a predicate and r a relation on values,
stating that the environment is constrained to modifying x in
accordance with r if c holds.

R ≡
⋀︁

(x,c,r)∈Rvar

c ⇒ (x, x′) ∈ r (24)

This structure enables reasoning about the effects of the
environment at an individual variable level. Therefore, we
are able to modify +R to only introduce temporary variables
and expand P on a variable-by-variable basis. Moreover, the
current implementation of +R enforces stability given any
context, disregarding the fact that the pre-context was stable.
Therefore, by inspecting the changes to the context throughout
the logic’s rules, it is possible to reduce the overhead of +R.

Rules introduce a small set of variables to the context
throughout the logic. For example, the IF and WHILE rules
introduce variables referenced in their boolean expressions,
vars b. For an assignment x := e, it is trivial to see the rules
introduce references to variables {x} ∪ vars e. Additionally,
the classification, derived via Γ ⊢ e : t, may introduce
additional references in Γ, in situations where free variables
in e resolve their classification based on ℒ. We refer to this
set of new variable references as new var.

new var b ≡ vars b

new var (x := e) ≡

{x} ∪ vars e ∪
⋃︁

y∈vars e∖dom Γ

vars (ℒ(y))
(25)

In addition to introducing new variable references, assign-
ments may reduce the constraints on the environment by

negating the conditional c portions of Rvar properties. We can
determine this set of variables by comparing the conditions
before and after the assignment, such that, given c holds prior
to the assignment, it should hold after. This approach is similar
to the fall property seen in Section V-E.

weaker P (x := e) ≡ {y · ∃ c r· (26)
(y, c, r) ∈ Rvar ∧ ¬ (P ∧ c ⇒ c[e/x])}

For all variables not in new var and weaker, we can
therefore show properties constraining their values in P and Γ
are stable in the pre-context and their relations still hold. Given
these relations are transitive, as required by the constraint on
ℛ, the stable properties in the pre-context will continue to
hold on the post-context. Consequently, we do not have to
introduce new temporary variables or extend the predicate P
with the constrained relations for these variables. It is only
necessary to consider those variables in new var and weaker
to maintain wellformedness.

Moreover, we introduce a special case for the variables
unmodified by the environment, under the current predicate P.
These variables do not require new temporaries or condition
relations, as they are trivially equivalent.

equal P ≡ {y · ∃ c · (y, c, ℐ) ∈ Rvar ∧ P ⇒ c} (27)

where ℐ is the identity relation.
Given these definitions, we restrict the domain of m, a

mapping from Global variables to fresh temporaries, to those
in new var and weaker, but not equal. This mapping is
then used in the definition of the +R operation, as defined
in Section V-D. Moreover, we restrict the expansion of P to
only those conditional relations that are required.

P + R ≡ P[ ↦→ m] ∧
⋀︁

(x,c,r)∈R′
var

c ⇒ (m x, x) ∈ r (28)

where R′
var ≡ {(x, c, r) · (x, c, r) ∈ Rvar ∧ x ∈ dom m}

While this approach presents some expansion of the context,
it can be fine tuned on a variable-by-variable basis. We do not
explore such optimisations.

B. Rely/Guarantee Invariants

We introduce support for Rinv, an invariant maintained
throughout execution. The conjunction of this predicate and
the prior Rvar therefore forms the full relation predicate R.
Introducing this to P at the application of +R will obviously
result in dramatic increases to predicate size. Instead, we
modify all applications of P ⇒ Q and t ≤:P t′ to consider
P ∧ Rinv. As this approach fails to preserve restrictions due to
the invariant on variable definitions prior to reassignment, this
optimisation may result in their rejection, where they would
have been accepted by the general logic. In these cases, Rinv

may be injected into P via the CONSEQ rule.

C. Security Policies

Due to the verbosity of two security policies per component,
in addition to a global security policy, it can be overwhelming
to specify the system’s security properties and demonstrate



the compatibility requirements. This can be simplified by
having an external source provide only the global security
policy ℒ initially, and defaulting both ℒG and ℒR to use this
mapping. Moreover, this default policy immediately satisfies
compat sec, discharging the compatibility proof.

VIII. RELATED WORK

Several prior works have established sound type systems
for demonstrating noninterference, starting with Volpano and
Smith [2]. Moreover, many of these techniques have been
employed for systems exhibiting concurrency [3] with var-
ious scheduler constraints [14], [15]. Our proposed logic
enforces timing-sensitive noninterference, as detailed in [8].
Consequently, we do not consider the probabilistic schedulers
explored in these works.

Mantel et al. [5] proposed a type system capable of en-
forcing a static security policy via compositional analysis. To
support a greater number of secure programs, this approach
facilitated read/write annotations on variables. These annota-
tions, whilst trivial to apply, introduced a complex proof obli-
gation to establish their compatibility. Later work has explored
automatic proof of this property, via guarantee generation
coupled with synchronisation via locks [16]. Additionally,
Li et al. [17] used rely/guarantee to enable compositional
reasoning about information flow in a message passing system.

Multiple authors have explored techniques for establishing
value-dependent noninterference, with a particular focus on
dependent type systems. This has included encodings with-
ing existing dependent type systems [18] [19], as well as
approaches specialised to information flow [20] [21].

Murray et al. [6] introduced a compositional dependent-
type system for verifying value-dependent noninterference,
initially employing read/write annotations and later coupling
these permissions with locking primitives in COVERN [8], re-
moving the need for a complex external proof of compatibility.
Moreover, this work allowed for rely/guarantee invariants to
be coupled with locks, restricted to predicates over a single
state. Hence, it is not possible to express information flow
between components, beyond a global security policy, or
general rely/guarantee conditions.

Ernst and Murray later introduced SECCSL [9], a concurrent
separation logic for proving value-dependent information flow
targeting low-level programs. Building on separation logic, it
is capable of reasoning about pointers and arrays. Additionally,
it introduces a relational semantics for its assertions, allowing
for the coupling of classification and state predicates. Coupling
these assertions with locking primitives allows for the speci-
fication of information flow properties between components.
However, similar to COVERN, this work is constrained to syn-
chronisation on these lock primitives. An interesting feature
of this work is its automation via symbolic execution coupled
with SMT solvers. This approach has been used by other
projects in enforcing information flow properties [22] [23],
however, these do not reason about concurrency.

Schoepe et al. [7] have recently detailed an alternative
approach to establishing value-dependent noninterference in

VERONICA, which decouples the functional correctness of a
program from its information flow analysis. Consequently,
external systems for analysis and program reasoning can
introduce behaviour annotations throughout a program, which
a simple information flow analysis can then exploit to
demonstrate noninterference. The technique has been applied
with a coarse locking approach, based on Owicki-Gries and
rely/guarantee reasoning. Consequently, its application to non-
blocking algorithms has not been clearly explored, with ques-
tions as to how appropriate annotations may be generated and
verified in such a scenario.

The RGSim framework [24] defines a similar compositional
theory to the one detailed in this paper, merging a simulation
definition with rely/guarantee relations over pairs of states.
Consequently, they are able to demonstrate the preservation
of properties across program transformations. This technique
has been extended by Murray et al. [6] to demonstrate the
preservation of noninterference properties across refinement.

Gordon et al. [25] proposed a similar approach for statically
associating rely/guarantee conditions to variables, in RGRef.
This work couples rely/guarantee conditions with references,
encoding rely/guarantee relations over their objects, which are
then enforced via a type system. Such an approach provides
a potential alternative to the rely/guarantee conditions we
introduce.

IX. CONCLUSION

We have presented a logic for the compositional verification
of value-dependent noninterference, for concurrent programs
with shared memory and fine-grained synchronisation, such
as non-blocking algorithms. The logic is sufficiently general
to capture complex rely/guarantee conditions. Moreover, it
supports security policies at a component level, capturing
information flow within a system to establish a global security
property. Additionally, the logic is self-contained, requiring
only external proofs of compatibility for its rely/guarantee
conditions. Finally, we introduce optimisations for automation,
which reduce the complexity of the logic, at the expense of
rely/guarantee generality.

This work does not consider the implications of pointers
in concurrent algorithms, essential when considering realistic
programs. Such issues have been captured in related work via
separation logic [26]. Coupling these two approaches may lead
to techniques applicable to realistic implementations of non-
blocking algorithms.

It is well known that compilers may not preserve nonin-
terference properties shown at the language level [27], [28].
Additionally, modern architectures are capable of invalidating
noninterference properties due to their weak memory models,
capable of reordering memory operations [29]–[31]. Conse-
quently, there is also potential to explore extensions or appli-
cations of the logic for more realistic execution environments.

ACKNOWLEDGMENT

This work was supported by Australian Research Council
Discovery Grant DP160102457.



REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy, 1982, pp. 11–20,
IEEE Computer Society, 1982.

[2] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” J. Comput. Secur., vol. 4, p. 167–187, Jan. 1996.

[3] G. Smith and D. M. Volpano, “Secure information flow in a multi-
threaded imperative language,” in POPL ’98, Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (D. B. MacQueen and L. Cardelli, eds.), pp. 355–364, ACM,
1998.

[4] C. B. Jones, “Specification and design of (parallel) programs,” in IFIP
Congress, pp. 321–332, 1983.

[5] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and guarantees
for compositional noninterference,” in Proceedings of the 24th IEEE
Computer Security Foundations Symposium, CSF 2011, pp. 218–232,
IEEE Computer Society, 2011.

[6] T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “Composi-
tional verification and refinement of concurrent value-dependent nonin-
terference,” in IEEE 29th Computer Security Foundations Symposium,
CSF 2016, pp. 417–431, IEEE Computer Society, 2016.

[7] D. Schoepe, T. Murray, and A. Sabelfeld, “VERONICA: expressive
and precise concurrent information flow security (extended version with
technical appendices),” CoRR, vol. abs/2001.11142, 2020.

[8] T. C. Murray, R. Sison, and K. Engelhardt, “COVERN: A logic for
compositional verification of information flow control,” in 2018 IEEE
European Symposium on Security and Privacy, EuroS&P 2018, pp. 16–
30, IEEE, 2018.

[9] G. Ernst and T. Murray, “SecCSL: Security concurrent separation logic,”
in Computer Aided Verification - 31st International Conference, CAV
2019, Proceedings, Part II (I. Dillig and S. Tasiran, eds.), vol. 11562 of
Lecture Notes in Computer Science, pp. 208–230, Springer, 2019.

[10] M. Moir and N. Shavit, “Concurrent data structures,” in Handbook of
Data Structures and Applications. (D. P. Mehta and S. Sahni, eds.),
Chapman and Hall/CRC, 2004.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof As-
sistant for Higher-Order Logic, vol. 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[12] H. Boehm, “Can seqlocks get along with programming language mem-
ory models?,” in Proceedings of the 2012 ACM SIGPLAN workshop
on Memory Systems Performance and Correctness: held in conjunction
with PLDI ’12 (L. Zhang and O. Mutlu, eds.), pp. 12–20, ACM, 2012.

[13] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (C. R.
Ramakrishnan and J. Rehof, eds.), vol. 4963 of Lecture Notes in
Computer Science, pp. 337–340, Springer, 2008.

[14] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proceedings of the 13th IEEE Computer Security
Foundations Workshop, CSFW ’00, pp. 200–214, IEEE Computer Soci-
ety, 2000.

[15] G. Boudol and I. Castellani, “Noninterference for concurrent programs
and thread systems,” Theor. Comput. Sci., vol. 281, no. 1-2, pp. 109–130,
2002.

[16] H. Mantel, M. Müller-Olm, M. Perner, and A. Wenner, “Using dynamic
pushdown networks to automate a modular information-flow analysis,”
in Logic-Based Program Synthesis and Transformation (M. Falaschi,
ed.), pp. 201–217, Springer International Publishing, 2015.

[17] X. Li, H. Mantel, and M. Tasch, “Taming message-passing communica-
tion in compositional reasoning about confidentiality,” in Programming
Languages and Systems - 15th Asian Symposium, APLAS 2017 (B. E.
Chang, ed.), vol. 10695 of Lecture Notes in Computer Science, pp. 45–
66, Springer, 2017.

[18] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful authorization
and information flow policies in fine,” in Programming Languages
and Systems, 19th European Symposium on Programming, ESOP 2010
(A. D. Gordon, ed.), vol. 6012 of Lecture Notes in Computer Science,
pp. 529–549, Springer, 2010.

[19] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang,
“Secure distributed programming with value-dependent types,” J. Funct.
Program., vol. 23, no. 4, pp. 402–451, 2013.

[20] H. Chen, A. Tiu, Z. Xu, and Y. Liu, “A permission-dependent type
system for secure information flow analysis,” in 31st IEEE Computer
Security Foundations Symposium, CSF 2018, pp. 218–232, IEEE Com-
puter Society, 2018.

[21] A. Nanevski, A. Banerjee, and D. Garg, “Dependent type theory for
verification of information flow and access control policies,” ACM Trans.
Program. Lang. Syst., vol. 35, no. 2, pp. 6:1–6:41, 2013.

[22] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang,
“Scaling symbolic evaluation for automated verification of systems code
with serval,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019 (T. Brecht and C. Williamson, eds.),
pp. 225–242, ACM, 2019.

[23] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak,
and X. Wang, “Nickel: A framework for design and verification of
information flow control systems,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pp. 287–305,
USENIX Association, Oct. 2018.

[24] H. Liang, X. Feng, and M. Fu, “A rely-guarantee-based simulation for
verifying concurrent program transformations,” in Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012 (J. Field and M. Hicks, eds.), pp. 455–468,
ACM, 2012.

[25] C. S. Gordon, M. D. Ernst, and D. Grossman, “Rely-guarantee references
for refinement types over aliased mutable data,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13 (H. Boehm and C. Flanagan, eds.), pp. 73–84, ACM, 2013.

[26] V. Vafeiadis and M. Parkinson, “A marriage of rely/guarantee and
separation logic,” in CONCUR 2007 – Concurrency Theory (L. Caires
and V. T. Vasconcelos, eds.), pp. 256–271, Springer Berlin Heidelberg,
2007.

[27] V. D’Silva, M. Payer, and D. X. Song, “The correctness-security gap
in compiler optimization,” in 2015 IEEE Symposium on Security and
Privacy Workshops, SPW 2015, pp. 73–87, IEEE Computer Society,
2015.

[28] R. Sison and T. Murray, “Verifying that a compiler preserves concur-
rent value-dependent information-flow security,” in 10th International
Conference on Interactive Theorem Proving, ITP 2019 (J. Harrison,
J. O’Leary, and A. Tolmach, eds.), vol. 141 of LIPIcs, pp. 27:1–27:19,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[29] J. A. Vaughan and T. D. Millstein, “Secure information flow for
concurrent programs under Total Store Order,” in 25th IEEE Computer
Security Foundations Symposium, CSF 2012 (S. Chong, ed.), pp. 19–29,
IEEE Computer Society, 2012.

[30] H. Mantel, M. Perner, and J. Sauer, “Noninterference under weak mem-
ory models,” in IEEE 27th Computer Security Foundations Symposium,
CSF 2014, pp. 80–94, IEEE Computer Society, 2014.

[31] G. Smith, N. Coughlin, and T. Murray, “Value-dependent information-
flow security on weak memory models,” in Formal Methods – The Next
30 Years (M. H. ter Beek, A. McIver, and J. N. Oliveira, eds.), pp. 539–
555, Springer International Publishing, 2019.



APPENDIX A
SOUNDNESS PROOF

We provide a high level description of the soundness
proof discussed in Section V-F, with more detail included in
the Isabelle/HOL encoding. This proof demonstrates that the
sequential logic establishes the relation defined in (23) (reit-
erated below) and that this relation satisfies the bisimulation
properties of a secure component, defined as secure in (8).

(c,mem1) ℬ (c,mem2) ≡
⊢ {P,Γ} c {P′,Γ′} ∧
context wf P Γ ∧
eval mem1 P ∧ eval mem2 P ∧
mem1 =ℒΓ mem2

It is necessary to show the three components of secure
given the relation ℬ:

∙ The relation must be symmetric.
∙ The relation must be stable given the component’s rely

ℛp, as defined in (7).
∙ The relation must be a valid bisimulation that conforms

to the component’s guarantee 𝒢p, as defined in (6).
We will focus on each of these cases individually.

A. Symmetry

The simplest property is symmetry. Given
(c,mem1) ℬ (c,mem2) and the definition of the
bisimulation above, it is trivial to establish the necessary
properties for (c,mem2) ℬ (c,mem1). Only the proof of
mem1 =ℒΓ mem2 ⇒ mem2 =ℒΓ mem1 introduces some
complexity, however, this is obviously the case when
considering the expansion of (3).

B. Stability

Next, we consider stability. Expanding (7), we
must demonstrate (c,mem′

1) ℬ (c,mem′
2) given

(c,mem1) ℬ (c,mem2) for some mem′
1 and mem′

2 such
that ((mem1,mem2), (mem′

1,mem′
2)) ∈ ℛp.

The first two properties of the relation are preserved across
this memory change as they are not dependent on mem1

or mem2. Due to context wf, the predicate P is known to
be stable in ℛ. Therefore, it is straightforward to establish
eval mem′

1 P and eval mem′
2 P, based on the definition of

stability.
To demonstrate the low equivalence property mem′

1 =ℒΓ

mem′
2, where ℒΓ ≡ 𝜆 x · ℒ(x) ∨ Γ⟨x⟩, we first unfold the

definitions of low equivalence. This simplifies to a proof of
mem′

1 x = mem′
2 x given ℒΓ(x) for any x.

Eliminating the disjunction in ℒΓ, we first consider the case
where ℒ(x) is true. Therefore, the variable x is known to be
Low via the global security policy ℒ, which ℛp enforces on the
primed memories. Consequently, we can establish equivalence
between the two primed memories for x.

In the alternative case, Γ⟨x⟩ is true. If x is not in the
domain of Γ, then Γ⟨x⟩ = ℒ(x) and the prior case proof holds.
Otherwise, x is in the domain of Γ and, therefore, in the set

low or eq P based on the wellformedness property. Moreover,
as we known Γ(x) and mem1 =ℒΓ mem2, we can show
mem1 x = mem2 x. Therefore, either the environment does
not modify x, in which case mem1 x = mem2 x ⇒ mem′

1 x =
mem′

2 x, or the environment guarantees to only write Low
information to x, which can be rephrased as mem′

1 x = mem′
2 x.

As a result, all properties necessary to establish
(c,mem′

1) ℬ (c,mem′
2) can be shown and the relation ℬ can

be considered stable under ℛp.

C. Bisimulation

Finally, it is necessary to show that the relation is a
bisimulation, such that a step from one configuration implies
a step from the other and the resultant states remain within
the relation. Additionally, it is necessary to show that this
transition conforms to the guarantee 𝒢p.

This is achieved by inducting over the definition of the lan-
guage semantics for the known configuration step. A majority
of these cases are trivial, with the exception of assignments.
For such instructions, it is necessary to:

1) Show the result of computing the strongest post-condition
of P corresponds to the new memories.

2) Show the application of +R results in a context that is
wellformed.

3) Show that the security policy ℒΓ holds between the two
modified memories.

4) Show the security policy ℒG holds for the written vari-
able.

5) Show the assignment conforms to the guarantee 𝒢.
The first properties are straightforward, as the strongest

post-condition operation follows the standard approach and the
application of +R has been detailed in Section V-D. The proof
obligations for the ASSIGNG and ASSIGNL rules provide
sufficient information to demonstrate the remaining properties.
For example, the classification comparisons ensure a High
expression is never written to a Low variable. Moreover,
a Low expression must have the same result given either
configuration. Therefore, if the written variable is Low, the
written value must be equal between the resultant memories.
This corresponds to item (4) in the list, as well as trivial
cases for item (3). To fully demonstrate (3), it is necessary to
consider cases of a classification change, which fall addresses.
Additionally, the guar proof obligation directly demonstrates
item (5).

A similar approach is taken for other instructions, such as
guards. Given the above properties are shown, the bisimulation
can be reestablished on the new memories and the transition
can be shown to conform to 𝒢p.

D. Composition

Given these proofs, the relation ℬ can be considered a
bisimulation. It is also necessary to demonstrate that the
component is initially within the bisimulation. This is achieved
by using the weakest initial conditions for the logic context and
assuming the memories are initially equal. Therefore, a logic



judgement is sufficient to establish a component is within its
bisimulation.

{P0,Γ0} c {P,Γ} ⇒ (c,mem) ℬ (c,mem)

where P0 ≡ True and Γ0 is an empty map.
Composing these results with Theorem 1, it is possible to

directly relate all significant components of the logic.
Theorem 2: Given sequential logic judgements for all

components and a proof of compatibility between their
rely/guarantee relations ℛp and 𝒢p, the global information flow
property can be established.

compat ℛps 𝒢ps

∀ i < |comp| · ⊢ {P0,Γ0} comp[i] {Pi,Γi} for ℛps[i],𝒢ps[i]
secureG comp


	Introduction
	Application
	Overview
	Language
	Sequential Logic
	Rely/Guarantee Reasoning
	Security Policies

	Compositional Noninterference
	Preliminaries
	Security Policies
	Relations
	Compositional Bisimulation

	Sequential Logic
	Logic Context
	Classifications
	Wellformedness
	Rely/Guarantee Relations
	Rules
	Soundness

	Application Revisited
	Automation
	Restrictions on Variables
	Rely/Guarantee Invariants
	Security Policies

	Related Work
	Conclusion
	References
	Appendix A: Soundness Proof
	Symmetry
	Stability
	Bisimulation
	Composition


