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Abstract. Random walks have been proposed as a simple method of
efficiently searching, or disseminating information throughout, commu-
nication and sensor networks. In nature, animals (such as ants) tend to
follow correlated random walks, i.e., random walks that are biased to-
wards their current heading. In this paper, we investigate whether or
not complementing random walks with directional bias can decrease the
expected discovery and coverage times in networks.
To do so, we use a macro-level model of a directionally biased random
walk based on Markov chains. By focussing on regular, connected net-
works, the model allows us to efficiently calculate expected coverage
times for different network sizes and biases. Our analysis shows that di-
rectional bias can significantly reduce the coverage time, but only when
the bias is below a certain value which is dependent on the network size.

1 Introduction

The concept of a random walk was introduced over a century ago by Pearson [11].
Recently, random walks have been proposed for searching, or disseminating in-
formation throughout, communications and sensor networks where the network’s
structure is dynamic, or for other reasons unknown [3, 5, 1, 12]. They are ideal
for this purpose as they require no support information like routing tables at
nodes [2] — the concept of a random walk being for the agent performing the
walk to move randomly to any connected node.

The efficiency of random-walk-based algorithms can be measured in terms
of the average number of steps the agent requires to cover every node in the
network (and hence be guaranteed to find the target node in the case of search
algorithms). This is referred to as the coverage time under the assumption that
the agent takes one step per time unit. Obviously, improving the coverage time
for algorithms is an important goal.

For this reason it has been suggested that random walks should be con-
strained, e.g., to prevent an agent returning to its last visited node, or to direct
an agent to parts of the network where relatively few nodes have been visited [7].
We take a similar approach in this paper. We base our movement model on that
observed in nature. Many models used by biologists to describe the movement of
ants and other animals are based on correlated random walks, i.e., random walks



which are biased to the animal’s current direction [8]. Based on our own obser-
vations of ants, we also investigate including a small probability of a non-biased
step at any time to model occasional random direction changes.

Directionally biased walks in networks have been investigated by only one
other group of researchers. Fink et al. [6] look at the application of directional
bias in a cyber-security system in which suspect malicious nodes must be visited
by multiple agents. They compare coverage times for directional bias with those
for pure random walks, and conclude that directionally biased walks are more
efficient. This conclusion, however, is based on micro-level simulation, i.e., direct
simulation of agents taking steps, for a single network size and bias. It cannot
be generalised to arbitrary network size or bias.

The micro-level simulation approach of Fink et al. requires coverage times
to be calculated as the average of multiple runs. They performed 500 simulation
runs for each movement model. Such an approach is impractical for a deeper
investigation of the effect of directional bias which considers various network
sizes and biases. For that reason, in this paper we use a more abstract, macro-
level model of a directionally biased walk. It builds on the work of Mian et al. [9]
for random walks, describes the directionally biased walk in terms of a Markov
chain [10] and allows us to calculate the coverage time for a given network size
and bias directly.

2 Directionally biased walks

The investigation in this paper focusses on regular, connected graphs where
each node has exactly 8 neighbours. Furthermore, to allow our graphs and hence
networks to be finite, we wrap the north and south edges and the east and west
edges to form a torus. Our aim is to provide a deeper analysis of directional bias
than that by Fink et al. [6] which also investigates the notion on such regular
toroidal graphs.

For modelling directional bias in nature, biologists typically use the von Mises
distribution [4], a continuous angular function with a parameter κ which affects
heading bias. We do not adopt the von Mises distribution in our approach for
two reasons. Firstly, we have only a discrete number of directions and so do
not require a continuous distribution. Secondly, as in random walks, we would
like the computations the agent needs to perform to be simple. Our notion
of directional bias limits our agent to choose either its current direction with
a probability p (referred to as the bias), or any neighbouring direction, i.e.,
π/4 radians (45o) clockwise or anti-clockwise from the current direction, with
equal probability of (1 − p)/2. When the bias p is high, this movement model
approximates (discretely) that of the von Mises distribution for a high value of κ.

We also investigate adding occasional random steps to our directionally bi-
ased walks. The idea is that with probability r the agent will make a random,
rather than directionally biased, step. This better matches our own observations
of the movements of ants.



3 A macro-level model

To analyse coverage time under our models of directional bias, we adapt a
Markov-chain model [10] and associated formula for coverage time developed
for random walks by Mian et al. [9]. Specifically, Main et al. modify the stan-
dard Markov-chain model for a random walk so that the starting node is an
absorbing node, i.e., a node from which the probability of a transition to any
neighbour is 0 (and the probability of a transition to itself is 1). They then model
the system as starting from the state distribution after the initial distribution,
i.e., that in which all neighbours of the starting node have probability 1/n where
n is the number of neighbours per node. This allows them to calculate the the
expected number of nodes covered at any step k directly from the probability
of being in the starting node at step k . Coverage time then corresponds to the
smallest k where the probability of being in the starting node is 1.

We add an additional dimension to the representation of a network: the cur-
rent direction of movement. For a network with N nodes, the transition proba-
bility matrix for the Markov-chain model is hence no longer of size N × N but
n ∗ N × n ∗ N where n is the number of neighbours per node (and hence the
number of directions of movement). Since there are n positions corresponding
to the starting node (one for each direction from which the starting node was
entered) there are n absorbing positions in the matrix. Coverage time is calcu-
lated in a similar fashion to that of Mian et al. by summing the probabilities of
being in these n nodes. Full details of our model can be found in [13].

4 Investigating directional bias

To perform our investigation into directional bias, we plotted graphs of coverage
time versus bias (for bias values from 0 to 0.95 in steps of 0.5) for graphs sizes
5 × 5 (25 nodes) to 15 × 15 (225 nodes). We calculated the time for coverage
of 99% of the network nodes. This was to avoid problems arising with 100%
coverage when the coverage converged to a point just below the network size
due to inaccuracies in the floating-point arithmetic.

The graph for the 5 × 5 network is shown in Fig. 1. The horizontal line
represents the coverage time for a random walk, and the curved line that for
a directionally biased walk under the range of biases. The general shape of the
latter and its position in relation to the horizontal line for random bias was
consistent for all network sizes in the range considered. A number of interesting
results follow from this analysis.

1. The best coverage time is achieved for a bias of 0. This corresponds to an
agent which always changes direction by π/4 radians on every step.

2. While for low directional biases (0 up to around 0.7 for the 5 × 5 case)
coverage time is less than that for a random walk, for higher biases it is
greater than that for a random walk.



Fig. 1. Random vs directionally biased walk for a network of 5 × 5 nodes.

3. The value of the bias at which a directionally biased walk becomes less
efficient than a random walk (from here on called the cross-over bias), pro-
gressively increases as the size of the network increases. It is around 0.74 for
a 5 × 5 network, and 0.93 for a 15 × 15 network.

4. The improvement in efficiency of directional bias increases as the size of the
network increases. For a directional bias of 0.5 the increase in efficiency is
less than 25% for a 5 × 5 network, and around 60% for a 15 × 15 network.

Point 1 is particularly interesting as it suggests a new movement model that
was not initially anticipated. Our initial motivation was to investigate movement
models similar to those observed in nature, which are best represented by a von
Mises distribution. However, low values of bias in our movement model (including
the value 0) do not approximate a von Mises distribution. The new model,
although perhaps impractical as a means of movement in nature, can nevertheless
be readily implemented in network search and dissemination algorithms.

Point 2 is also interesting as it indicates that directional bias is only effective
in reducing coverage time when the bias is not too large. This result was also
unanticipated as directional bias in the movement of animals tends to be high.
However, the areas over which such animals move would correspond to networks
significantly larger than those we considered. Point 3 anticipates that the cross-
over bias would be higher in such networks. This conjecture is supported by
the work of Fink et al. [6] whose micro-level simulation of a network of 100 ×
100 nodes shows that a directionally biased walk (approximating a von Mises
distribution with high κ) is more efficient than a random walk.



The second part of our investigation considered the movement model where
occasional random steps are added to a directionally biased walk. The following
results emerged from this analysis.

1. As may have been predicted, the addition of random steps moves the cover-
age time closer to that or a random walk. Hence, for bias values lower than
the cross-over bias the coverage time increases, but for values higher than
the cross-over value the coverage time decreases. For a 5 × 5 network and a
bias of 0 the coverage time increased from around 55 to 70, and for a bias of
0.95 it decreased significantly from around 470 to about 158.

2. The introduction of random steps increases the cross-over bias. For r = 0.1
the cross-over bias increases to 0.78 (from 0.74 for no random steps) and for
r = 0.2 to 0.84.
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