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Abstract. An autonomous agent is one that is not only directed by its
environment, but is also driven by internal motivation to achieve certain
goals. The popular Belief-Desire-Intention (BDI) design paradigm allows
such agents to adapt to environmental changes by calculating a new ex-
ecution path to their current goal, or when necessary turning to another
goal. In this paper we present an approach to modelling autonomous
agents using an extension to Object-Z. This extension supports both
data and action refinement, and includes the use of LTL formulas to de-
scribe an agent’s desire as a sequence of prioritised goals. It turns out,
however, that the introduction of desire-driven behaviour is not mono-
tonic with respect to refinement. We therefore introduce an additional
refinement proof obligation to enable the use of simulation rules when
checking refinement.
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1 Introduction

The design of autonomous agents is one of the central issues of the artificial
intelligence community [1]. An agent has the capability to manage its own re-
sources and sense its environment. The further behaviour of an agent is often
determined dynamically based on its current perception of itself and the envi-
ronment as well as a goal to achieve. This is the main difference between agents
and conventional components.

An autonomous agent is usually described in terms of not only its “physical”
features such as variables and actions but also its “mental” features such as
beliefs, desires and intentions (BDI) [2,3]. An autonomous agent in the BDI
paradigm formulates a plan (its intention) based on its current beliefs about
itself and its environment in order to achieve its desire. Its behaviour, therefore,
is derived not only from what it is able to do, but also from what it wants to
do [1].

In this paper, we use an extension to Object-Z [4] to specify autonomous
agents. The interactions between an agent and its environment are recorded with
the inputs and outputs within action definitions. If the information obtained from
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the environment violates the belief of the agent (which is implicitly included in
the precondition of the actions), we consider this to be divergence which can
be refined in the development process. This perspective allows us to refine an
agent to adapt to a hostile environment by introducing reaction mechanisms for
unexpected inputs.

The desire-driven behaviour of autonomous agents is captured by restricting
an agent’s behaviour to paths leading to its desire. A desire is specified as a
sequence of goals each specified in terms of linear temporal logic (LTL) [5].
Typical goals include getting a task done in the future which can be specified
with the eventually temporal operator <>, or maximising a reward at each step
which can be specified with the always temporal operator O.

To be general, a goal can refer to the interaction variables to reflect the
influence of the environment on the motivation of the agent. For example, this
allows goals of the form O(env_state = <agent_state) where the agent adapts
the nature of its goal according to the environment. However, it also allows goals
of the form env_state where the environment reaches a desirable state. The
latter are unrealistic in the sense that the agent cannot control its environment,
and will therefore not influence the behaviour of the agent.

The goals are ordered with priority within the desire and we assume that the
agent will have only one goal at any moment. Initially, the goal of the agent will
be set to the goal of the desire with the highest priority. The agent follows an
execution path which leads to the current goal taking into account interaction
with the environment. If there is no path to achieve the goal, the agent sets
another goal of the desire to its current goal. If none of the goals of the desire
is achievable, the agent acts in an arbitrary fashion, which we call unmotivated
behaviour.

The refinement theory we provide is able to justify the correctness of design
and development paradigms for adapting to environments: (a) introducing local
mechanisms to increase the feasibility of the desire under different environmental
conditions, and (b) introducing secondary goals to the desire to reduce unmo-
tivated behaviour. To provide flexible support for (a) we allow the introduction
of both variables and actions in the concrete specification. Therefore, the refine-
ment theory and its simulation rules are based on event refinement in Event-B
[6].

To support (b), we allow unmotivated behaviour to be restricted by further
goals. However, as we show, restricting unmotivated behaviour is not monotonic
with respect to refinement. In order to refine autonomous agents, therefore, we
provide an additional refinement obligation. A refinement of an autonomous
agent can be verified by checking both the standard simulation rules and the
new proposed obligation.

The remainder of the paper is organised as follows. The specification notation
and its semantics are presented in Section 2; the refinement relation and simu-
lation rules are introduced in Section 2.1. Section 3 proposes the specification
of an autonomous agent with an explicit desire presented as a sequence of LTL
formulas representing goals. In Section 4 the non-monotonicity of the behaviour
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restriction is revealed, and the refinement obligation to aid the checking of re-
finement is proposed. Section 5 mentions related work and Section 6 concludes
the paper and refers to future research directions.

2 Agents

At low levels of abstraction an agent can be modelled as a state machine, or
state-transition system. But an autonomous agent is conveniently specified more
abstractly by stating explicitly its desire. This distinguishes an agent from a
general reactive component; an agent adjusts its choice of actions to meet its
desire [1]. This will be considered in Section 3. For now we represent an agent
syntactically by a construct, based on the class construct of Object-Z [4], which
we will call a module.

A module includes a state schema declaring the local variables and an in-
variant constraining their values, an initial state schema and a set of actions
modelling state transitions. As in Object-Z, primed variables, e.g., u’, denote
the value of state variables in the post-state of an action, and actions include a
A-list of variables whose values they may change.

Unlike standard Object-Z, an action has both a guard and a precondition.
The guard condition is stated explicitly in an action separated from the effect
predicate describing the action’s behaviour. The explicit guard is an extension
to Object-Z aimed at allowing a more flexible notion of refinement similar to
that of Event-B. Specifically, an action can be enabled in a state which is not
included as a pre-state of the effect predicate; but the result is divergence.

An action is of the following form where y denotes those state variables not
in the A-list.

_ Action
A(z) variables which action may change
u? : Type_of _u input variables
vl Type_of v output variables
a : Type_of_a auxiliary variables

guard(u?, a,z,y)

effect(u?, a,z,y,z’, v!)

In the standard semantics of Object-Z, the state variables are hidden (i.e.,
executions are represented by sequences of actions) and the interaction variables
(inputs and outputs) appear as part of the actions which occur. While such a
semantics is suited to standard data refinement [7], to allow the introduction
of actions we require a semantics in which the actions are hidden (i.e., execu-
tions are represented by sequences of states), and hence embed the interaction
variables in the states.

The interaction variables are implicitly added to the A-list of every action.
Any reference in an action to an input variable is a reference to its pre-state
value. Hence, actions cannot refer to or constrain their post-state values which
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represent the values of the inputs used by the next action. Any reference to an
output variable is a reference to its post-state value. In the case that an action
does not generate a value for a given output variable v! then v! is implicity
assigned the special null (undefined) value e.

Semantically, a module is a tuple M = (X, I, A) where

— X' is the set of states of the module. Each state is a function mapping the
local variables and interaction variables to values which satisfy the variables’

types.
Y ={o|oe((Varuln) — Val) U(Out — (Val U{e})}

where Var is the set of local variables declared in the module, In is the set
of input variables appearing in any action of the module, and Out is the set
of output variables appearing in any action of the module. Val is the set of
all values and € is the null value for output variables.

— I C X is the set of states which satisfy the module’s initial condition. The
initial value of each output variable is e.

I = {o|oeX Ao (init(Var) Ainv(Var)) AVo! € Out e o(v!) = €}

where init( Var) is the initialisation condition and inv(Var) is the invariant
over the state variables. The input variables are not constrained initially.
The values chosen represent the values of the inputs used by the first action
to occur.

— A C ¥ x X% is the transition relation specified by the actions where X+ =
Y U{Ll} and L denotes a divergent state in which the values of the state
variables are undefined. Divergence occurs when the current state enables
an action but the effect of executing the action is undefined. Divergent be-
haviour is modelled as maximally nondeterministic behaviour allowing it to
be refined by any other behaviour. Hence, divergence can be used to abstract
the details of behaviour of interest only at some lower level of abstraction.
When an action results in divergent behaviour, the divergent state |, as well
as any other state in X, may result. In this way, divergent behaviour can
be distinguished semantically from maximally nondeterministic terminating
behaviour.

Formally, an individual action named A is represented semantically as

sem A = {(0,0") |c € ¥ No' € Xt Ao = A.guard
((0,0") = E(A) V30" e (0,0") = E(A))}

where A.guard is the guard condition of action A and
E(A) = A.effect A inv(Var) A inv(Var') AV ol € (Out\A.out) e o’ (v!) = ¢

where A.effect is the effect predicate of action A, and A.out is its set of
output variables.



A Refinement Framework for Autonomous Agents 5

Given that the set of all action names is Actions, we have

A= UAEActions sem A

For simplicity, we omit the notation sem in the rest of the paper when it
causes no confusion.

The behaviour of a module is the set of all possible traces of the agent, i.e.,
infinite sequences of states (o1,09,...) where every state is a member of X+,
o1 € I, and for all ¢+ € Ny, (0;,0,41) corresponds to the execution of an action
A, or to agent inactivity. By allowing unlimited agent inactivity, we model the
fact that an unmotivated autonomous agent can always choose to do nothing.
This is not the case when the agent is motivated by a desire.

Formally, the set of traces of a module is defined below where for any ¢ € Ny,
s[i] denotes the ith state in trace s.

Definition 1. (Module Traces) For a trace s and a set m C Ny, let non_div(s, m)
be true iff s does not diverge at indices in m, i.e.,

non_div(s,m) =Vi € m e (s[i],s[i +1]) € AU Skip A (s[i], L) € A

where Skip = {(0,0") |Vx € Var e o/(z) = o(z) AVv! € Out e o’ (v!) = €}

The behaviour of any module M is modelled as a set of traces, divided into the
following subsets distinguished by divergence.

nml(M) denotes the set of all normal, i.e., non-divergent, traces of M.
nml(M) = {s|s[l] € I A non_div(s,Ny)}

For n € Ny, div(M,n) denotes the set of traces of M that diverge after the nth
state.

div(iM,n) = {s|s[1] € I A non_div(s,{1..n—1}) A (s[n],L) € A}}

Note that it is not possible to recover from divergence; the behaviour following
the nth state is undefined and hence mazximally nondeterministic (all behaviours
including those with the divergent state L are included).

tr(M) denotes the set of all possible execution traces of M.
tr(M) = nml(M)U (U,>, div(M,n))

As an example, consider an agent driving a car. The agent receives informa-
tion about the local traffic via an on-board navigation device. This information
includes the time required to reach the destination on the current route, taking
into account traffic congestion, and the time on any alternative routes which are
faster than the current route. The agent can change the route it takes based on
this information.

Let Route be a given type denoting the set of all routes and let the agent’s
state have two variables current : Route denoting the current route and time :
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Route + N denoting the travel times of the current route and all alternative
routes. Initially, the current route is the only route for which a time is displayed.
Action Update models the agent receiving route information from the navigator,
and action ChooseRoute models the agent choosing a route based on the latest
information.

__Agent

current : Route
time : Route + N

— INIT
dom time = {current}

— Update
A(time)
time? : Route + N

true

current € dom time?
Vr: dom time? \ {current} e time?(r) < time?(current)
time’ = time?

__ ChooseRoute
A(current)

true

current’ € dom time

Let R1, R2, R3 € Route. A normal trace of the agent is:

((current = R1, time = {R1 — 50}, time? = {R1 — 40, R2 — 35}),
(current = R1, time = {R1 — 40, R2 — 35}, time? = {R1 — 35, R3 — 20}),
(current = R3, time = {R1 — 35, R3 — 20}, time? = {R3 — 20}},...)

A divergent trace of the agent is:

((current = R1, time = {R1 — 50}, time? = { R1 — 40, R2 — 35}),
(current = R1, time = {R1 — 40, R2 — 35}, time? = {R1 — 35, R2 — 40}),
1,..)

In this case, the divergence is caused by the navigator providing an input violat-
ing the precondition V7 : dom time? \ {current} e time?(r) < time?(current).

2.1 Refinement and Simulation Rules

A refinement of an agent specification guarantees that the changes of the state
variables in the concrete specification are consistent with those in the abstract
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specification with respect to a retrieve relation R. Given two modules M; and
My, a retrieve relation R : P(X{ x X3-) defines a correspondence between their
states. Note that R maps the divergent state L only to itself, i.e., R(L) = {1}
and R7'(L) = {L}. As well as allowing R to be applied as a function on sets
of states (note that a single state argument is interpreted as the singleton set
containing that state), we allow it to be applied as a function on traces, sets of
traces and formulas. The results of the application of R to these constructs are
based on its application to states. For instance, the application of R to a trace
can be defined as:

R(s)={t|Vie Ny et[i] € R(s[i])}

The application of R to a set of traces S can be defined based on its appli-
cation to traces:

R(S) = Uses B(5)

The application of R to a formula P is also defined in terms of its application
to traces:

R(P)={Q|Vs,teteR(s)=(sEP&tEQ)}

Definition 2. (Refinement) Let My and My be two modules. We say M is
refined by My with respect to retrieve relation R, denoted My 3 My, iff tr(Msy) C
R(tr(My)).

The subscript R in Jp, may be omitted if R is the identity relation.

Internal changes in the concrete specification may be hidden by the retrieve
relation, making some of the concrete actions appear like inactivity at the ab-
stract level. Such concrete actions are called ‘stuttering actions’. Formally, action
A defined in a concrete module is called a stuttering action if it behaves as inac-
tivity in the abstract view, i.e., R; A C Skip; R. Any concrete action not having
that property is called a change action.

To prove refinement via Definition 2 is generally intractable, requiring anal-
ysis of all traces of the modules, and so as usual we consider simulations. The
following simulation rules are inspired by those of Event-B [6] which allow a sin-
gle abstract state transition to be refined by a sequence of concrete transitions.

Theorem 1. (Forward Simulation) Let My and Ms be modules and R be a re-
trieve relation between their states. Then My 3, My if
(1) I C R(L)

(2) for any change action Ay of Ms, there exists an action Ay of My where
R; A2 Q Al 3 R.

The proof is straightforward noting that any concrete trace which has stuttering
states is related to an abstract trace with inactivity, i.e., Skip, in the correspond-
ing positions in the trace.
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Condition (2) allows the guards of a concrete change action to be stronger
than that of the corresponding abstract action. This can result in the introduc-
tion of deadlock, i.e., where no actions are enabled. While an agent can choose
to be inactive, we would not usually want to refine an agent to one which can
only be inactive in certain circumstances. Hence, as in Event-B, we propose an
additional condition to prevent the introduction of deadlock.

(3) The overall guard of M, is weaker than that of My, i.e.,

R({o|of=g(M)}) € {v]F 9(M)}

where the overall guard g(M) is the disjunction of all action guards declared in
module M.

3 Autonomous agents

A module can specify the behaviour of an agent by referring to the variables
it controls and the actions it can perform. In order to specify the autonomous
behaviour of an agent, we need to also specify the motivation for its execution: to
fulfil its desire. Hence we add a component to the standard module to represent
the agent’s desire.

An autonomous agent comprising a module M and desire @) will be denoted
by M?7Q. The desire @ is a finite sequence of goals, i.c., Q = (D1, P, ..., D).
Each goal is represented by a linear temporal logic (LTL) [5] formula.

Initially, the agent sets its goal to the first element of the desire sequence.
To achieve this goal, the agent calculates execution paths based on its current
beliefs about itself and the environment and chooses to follow a path leading
to the goal. If there is no path for the agent to achieve its current goal, the
agent changes its goal to the next element of the desire sequence. If no goal
in the desire sequence is feasible, the agent’s behaviour becomes unmotivated
(choosing any enabled action). At a lower level of abstraction, the unmotivated
behaviour might be refined by, for example, introducing a new goal to the desire
sequence.

We define the desire-driven behaviour of an autonomous agent M7 in an
inductive manner. As the base case, an agent with an empty desire sequence
behaves as the definition of its module, i.e., M?7() = M.

Consider an agent with only one goal in its desire sequence, i.e., M ?(P). The
traces of M?(®) include:

— Any non-divergent trace of M which satisfies ®.

— Any divergent trace of M which has satisfied @ before divergence. After the
desire has been satisfied, the agent may act in any manner available to it.

— Any trace of M in which, from a certain point, the agent has no opportunity
to make a decision which will lead to its desire being satisfied while before
that point the agent made acceptable choices all along the trace. Such a
trace corresponds to unmotivated behaviour.
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Note that a decision made by the agent is acceptable when there exists a
path afterward which can satisfy the desire given a cooperative environment.
That is, we do not insist the decisions of the agent guarantee that every path
afterward can satisfy the desire. This reflects the fact that such decisions would
be based on the agent’s beliefs about the future behaviour of the environment
which may, or may not, turn out to be true.

To formalise our notion of desire-driven behaviour, we first introduce some
notation.

1. We use the notation A to denote the set of all sequences of states which do
not include L. For a trace s € A and LTL formula &, we say s F @ if and
only if the temporal property @ is satisfied by s.

2. For traces s and t, let s =, t be true iff s and ¢ share the same prefix of
length n, i.e.,

s=p t=Viel.nes[i] =t

3. For a set S of traces satisfying a desire, we let I'(s, S, i) denote a predicate
that is true when trace s is not in the set S due to either (a) the value of
inputs at point %, or (b) when i is 1, the trace’s initial state. These situations
are ones in which the agent has no opportunity to make a decision which
will lead to the desire being satisfied.

For case (a), (1) there does not exist a trace in S which shares the prefix
of trace s up to point i, and (2) there exists a trace u € S which shares
the prefix of s up to point ¢ — 1 and differs from s at point ¢ by the input
values only. This case indicates that the desire is unable to be satisfied due
to inputs from the environment.
For case (b), there does not exist a trace in S which shares the same initial
state as s. This case indicates that the desire is unable to be satisfied due to
the initialisation.
Let V <o denotes the state o with variables in set V' removed.
I'(s,58,i)= i=1=HrecSem<r[l]=In<sl]A
i>l=>frecSer=,sA
JueSeu=;_1sAIn<guli] =In < sli

Such a trace s contains unmotivated behaviour after point . It would be
kept in the autonomous behaviour for further refinement.

Definition 3. (Autonomous behaviour) The behaviour of an autonomous agent
M?®P) is modeled as a set of traces, divided into the following subsets distin-
guished by divergence.

The normal traces of M?{®) are those normal traces of M which either satisfy
(represented by nmlsucc), or fail to satisfy @ due to input values or their initial
state (represented by nmlfail ).

nml(M?(P)) = nmlsucc(M?(P)) U nmifail(M?(P)) where
nmlsucc(M?P)) = {s|s € nml(M)As | P}
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nmlfail (M) = {s|s € nml(M)ANTie Ny o I'(s, nmlsucc(M?P)),i)}
The divergent traces of M?{®) are those divergent traces which satisfy @ (i.e.,

all non-diverging traces that do not differ before the point of divergence satisfy
@) or fail to satisfy ¢ due to input values (represented by divfail ).

div(M?(®),n) = divsucc(M?(P),n) U divfail (M (D), n) where
divsucc(M?(P),n) = {s|se€div(M,n)A\Vtc Aes=,t=1F D}
divfail(M? (@), n) = {s|sediv(M,n)ANTFiec l.neI'(s, nmlsucc(M?(P)),4)}
The set of all possible traces of M?{P) is

tr(MN®)) = nml(M?(P)) U (U, >, div(MHP),n)).

Reconsider the example agent of Section 2. Let the desire of the agent be
that the time cost of the current route is always no greater than the previous
current route. This can be specified in LTL as follows.

O(3¢: N e t = time(current) A O(time(current) < t))

In this case, the following normal trace (where the agent does not change to a
faster route) would no longer be allowed.

((current = R1,time = {R1 — 40}, time? = {R1 — 45, R2 — 35}),
(current = R1, time = {R1 — 45, R2 — 35}, time? = {R1 — 35, R3 — 20}),

If there is no route provided by the navigator that takes less time than the cur-
rent route, the agent would have no choice but to violate its current goal. The
behaviour after this point is considered to be unmotivated behaviour. Such a
case is shown below where the input time? in the first state gives the agent no
choice to satisfy its goal. The rest of the trace is unmotivated.

((current = R1, time = {R1 — 40}, time? = {R1 — 50, R2 — 45}),
(current = R2, time = {R1 — 50, R2 — 45}, time? = {R2 — 45, R3 — 40}),

For an agent with more than one goal in its desire sequence, the definition is
as follows.

Definition 4. (Introducing goals) Let M?Q) be an autonomous agent with () #
() and @ be an LTL property. The introduction of goal ® will take effect when the
agent cannot fulfil its original desire Q. In other words, it will further restrict
the unmotivated behaviour of the agent M?Q. The behaviour of the autonomous
agent M?(Q ™ (P)) can be defined as follows.

— The nmlsucc behaviour is extended by the traces which share the same prefix
as a trace satisfying the original desire @ before point i and satisfying @
instead from the point i + 1 where @ cannot be fulfilled.

nmilsucc(M?(Q ™ (D)) = nmlisucc(M?Q) U {s | s € nmlifail (M?Q)A
34 : Ny e I'(s,nmlsucc(M?Q),i) A siy1 = P}
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where s; denotes the postfix of s beginning with the ith state.
— The nmifail behaviour contains the traces which cannot satisfy the new desire

Q " (D) due to the inputs or their initial state.

nmlfaill(M?(Q ~ (D)) = {s|s € nml(M?Q)A
34 € Ny o I'(s, nmlsucc(M?(Q ™ (D)), i)}

— A similar definition is made for the divergent behaviours.

divsucc(M?(Q ™ (D)), n) = divsucc(M?Q,n) U
{s| s € divfaill(M?Q,n) ANVt € Aes=, tA
Ji e l.n e I'(t,nmlsucc(M?Q),i) A tir1 E D}

divfail(M?(Q ™ (®)),n) = {s | s € div(M?Q,n) A
Ji e l.n e I'(s, nmlsucc(M?Q ™ (P)),4)}

According to the above definition, the newly introduced goal only takes effect
when the original goals are infeasible. This further restricts the behaviour of
the autonomous agent by reducing its unmotivated behaviours. It is intuitive
to obtain the conclusion that introducing a goal to the agent’s desire sequence
refines its behaviour.

Theorem 2. Let M be a module and Q1 and Qs be desires such that (Q; is a
proper subsequence of Q2. Then we have M7Qy I M?7Q;.

Proof

1. If @ = () and Qa = (D), then from Definition 3, all traces of M?{(P) are
traces of M, i.e., tr(M?(®)) C tr(M). Hence, since M?() = M, we have
tr(M?Q:) C tr(M?@Q:) and therefore M?7Qy I M7Q);.

2.If Q1 # () and @ = Q1 ~ (P1,...,D,), then tr(M?Q:) can be obtained
recursively from Definition 4 one goal at a time. It is straightforword to show
that in each recursive step, any trace which does not satisfy the original goals
nor the newly introduced goal but at some point has the opportunity to achieve

the new goal is removed from the behaviour of the previous step. Hence we
have tr(M?Qs) C tr(M?Q1) and therefore M7Qe 3 M? Q.

4 Refinement Obligation

The desire-driven behaviour of an autonomous agent only removes a trace where
it can choose another one with a shared prefix to achieve the desire. Otherwise,
the behaviour is like a standard module without desires. This allows us to refine
an agent by introducing additional goals to reduce the unmotivated behaviour
of the abstract specification. However, such a restriction is non-monotonic with
respect to the refinement order. An intuitive example is shown below.

Consider the situation shown in Figure 1 which shows a subset of the be-
haviours of two agents M7 and Ms. s is the only trace which shares a prefix with
t of length k and satisfies a goal ®.
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k k
—/_ s Q@ —/_ s Q@
Ml . Ml?{@}
M, t M,?<@> t

Fig. 1. Counter example for monotonicity

Consider the case where the traces s and t of agent M; differ at point & + 1
due to a local choice made by the agent. At point &, therefore, the agent has a
chance to make a local choice and follow trace s to fulfil the goal @. So trace ¢
will be removed from the behaviour of M;?(®P).

Agent My has all traces of M; apart from s. It is obvious that My J M,
according to Definition 2. However, with the same desire (@), trace ¢ will not
be removed from the behaviour of My?(®P) since, in this case, the agent has no
opportunity to fulfil the desire. Hence the desire-driven behaviour M;?(®P) is not
refined by My?(P).

This situation arises whenever we disable a choice which can lead to an agent’s
desire and hence make it impossible for the refined agent to satisfy the desire.
To avoid such refinements, we need an additional proof obligation that ensures
that the concrete agent does not introduce more unmotivated behaviour. That
is, if a concrete trace is a trace with unmotivated behaviour from a given point,
then its corresponding abstract trace is also a trace with unmotivated behaviour
from the same point.

This conclusion can be formalised by the following theorem. For simplicity,
we first explore the case of introducing a goal to the empty desire sequence.

Theorem 3. (Refinement Obligation)
Let My and My be modules linked by a retrieve relation R and $5 € R(P1). We
have M?(P2) Jp Mi?(P1) if both of the following conditions hold.

1. My 3, My
2. For any trace of My if it is impossible for the agent to make a local choice
leading to the satisfaction of @5 at a point in the trace, then from the same

point in the corresponding trace of My it is also impossible to satisfy P.
That is, for all s € tr(My) and t € tr(Ms) where t € R(s), we have

Vi € Ny o (I'(t, nmlsucc(Ma?(P3)), 1) = I'(s, nmlsucc(M1?{P1)), 1))

Proof:
Following Definition 2, we need to show that for any trace t € tr(Ma?(Ps3)),
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each of its corresponding traces s, i.e., those traces where t € R(s), satisfy
s € tr(M?7(Pq)). According to condition 1 and Theorem 2, we get s € tr(My)
(since M27<Q52> ; M2 QR Ml)

The proof proceeds by a case analysis of traces s and t based on whether or
not they are in A (the set of traces without 1) and, if so, on their satisfaction
of the respective desires. Since s € R(t) and R(L) = {L} A R7Y(L) = {1}, it
follows that t € A < s € A.

Assume s,t € A. In this situation, there are two cases to consider:

1. If t |= @2 then its corresponding trace s satisfies P1 since Py € R(P1) (see
the definition of R applied to formulas). Hence, s appears in tr(M;?(P1)).

2. If t £ §q then, according to Definition 3, its appearance in tr(My?(P3))
implies that there exists a point in t where the agent has no opportunity to
make a choice leading to the goal Ps.

Ji € Ny o I'(t, nmlsuce(Ma?{P2)), 1)

Hence in the corresponding trace s, I' holds at the same point © due to
condition 2. This then leads to

3i € Ny o I'(s, nmlsuce(My?7{P1)), i)
Hence, according to Definition 3, s also appears in tr(My?(P1)).

The remaining case to consider is when s, t & A. According to Definition 1, we
can find n > 1 so that t diverges at the nth place, i.e., t € div(Ma?(Ps), n).

1. If t € divsuce(Ma?{P2), n), which meansVu € Aot =, u= u = Pg, then
since Py € R(P1) and t € R(s), we haveVr € Aes=, r=r|=d;. Hence
S € dZU(M1?<€p1>, TL)

2. Ift € divfail(Ma?(P2), n), which means 3i € 1..n o I'(t, nmisucc(Ma?(P2)), 1),
then according to condition 2 we can conclude that
3i € 1.n e I'(s, nmlsucc(My?(P1)), i). Hence we have s € div(My?(P1),n).

In summary, we have t € tr(Ma?(P3)) = s € tr(M7(P1)) which means
My (Do) Dy Mi?(D1).

The refinement obligation implies that the refined agent has no more unmo-
tivated behaviour than the abstract agent. Reconsider the counter example of
Figure 1. The trace s is a trace with unmotivated behaviour in M>?(®) but not

A general version of the refinement obligation for all possible desire sequences
is as follows.

Theorem 4. (General Obligation) Let M17Q1 and Ms? Qs be two autonomous
agents linked by a retrieve relation R, and &1 and @5 be LTL formulas with
Dy € R(D1). We have My?( Q2" (P2)) D Mi?2(Q1 ™ (1)) if both of the following
conditions hold.
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1. My?Qo Dy My7CH
2. For all s € tr(M7Q1) and t € tr(M2?Q2) where t € R(s) we have

Vi€ Ny o I'(t, nmisucc(Ma? Qo ™ (D2)), i)
= I'(s, nmilsucc(M1? Q1 ™ (P1)),1)

The proof is similar to that of Theorem 3.

With the refinement obligation we obtain from Theorems 3 and 4, refinement
checking between two autonomous agents can be done monotonically and recur-
sively. First we can check the refinement between their modules without desires.
Then we check the obligation for each goal along their desire sequences.

The refinement obligation requires the refined agent preserve the possibility
of achieving the desire under any environmental inputs. A development strategy
which sufficiently satisfies the obligation is to introduce local mechanisms to
adapt to environmental “hostility”. The strategy includes the following three
rules.

1. Weakening the precondition of actions to accept a larger range of inputs.
This makes the agent handle more situations of the environment and hence
reduces divergence.

2. Optimizing the decision making algorithms to improve the local decision so
that the agent has a more deterministic way to achieve the desire under
certain inputs than the specification does.

For example, for the desire to take a faster route, the operation ChooseRoute
of Section 2 could be refined to always choose the fastest route.

__ ChooseRoute
A(current)

true

current’ € dom time
time(current’) = min(ran time)

3. Introducing additional goals to regulate the unmotivated behaviours.
For example, for the unmotivated behaviour where the navigator provides
no faster route than the current one, we introduce a secondary goal to allow
the agent to choose the fastest of the provided routes.

O((3 r : dom time o time(r) < time(current) =
O@@r : dom time o time(r) < time(current))

With this secondary goal, the following trace from Section 3 is no longer an
unmotivated behaviour.

((current = R1, time = {R1 — 40}, time? = {R1 — 50, R2 — 45}),
(current = R2, time = {R1 — 50, R2 — 45}, time?={R2 — 45, R3 — 40}),

)
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Rule 1 is a conventional refinement rule. Rule 2 requires the designer to ensure
the agent has a way to achieve its desire in the development. Rule 3 allows the
designer to design a sequence of complementary goals when the agent fails to
satisfy its current goal.

Following the above strategy, the refined agent has more reliable local mech-
anisms to achieve the desire than it does in the abstract specification.

5 Related work

There is some formal work developed to specify interactions between an agent
and its environment. Alternating transition systems (ATS) proposed by Alur et
al. [8] treats an agent and its environment as the opponents of a game. Agents
choose their own transitions to update the current state and the final result is
the intersection of their choices. The action-based alternating transition system
studied by Atkinson et al. [9] provides reasoning techniques for which action
should be chosen by an agent in particular situations.

Zhu [10] proposes a formal notation for specifying agent behaviour. The au-
tonomous behaviour of the agent is formalised by a set of rules designed for
various environmental scenarios.

While the above approaches are able to specify agent-environment interac-
tions, they do not specify the behaviour of agents as being driven by its ‘mental’
states (e.g., desire).

Rao et al. [2] use a possible world model to interpret the semantics of BDI
logic for autonomous agents. This is suitable for representing the belief, desire
and intention of agents by assigning each of them a set of accessible worlds.
However, unlike our approach, it lacks a theory to justify the correctness of the
development of autonomous agents by introducing mechanisms to adapt to the
environment.

Agtefanoaei and de Boer [11] define a notion of refinement for BDI agents.
Unlike our approach abstract and concrete specifications are not in the same
notation. Therefore, their approach allows only a single refinement step from
an abstract to a concrete representation of an agent, not the incremental devel-
opment of an agent. More importantly, in their approach the goal of an agent
is fixed. While they allow environmental hostility to be dealt with by changing
plans, they don’t allow the goal of an agent to be changed, nor the possibility of
an agent not fulfilling its goal.

6 Conclusion

In this paper we provided a formal refinement framework to justify the cor-
rectness of the development of autonomous agents. Agents are specified in an
extension of Object-Z including a desire specified by a sequence of LTL proper-
ties. The autonomous behaviour of an agent is realised by restricting its ordinary
behaviour with the goals in its desire. Although this behaviour restriction is not
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monotonic with respect to refinement, we proposed an additional refinement
obligation to allow checking refinement using ordinary simulation rules. The re-
finement framework can support the development of an autonomous agent by
either introducing local mechanisms to adapt to environmental updates or in-
troducing secondary goals to reduce unmotivated behaviour.

As a first step, this paper does not illustrate the development strategy in de-
tail. We intend to define it formally in future work. We will also consider adding
explicit agent beliefs to our framework which we expect will be refined by intro-
ducing preconditions into concrete actions. The ultimate goal of this work is to
examine how the analysis of individual autonomous agents can be used in the
analysis of multi-agent systems.
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