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Abstract—The Dafny program verifier supports proofs of func-
tional correctness of single-threaded programs written in an im-
perative, object-based or functional style. In this paper, we show
how Dafny can also be used to support proofs of information flow
security in multi-threaded programs. For generality, information
flow is analysed with respect to a user-defined lattice of security
values, and the security classifications of program variables are
value-dependent, i.e., they are not fixed but depend on the current
program state. For scalability, our multi-threaded analysis is
carried out thread locally using rely/guarantee reasoning. The
required well formedness properties of our security lattices and
rely and guarantee conditions are proven using Dafny lemmas.

Index Terms—information flow, concurrency, program veri-
fiers, rely/guarantee reasoning, Dafny

I. INTRODUCTION

Information flow analyses track the flow of data through a
program, and can hence detect when sensitive data flows to
program locations which are considered to be accessible by
an attacker. Such analyses range from simple security type
systems [1], [2] to more advanced logics which use predi-
cates to represent value-dependent security classifications of
program variables, i.e., security classifications which evolve as
the program executes [3], [4], [5]. These latter approaches have
reached a high level of maturity over the last decade in terms
of the systems to which they can be applied. In particular,
Murray et al. [3], [4] and Ernst and Murray [6] have developed
the first practical information flow logics supporting value-
dependent security classifications for concurrent programs.
Building on these results, information flow logics capable
of handling arbitrarily complex interactions between threads
using rely/guarantee reasoning [7], [8] have been developed
by Coughlin and Smith [9] and Winter et al. [5].

As the complexity of these logics increases, so does the
complexity of associated tool support. Much of the work
on more expressive logics is supported only by interactive
theorem proving [3], [4], [9]. Winter et al. [5] take this further
by automating their proofs in Isabelle/HOL [10]. While this
allows for experimentation with their logic and provides strong
assurance due to the use of verified rules, it is only fully
automated for small examples with simple types for which
there is a large amount of existing support in Isabelle/HOL.

Ernst and Murray [6] take an alternative approach building
a custom symbolic execution tool for their logic in Scala and

employing Z3 [11] as a backend for discharging proof obli-
gations. While the logic encoded in their tool is proven to be
sound in Isabelle/HOL, proving that the tool’s implementation
conforms to the logic is significantly harder.

In this paper, we look at the possibility of using an existing
program verification tool, one that has been developed for
verifying functional correctness of single-threaded programs,
for value-dependent information flow analysis of concurrent
programs. Such tools can be considered more trustworthy
simply because they have larger user bases (and hence many
bugs will have been found). This is particularly the case when
they share a common back-end verifier, such as Boogie [12]
or Why3 [13], with many other tools. Furthermore, there have
been efforts to validate these back-ends, such as the approach
by Pathasarathy et al. [14] in which Boogie’s reasoning steps
are translated to a form which can be checked in Isabelle/HOL.

Specifically, we investigate the use of the Boogie-based
verifier for Dafny [15] although our approach could be applied
to similar tools for more widely used languages such as Frama-
C [16] (for C), VerCors [17] (for C and Java) or Prusti [18]
or Creusot [19] (for Rust). The paper provides a proof-of-
concept that such tools can be used in the context of thread-
local information flow analysis. Where we use Dafny-specific
notation, we suggest alternative encodings that could be used
in other tools.

For information flow analysis, the basic idea is to extend a
program we wish to analyse with additional variables whose
type belongs to a user-defined security lattice, and whose val-
ues correspond to (i) the user-defined security classifications
of the original program variables, and (ii) the security levels
of information held by them. Assertions employing lattice
operators to combine and compare the additional variables
can then be added to the program’s code to capture standard
information flow checks.

For concurrency, the idea is to use rely/guarantee reasoning
to focus on a single thread at a time. We model each thread
as a method with:

(i) A method call before and after each line of code corre-
sponding to the other threads in its environment taking
one or more steps. Analysis of the thread can rely on
the threads in its environment only behaving in ways
consistent with the called method’s specification.



(ii) An assertion after each line of code checking that the
line of code guarantees behaviour consistent with the
“rely” methods of other threads in the environment. This
compatibility between threads is checked using Dafny
lemmas.

Like the security lattice and security classifications, the user
needs to provide the rely and guarantee conditions of each
thread, as well as any loop invariants that are needed for
Dafny to reason about the code. Given these specifications, our
encoding of required verification conditions is purely based on
the program syntax and hence can be readily automated using
a simple front-end transpiler.

We begin in Section II with an overview of the Dafny
language focusing on those aspects relevant to our approach.
In Section III we discuss value-dependent information-flow
analysis and how it can be encoded in Dafny. Similarly, we
show how rely/guarantee reasoning can be encoded in Dafny in
Section IV. In Sections V and VI, we consider programs with
dynamic thread creation and (potentially recursive) method
calls, respectively. We show both how information flow logics
can be extended to handle them, and how they can be encoded
in Dafny. A producer-consumer case study is provided in Sec-
tion VII. We conclude with a brief discussion of implementing
a tool based on our approach in Section VIII.

II. DAFNY

The Dafny programming language [15] supports functional,
imperative and object-based programming (supporting traits,
similar to Java interfaces, but not full inheritance). In this
paper, we will focus on the core imperative programming
constructs of Dafny (assignments, if statements and while
loops), and use classes as a means to set up a context in which
variables can be shared.

A simple imperative Dafny program is shown in Figure 1a.
The method Mult recursively computes the product of two non-
negative integer inputs, a and b, and returns it in an integer
output x (the keyword var in the else branch is used to introduce
the local variable y). The assert clause is checked statically by
Dafny’s verifier, and does not appear in the compiled code.

The pre- and postcondition of the method are captured in
the requires and ensures clauses, respectively. These are used
by the verifier to statically verify the method’s code. The
postcondition makes use of the function mult which returns the
product of its inputs, and is proved to be commutative using
the lemma Comm; the lemma has an empty body since Dafny
can prove it automatically, otherwise the body of a lemma
needs a proof provided by the user [20].

Functions which return a Boolean value can be written using
the predicate keyword. For example, the predicate in Figure 1b
returns true when inputs a and b are non-negative.

Within a Dafny class, we can also have functions, predicates
and lemmas that refer to two states, the current state and an
old state of the class. For example, consider the class C in
Figure 1c in which the two-state predicate P specifies that the
value of the state variable x in the current state is greater than
that in the old state. Note that the predicate has a read frame

function mult(a:int, b:int):int {
a*b

}

lemma Comm(a:int, b:int)
ensures mult(a, b) == mult(b, a)

{}

method Mult(a:int, b:int) returns (x:int)
requires a >= 0 && b >= 0
ensures x == mult(a, b)

{
if a == 0 {

x := 0;
} else {

var y := Mult(a − 1, b);
assert y == a*b − b;
x := y + b;

}
}

(a) Imperative Dafny program comprising a recursive method with an
assertion, a function and a lemma.

predicate NonNeg(a:int, b:int) {
a >= 0 && b >= 0

}

(b) Dafny predicate.

class C {
var x:int

twostate predicate P()
reads this

{
x > old(x)

}

method M(y:int)
modifies this
ensures x == y + 1

{
x := y;
label L: x := x + 1;
assert P@L();

}
}

(c) Dafny class with a two-state predicate and a label.

Fig. 1: Simple examples of Dafny usage.

stating that it can read this , i.e., the state variables of the class.
Similarly, the method M has a write frame stating that it can
modify this . The frame of a function also needs to include
any arrays it reads, and that of a method any arrays it writes
to. The assertion in which the predicate is used refers to the
old state as being that at label L, i.e., the old state is the state
before the second line of the code is executed. In the absence
of a label for the old state, the old state will default to the
state at the start of the method.

III. INFORMATION FLOW

In an information flow analysis [2], program variables are
given a security classification from a lattice L of security
levels. The lattice is often a simple Boolean lattice with



one level high, representing classified information, and one
level low, representing information that is publicly available.
However, it can be arbitrarily complex with different levels
representing, for example, the different information access
rights within an organisation.

A general lattice can be encoded in Dafny as an enumerated
type along with a predicate leq defining when a level l1 is
less than or equal to a level l2 (i.e., l1 v l2), and functions
for returning the meet (i.e., greatest lower bound u) and join
(i.e., least upper bound t) of any two levels. For example, a
standard diamond lattice where level A is higher than levels B
and C which are in turn higher than level D (but B and C are
not ordered) can be encoded as follows.

datatype L = A | B | C | D

predicate leq(l1:L, l2:L) { l1 == D || l1 == l2 || l2 == A }

function join(l1:L, l2:L):L {
if leq(l1, l2) then l2 else if leq(l2, l1) then l1 else A

}

function meet(l1:L, l2:L):L {
if leq(l1, l2) then l1 else if leq(l2, l1) then l2 else D

}

Since the lattice is specific to the program being analysed, this
encoding would need to be provided by the user. To ensure it
is indeed a lattice, lemmas to prove that leq is a partial order,
and that join and meet are the least upper bound and greatest
lower bound, respectively, are added. These lemmas are not
program-specific and hence can be automatically added to the
Dafny file.

lemma partialorder(l1:L, l2:L, l3:L)
ensures leq(l1, l1)
ensures leq(l1, l2) && leq(l2, l1) ==> l1 == l2
ensures leq(l1, l2) && leq(l2, l3) ==> leq(l1, l3)

{}

lemma joinLemma(l1:L,l2:L,l3:L)
ensures leq(l1, join(l1, l2)) && leq(l2, join(l1, l2))
ensures leq(l1, l3) && leq(l2, l3) ==> leq(join(l1, l2), l3)

{}

lemma meetLemma(l1:L, l2:L, l3:L)
ensures leq(meet(l1, l2), l1) && leq(meet(l1, l2), l2)
ensures leq(l3, l1) && leq(l3, l2) ==> leq(l3, meet(l1, l2))

{}

Information flow analyses usually operate on one line of code
at a time (in either a forwards or backwards direction) utilising
standard lattice operators on L to prove noninterference [21].
For a Boolean lattice, noninterference amounts to high infor-
mation not affecting the values of low variables. This prevents
an attacker who can observe low variables deducing anything
about the high values. For a general lattice, noninterference
amounts to no variable being influenced by a value at a security
level higher than its security classification.

In most information flow analyses, the security classification
of program variables is fixed. In more general value-dependent
approaches [3], [4], [5], they are allowed to change as the pro-
gram’s state evolves. The security classification of a variable x,
denoted L(x), is a state-dependent expression which evaluates

ΓE(e) v L(x) x ∈ C ⇒ secure update(x, e)
ASSIGN

Γ,P {x := e} Γ[x 7→ ΓE(e)], sp(x := e,P)

where secure update(x, e) =̂ ∀ y ∈ ctrled(x) · ΓE(y) v L(y)[x\e].

Fig. 2: Forwards assignment rule (based on [4]).

to a security level. For the lattice above, for example, we could
define a variable x to have security classification B when z = 0
and D otherwise. In Dafny, this can be encoded (by the user)
as a function within a class which would also include the
program to be analysed (as a method).

class C {
var x:int
var z:int

function L x():L
reads this

{if z == 0 then B else D}

... // rest of class including the program to be analysed
}

The program variables whose values affect L(x), e.g., z above,
are referred to as control variables. We let C denote the set
of control variables of a program and ctrled(z) be the set of
variables controlled by z ∈ C.

A. Assignment statements

A typical rule for assignment when working forwards
through the code is given in Figure 2. To enable security
violations to be detected, the logic keeps track of the current
program context in Γ, which maps variables to the security
level of the data they hold, and P, a predicate on program
variables describing the current state.

The rule has two premisses. The first checks that the
security level of the expression e, denoted ΓE(e), is not
greater than the security classification of the updated variable
x (thus ensuring noninterference). The second checks that if
x is a control variable then the security classification of any
controlled variables does not fall below the security level of
the information they hold. Note that L(y)[x\e] denotes L(y)
with all occurrences of x replaced by e. Hence, it denotes the
value of L(y) after the assignment x := e has occurred.

If these premisses hold, the assignment is secure and the rule
updates the context accordingly (sp is strongest postcondition).
If either of the premisses fail, the analysis flags a security
violation. A similar rule for the backwards direction is given
in Figure 3 (where wp is weakest precondition and x, y := e, f
denotes simultaneous assignment). The rule introduces two
proof obligations identical to the premisses of the forward
approach. Moving backwards through the code these will
be transformed according to standard weakest precondition
rules. If the transformed proof obligations do not hold in the
program’s initial state, a security violation is flagged.

Both rules apply a standard technique, sp or wp, to reason
over the line of code and additionally add conditions required
for security. These conditions must hold in the state before



wpif (x := e,Q) =̂ ΓE(e) v L(x) ∧ (x ∈ C ⇒ secure update(x, e))

∧ wp(x,Γx := e,ΓE(e),Q)

where secure update(x, e) is defined as in Figure 2.

Fig. 3: Backwards assignment rule (based on [5]).

the assignment is executed. To encode the rules in Dafny,
which already performs wp reasoning, we simply add the
required conditions as an assertion before each assignment. To
do this, we (i) introduce an auxillary variable, i.e., one that
does not affect the program behaviour, representing Γ(x) for
each variable x, and (ii) calculate ΓE(e) as the highest security
level of any value held by a variable v that appears free in e.
It is possible that the value of Γ(v) cannot be deduced, e.g.,
when v is uninitialised or an input, in which case Dafny will
allow any value. In such cases, we restrict the value to L(v)
which is the highest value which it would hold if the program
is secure up to the point where the assignment is executed.
Hence, ΓE(e) =̂tv∈vars(e)(Γ(v)uL(v)) where vars(e) returns
the free variables in e.

Finally, for the secure update predicate we need to be able
to evaluate L(y) for a controlled variable y with the control
variable x replaced by e. This can be done using Dafny’s
notation for optional parameters to functions. For example,
the function L x above could be rewritten as follows

function L x(a:int := z):L
reads this

{if a == 0 then B else D}

where a is an optional integer parameter which, when not
explicit in the function call, defaults to z.

Assume we have a class in which x, y and z of type int have
been declared along with their associated auxiliary variables
Gamma x, Gamma y and Gamma z of type L. Assume also that
there are functions L x, L y and L z defined in the class to
return the value-dependent security classification of variables
x, y and z, respectively. Given that L x is defined as above,
we would require the following assertion to hold before an
assignment z := x + y occurring in the method representing the
program.

assert leq(join(meet(Gamma x, L x()),
meet(Gamma y, L y())), L z()) &&

leq(meet(Gamma x, L x()), L x(x + y));

The first conjunct of the assertion calculates ΓE(x + y) and
ensures that it is not greater than L(z) (ensuring no leak of
information through z), and the second calculates ΓE(x), i.e.,
the security level of the data held by x, and ensures that it is
not greater than L(x)[z\x+y] (ensuring no leak of information
through x). This assertion can be derived directly from the
syntax of the assignment and hence can be readily automated.

We also require the assignment to include the simultaneous
update of Γz as below.1

z, Gamma z := x+y, join(meet(Gamma x, L x()),
meet(Gamma y, L y()));

1Note that calls to functions from code are allowed since Dafny 4.0.

This rewriting of the assignment z := x + y can again be readily
automated.

B. Local variables and inputs and outputs

Handling assignments to local variables and inputs and
outputs requires modification to the above encoding. Local
variables do not need a security classification; they are not
accessible outside the program and hence may hold data at any
security level. However, since they may be assigned to other
program variables we must track the level of information they
hold with a Γ variable. Hence, we add an auxiliary variable
and update the assignment statement as in the previous section,
but do not require any assertions to be checked. (Note that
local variables cannot be in C.) Furthermore, in the absence
of explicit initialisation we assume that a local variable will be
initialised to either a default or arbitrary value. Hence, when
we declare the local variable we assume it holds no classified
information and set its Γ variable to the lowest security level as
follows (where D is the lowest security level as in the example
lattice defined previously).

var y: int;
var Gamma y := D;

Input variables have a fixed value throughout a program.
Hence, we restrict the security level of the value they hold
in the precondition (requires clause) of the program. To do
so, for each input variable a, we introduce an auxiliary input
variable Gamma a. Output variables are like local variables
except they become accessible outside the program when it
terminates. Hence, we restrict the security level they hold
in the program’s postcondition (ensures clause). Again this
requires the addition of an auxiliary variable Gamma x for any
output x. For example, the signature of the Mult method of
Figure 1a would be (automatically) transformed to

method Mult(a:int, Gamma a:L, b:int, Gamma b:L)
returns (x:int, Gamma x:L)

C. Arrays

Following [22], we require that the security level of an array
a is at least as high as that of (i) any element in a (if an
attacker can access the array, they can access any element in
the array) and (ii) any index i used in an assignment a[ i ] := v
(if an attacker can subsequently read an element at index j ,
they can determine whether (or not) i is equal to j). That is,
for the assignment a[ i ] := x we require the assertion

assert leq(join(meet(Gamma x, L x()),meet(Gamma i, L i())),
L a())

and for Gamma a to be updated to

join(join(meet(Gamma x, L x()), meet(Gamma i, L i())),
meet(Gamma a, L a()))

Note that the security level of a may be higher than that of
both x and i and hence is updated to be the join of these three
security levels.

In some programs, arrays may need to simultaneously hold
information at different security levels. Hence in addition to



the above, we treat each array element as a separate variable
with its own security classification. To do this in Dafny, for
an array a we add an array Gamma ai of the same length as
a, and a function L ai taking a single parameter corresponding
to the position in the array as follows.

function L ai(i:nat):L
requires i < a.Length
reads this

...

For assignment a[ i ] := x, we check leq(meet(Gamma x,L x()),
L ai[i]) and update Gamma ai[i] to meet(Gamma x, L x()).

When reading an element a[ j ], we calculate its security level
as for a variable, i.e., it will be meet(Gamma ai[j],L ai(j)), except
when an element of the array has been updated using an index
i of a higher security level. In that case, we must assign the
security level of i to a[ j ] as the value of a[ j ] can be used to
deduce information about i (case (ii) above).

Hence, we add a variable minL ai:L which is initialised to
the lowest security level of the security lattice and updated to
join (meet(Gamma i,L i()),minL ai) at each assignment a[ i ] := x.
When a[ j ] is read, its security level is calculated as the
maximum of that of the value it currently holds and minL ai,
i.e., join (meet(Gamma ai[j],L ai(j)),minL ai).

Finally, particular array values may be used as control
variables. In this case, we cannot use the optional parameter
approach in Section III-A (as an expression a[ i ], for some i ,
cannot be used in the parameter list since the length of a is
not defined there). Instead, we require a second function which
takes a parameter corresponding to the value being assigned
to a[ i ]. For example, if the security classification of a variable
x depends on a[ i ], for some i , we could declare the following
function, to be used for the secure update condition when we
are assigning a value v of type T to a[ i ].

function L xv(v:T):L
...

D. Branching statements

Information can also be leaked by branches in the program
(belonging to if statements and loops). This occurs when
classified information is used within the branch guard and
differences in timing of the branches allows an attacker
to deduce which branch was taken and hence deduce the
classified information [23], [24]. Therefore, the rules for if
statements and loops in Murray et al. [4] and Winter et al. [5]
require that ΓE(b), where b is the guard, is not higher than the
security level that a potential attacker can observe. For multi-
level lattices, this level needs to be the bottom of the lattice
to ensure no attacker, regardless of the level they can observe,
can deduce classified information. Rules, based on those in
Winter et al. [5], are shown in Figure 4.

Again, standard reasoning, already supported by Dafny, is
augmented with the additional condition for security. Hence,
the rules can be captured by an assertion before the guard of
the if statement or loop. For example, given D is the lowest
security level then before a statement if x < y ... we would
have

wpif (if b {c1} else {c2},Q) =̂

ΓE(b) v ⊥ ∧
(b⇒ wpif (c1,Q)) ∧ (¬ b⇒ wpif (c2,Q))

wpif (while b {c},Q) =̂

Inv ∧ (∀σ · ΓE(b) v ⊥) ∧
∀σ · (Inv ∧ b⇒ wpif (c, Inv)) ∧ (Inv ∧ ¬ b⇒ Q)

where ⊥ is the lowest level of the security lattice, Inv is a
user-provided loop invariant, and σ denotes an instance of the
program state.

Fig. 4: Conditional and loop rules (based on [5]).

assert leq(join(meet(Gamma x, L x()), meet(Gamma y, L y())), D);

Again the inclusion of this assertion is readily automated.

E. Declassification

In practice, declassification, i.e., controlled release of clas-
sified information, is required in many programs. For example,
a password checker revealing that a guessed password is
wrong releases some information about the password. Hence,
information flow analyses need to support a notion of declas-
sification [25].

Smith [26] proposes a declassification approach which al-
lows a programmer to state precisely what may be declassified
and where in the program the declassification may occur.
The approach uses a predicate, defined by the programmer,
at the point of declassification to relate the expression being
declassified to values in the program’s initial state. Only when
the predicate is true is the declassification allowed. Such a
predicate can be encoded as a two-state predicate in Dafny.

When the user provides the predicate true, the approach
allows unconditional declassification of information at a point
in the program similar to approaches such as that of Mantel
and Sands [27]. When they choose any other predicate, the
approach captures not only the point where declassification
occurs, but what information is allowed to be declassified.
Similar to approaches such as those of Sabelfeld and Myers
[28] and Askarov and Sabelfeld [29], this enables the detection
of programmer errors which could lead to information leaks.

For example, a program which updates a classified integer
variable x to a new value v may be allowed to release the
change in the value of the x, but not its new or old value. This
can be encoded as follows.

twostate predicate P(y:int, v:int) {y == old(x) − v};

method M(v:int)
modifies this

{
...
assert P(x − v, v);
diff := x − v;
x := v;

}

Note that if a programmer mistakenly included x := 0; in the
elided part of the method, the assertion would fail (since old(x)



is not necessarily 0), and hence the leak of x’s new value
through diff would be detected. Although this simple example
does not allow any change to x before the declassification
point, the predicate P can allow a range of values for its input
if a change to x is required (see [26] for examples).

F. Information flow in other program verifiers

While we can expect assertions and functions to be sup-
ported by program verifiers other than Dafny, our approach
above relies on notation that is more Dafny-specific. It includes
predicates, simultaneous assignments, optional parameters,
classes and two-state predicates. It is trivial, however, to get by
without each of these: predicates can be replaced by Boolean-
valued functions, and the other notation can be captured using
additional local variables and parameters. For example, a two-
state predicate can be captured using a predicate (or Boolean-
valued function) with parameters corresponding to the values
of the variables in the old state. These parameters would be
instantiated with local variables that have been set to the state
variables at the point in the program corresponding to the
desired old state.

Only lemmas cannot be represented readily in other tools
that do not already support a similar construct. These are
useful in our approach to detect mistakes made by the user
when defining the security lattice. When using other tools
these simple proofs could be done using an external theorem
prover, or alternatively using the Dafny verifier.

IV. RELY/GUARANTEE REASONING

Rely/guarantee reasoning [7], [8] is a general method for
thread-local analysis of concurrent programs and has been
used in a number of information flow analysis approaches
[30], [3], [4], [9], [5]. Each thread i is given a rely condition,
Ri, which models the behaviour of the other threads in the
program. When reasoning about i we rely on the fact that all
interference, occurring between i’s program steps, conforms
to Ri. For this to be sound, each thread also has a guarantee
condition, Gi, which each of its program steps conform to,
and which implies the rely conditions of all other threads, i.e.,
∀ i ·Gi ⇒∧j 6=iRj. We refer to this condition as compatibility.

The rely and guarantee conditions are relations over pre-
and post-states and must be reflexive (corresponding to the
possibility that no steps are taken or only steps that do not
change the shared state). Additionally, rely conditions must be
transitive (and therefore independent of the number of steps
taken).

Although Dafny does not support concurrency, we can
use rely/guarantee reasoning to reason about a sequential
program as if it were a thread in a concurrent program.
Each such thread can be modelled by a separate method in a
class representing the entire program. The associated rely and
guarantee predicates can be modelled by two-state predicates
provided by the user. Reflexivity and transitivity of these can
be checked using auxiliary methods. Consider the following
in which R 1 and G 1 are the rely and guarantee condition of
a particular thread, respectively.

twostate predicate R 1()
reads this

...

twostate predicate G 1()
reads this

...

method ReflexiveR 1()
ensures R 1()

{}

method ReflexiveG 1()
ensures G 1()

{}

method Rely 1()
modifies this
ensures R 1()

method TransitiveR 1()
modifies this
ensures R 1()

{
Rely 1();
Rely 1();

}

The methods ReflexiveR 1 and ReflexiveG 1 will only verify in
Dafny when the two-state predicates R 1 and G 1, respectively,
hold for an empty method body in which there is no change
to the program state. Hence, they check that the supplied
conditions are reflexive. The method Rely 1 has a specification,
but no body. Since method calls are reasoned about in Dafny
using the method’s specification only, a call to Rely 1 models
any update corresponding to R 1. It can be used in the final
method TransitiveR 1 which will only verify in Dafny when
two successive calls to Rely 1() satisfy R 1. This is sufficient
to prove that R 1 is transitive. As with the lemmas for checking
the security lattice properties, these auxiliary methods will
detect mistakes made by the user when defining the rely and
guarantee conditions.

With these definitions in place, we can automatically update
the method corresponding to the thread to (i) include a call
to Rely 1 at the start of the method and after each instruction
(modeling the threads in the environment taking zero or more
steps) and (ii) check that each assignment step of the program
satisfies G 1. (Other steps, such as local variable declarations
and checking of conditional and loop guards, do not change
the program variables and hence trivially satisfy any reflexive
guarantee. Method calls are discussed in Section VI.) As is
usual for rely/guarantee reasoning, update (i) requires that
the instructions of the thread are atomic. When there are
non-atomic instructions, e.g., x := x+1, these instructions need
to be decomposed into atomic steps, e.g., x := x+1 becomes
var y := x; x := y+1. Update (ii) requires that a label is added to
each assignment of the method. For example, consider a thread
with the rely and guarantee conditions above which updates
an integer variable x and then an integer variable y neither
of which are control variables. The required Dafny method
corresponding to this thread is shown below (the assertions
correspond to the associated assignment proof obligations).



method T 1()
modifies this

{
Rely 1();
assert leq(meet(Gamma a, L a()), L x());
label 1: x, Gamma x := a, meet(Gamma a, L a());
assert G 1@1();
Rely 1();
assert leq(meet(Gamma b, L b()), L y());
label 2: y,Gamma y := b, meet(Gamma b, L b());
assert G 1@2();
Rely 1();

}

We also need to check compatibility. If this thread occurs in
a program with two other threads whose rely conditions are
captured by two-state predicates R 2 and R 3, then we also
include a Dafny two-state lemma checking that G 1 is strong
enough to satisfy these conditions. This lemma is independent
of the threads’ code and can be automatically generated.

twostate lemma CompatibleG 1()
ensures G 1() ==> R 2() && R 3()

{}

In practice, the guarantee of a thread is often chosen to be
the conjunction of the rely conditions of the other threads in
the program. In such cases, this lemma can be readily verified
without a user-provided proof.

A. Rely/guarantee reasoning in other program verifiers

Dafny-specific notation introduced for rely/guarantee rea-
soning includes the use of labels with two-state predicates
and methods without a body (used for method Rely 1 in
the example). The former can be handled as described in
Section III-F. While bodiless methods may not be supported
in other verifiers, such verifiers will adopt a compositional
approach to reasoning in which method calls are verified
in terms of the called method’s specification, not its code.
Hence, an arbitrary body that satisfies the specification can
be provided. For a reflexive method such as Rely 1, an empty
body can be used.

The sharing of variables between methods in a class, while
convenient in our approach, is not strictly required as each
thread is verified in terms of the rely conditions of the other
threads, not the threads themselves. Hence, tools without
support for classes can simply introduce the shared state as
local variables in each thread.

V. DYNAMIC THREAD CREATION AND TERMINATION

Rely/guarantee reasoning assumes all threads are running
when the program starts. In reality, threads are created and
terminated dynamically as a program executes. Feng and Shao
[31] generalise rely/guarantee reasoning to allow dynamic
thread creation and termination facilitating reasoning about
realistic concurrent programs. When a thread T1 forks a new
thread T2, to maintain compatibility that new thread must not
require more from T1’s environment than T1 required, i.e.,
R1 ⇒ R2. Also, T1’s guarantee must ensure R2 and hence is
updated to be G1 ∧ R2 while T2 is potentially still running,

When thread T1 forks thread T2 we require
• R1 ⇒ R2

• G2 ⇒ G1

• T1’s rely condition is updated to R1 ∨ G2

• T1’s guarantee condition is updated to G1 ∧ R2

Fig. 5: Thread creation rules (based on [31]).

i.e., until T2 joins. In turn, T2 must guarantee at least what
T1 was guaranteeing to its environment, i.e., G2 ⇒ G1. Also,
T1 must include T2 as part of its environment while T2 is
potentially still running and hence its rely condition is updated
to R1 ∨ G2. These conditions are summarised in Figure 5.

Although not discussed in [31], it is necessary that the
updated guarantee is reflexive, and the updated rely condition
is both reflexive and transitive. It is easy to see that the
conjunction of two reflexive predicates is also reflexive, i.e., if
the state transition (s, s) is allowed under G1 and also under
R2 then it is allowed under G1 ∧ R2. Similarly, it is easy to
see that the disjunction of two reflexive predicates is reflexive,
i.e., if (s, s) is allowed under R1 and also under G2 then it
will be allowed under R1 ∨ G2. The disjunction of R1 and
G2, however, will not always be transitive. For example, if R1

allows the single transition (s1, s2) it will be trivially transitive
(as at most one step can be taken). If G2 allows the transition
(s2, s3) but not (s1, s3) then R1 ∨ G2 will fail to be transitive,
allowing (s1, s2) and (s2, s3) but not (s1, s3).

Hence, it is necessary to check that R1 ∨ G2 is transitive
each time we fork a thread. In the case that it is not transitive,
the rely will need to be weakened by the user based on
their understanding of the program. Weakening (rather than
strengthening) the rely, will ensure other properties, such as
compatibility of the forking thread with its environment, are
not violated.

To model forking and joining of threads in Dafny, we
introduce a pair of methods, Forki and Joini, for each thread
i. These methods have no specification or body and just act
as a marker for where the rely and guarantee conditions
of the calling thread need to be updated. The fork method
additionally introduces a proof obligation that the new thread’s
rely and guarantee conditions meet the requirements above.
For example, consider the example thread T 1 of Section IV
where additionally a second thread T 2 with rely and guarantee
conditions R 2 and G 2 respectively, is forked and joined. We
introduce a new method corresponding to the updated rely
condition for T 1

method Rely 12()
modifies this
ensures R 1() || G 2()

and the following lemma and method to verify the required
conditions.

lemma ForkConditions 12()
ensures R 1() ==> R 2()
ensures G 2() ==> G 1()

{}



method TransitiveR 12()
modifies this
ensures R 1() || G 2()

{
Rely 12();
Rely 12();

}

The required Dafny method corresponding to the thread is
then as shown below where the method calls Fork 2() and
Join 2() mark where the thread T 2 forks and joins, respec-
tively.

method T 1()
modifies this

{
Rely 1();
assert leq(meet(Gamma a, L a()), L x());
label 1: x, Gamma x := a, meet(Gamma a, L a());
assert G 1@1();
Rely 1();
Fork 2();
Rely 12(); // updated rely condition
assert leq(meet(Gamma b, L b()), L y());
label 2: y, Gamma y := b, meet(Gamma b, L b());
assert G 1@2() && R 2@2(); // updated guarantee
Rely 12();
Join 2();
Rely 1(); // return to original rely (and guarantee) condition

}

The methods Fork 2 and Join 2 are defined without a body
and modifies clause and hence do not change the global state.

method Fork 2()

method Join 2()

A. Thread creation and termination in other program verifiers

In the unlikely case, that another program verifier does not
have something equivalent to a modifies clause, the postcondi-
tion of the fork and join methods would need to state that every
shared variable is unchanged. No additional Dafny-specific
notation is otherwise introduced in this section.

VI. METHOD CALLS

Program verifiers generally reason about method calls using
the specification of the method rather than (inlining) its code.
This allows the called method’s code to be reasoned about
only once (to see that it meets its specification), and recursive
and non-recursive method calls to be treated uniformly.

For information flow analysis, we require that the speci-
fication (pre- and postcondition) of a method called from a
thread captures any changes to the security values held by
shared variables, and the values of the variables themselves
when they are control variables (as such changes may affect
the security classifications of other variables in the program).

Note that assignments of return values will be to output
variables of the method, followed by an assignment to shared
or local program variables in the calling code when required.
This allows the calling code’s guarantee to be checked on the
latter (and also captures the fact that the call and subsequent
assignment is not atomic). To ensure the called method M

also satisfies the calling code’s guarantee, we treat it like a
new thread with its own rely and guarantee conditions, RM

and GM , respectively. For each call from a thread Ti, we add a
lemma (like that for forking a thread) to check that Ri ⇒ RM

and that GM ⇒ Gi. While RM and GM must be provided by
the programmer, the lemma can be generated automatically.

VII. CASE STUDY: PRODUCER-CONSUMER

This section presents a case study of a producer-consumer
program (designed to illustrate the main concepts in this pa-
per). For simplicity of presentation, we assume all assignments
and guards are atomic. The program comprises a Main thread
which forks a Producer and a Consumer thread.

class ProducerConsumer {
method Fork Producer()
method Fork Consumer()

method Main() {
Fork Producer();
Fork Consumer();

}
...

}

The producer repeatedly gets a new integer value and a
boolean, indicating whether that value is classified, by calling
a method GetValue. The new value is added to the tail position
of a (sufficiently large) finite buffer, values. The tail position
is then incremented indicating to the consumer that there is a
new element.

The consumer may only consume unclassified values.
Hence, when a classified value is received by the producer,
it does not increment tail but forks a HighConsumer thread to
consume the value and waits for this thread to join.

const values:array<int>
var head:nat
var tail:nat

method GetValue() returns (v:int, c:bool)

method Fork HighConsumer()
method Join HighConsumer()

method Producer()
modifies this, values
decreases *

{
var v:int;
var c:bool;
while tail < values.Length

decreases *
{

v,c := GetValue();
values[tail] := v;
if c == true {

Fork HighConsumer();
Join HighConsumer();

} else {
tail := tail + 1;

}
}

}

Note that the decreases clause (used for the loop’s variant
in Dafny) is * to indicate that the loop does not necessarily
terminate.



The thread forked by the producer thread processes the
value at the buffer’s tail by calling the method HighProcess.
It also stores the value in a variable classified and declassifies
the difference between the current value and that previously
stored.

method HighProcess(v:int)

var classified:int
var diff:int

method HighConsumer()
requires tail < values.Length
modifies this

{
var temp := values[tail];
HighProcess(temp);
diff := temp − classified; // declassification
classified := temp;

}

The consumer thread repeatedly checks if head is less than
tail , i.e., if there is an element in the buffer, and if so calls
the method Process to process the integer at the buffer’s head.
It then increments head to remove the value from the buffer.

method Process(v:int)

method Consumer()
requires tail <= values.Length
modifies this
decreases *

{
while true

invariant tail <= values.Length
decreases *

{
if head < tail {

Process(values[head]);
head := head + 1;

}
}

A. User-defined security policy
For this program to be secure, we require that all values

that can be read by the consumer thread, i.e., all elements of
values between positions head and tail are not classified.

To check this using the approach from this paper we define
a boolean security lattice (since values are either classified or
not).

datatype L = Low | High

predicate leq(l1:L, l2:L) { l1 == Low || l2 == High }

function join(l1:L, l2:L):L { if leq(l1, l2) then l2 else l1 }

function meet(l1:L, l2:L):L { if leq(l1, l2) then l1 else l2 }

This lattice satisfies the required lemmas from Section III.
We can then specify the security classification for values and

elements of values as follows.
function L values():L { High }

function L valuesi(i:nat, h:int := head, t:int := tail):L
requires i < values.Length
reads this

{
if h <= i < t then Low else High

}

Note that this makes head and tail control variables.
The security classifications of head, tail and diff are Low in

any state, and that of classified is High in any state. Hence, we
have

function L head():L {Low}
function L tail():L {Low}
function L diff():L {Low}
function L classified():L {High}

We also require a declassification predicate for the informa-
tion released through diff . This predicate is

twostate predicate P(y:int)
requires old(tail) < values.Length
reads this

{ y == old(values[tail]) − old(classified) }

B. Used-defined rely/guarantee conditions
The programmer also needs to provide the rely and guar-

antee conditions for each thread and each method called from
a thread. For the Main thread we simply let the rely condition
be the conjunction of those for the threads it forks and the
guarantee be true (satisfying the conditions of Section V).

The producer thread can place classified values in the buffer.
To ensure the security policy, it relies on no other thread
changing tail as this may result in the classified value being in
the range for which L valuesi only allows Low values. It must
also rely on other threads not updating diff or classified while
the high consumer thread it forks is running.

twostate predicate R Producer()
reads this

{ tail == old(tail) && diff == old(diff) && classified == old(classified) }

Its guarantee is equal to the consumer thread’s rely condition
defined below.

twostate predicate G Producer()
reads this

{ R Consumer() }

The method GetValue called by the producer thread does not
rely on anything from the other threads (we assume it operates
independently of the program variables).

twostate predicate R GetValue() {true}

Its guarantee is equal to that of the producer (trivially
satisfying the condition that it implies the latter).

The rely and guarantee conditions for the HighConsumer
thread are equal to those of the producer (trivially satisfying
the required conditions).

Like GetValue, we assume the HighProcess and Process meth-
ods do not rely on the program variables and hence have a true
rely condition, and that their guarantees are equal to those of
their calling threads.

twostate predicate R HighProcess() {true}

twostate predicate R Process() {true}

Since the Consumer thread passes the buffer value at head to
the method Process (which requires a Low value), it requires
that its environment does not change head, and only increases
tail while maintaining the conditions tail <= values.Length (re-
quired for its loop invariant) and minL valuesi == Low.



twostate predicate R Consumer()
reads this

{
head == old(head) && old(tail) <= tail &&
(old(tail) <= values.Length ==> tail <= values.Length) &&
(old(minL valuesi) == Low ==> minL valuesi == Low)

}

Its guarantee is equal to the producer’s rely condition
defined above.

All of the above rely and guarantee conditions are reflexive
and all of the rely conditions are transitive as required.

C. Automatically generated annotations

Once the programmer has defined the security policy and
rely and guarantee conditions, the auxiliary variables and
methods, assertions and lemmas required to verify security
can be automatically added to the program. For each called
method, auxiliary variables for inputs and outputs are added.
For example, Process is updated as follows.

method Process(v:int, Gamma v:L)

For each thread, required assertions, initialisation of local
variables, calls to the associated rely method and checking
of the associated guarantee are added. For example, the
assignment head := head + 1; of the consumer thread is updated
as follows.

assert leq(meet(Gamma head, L head()), L head()) &&
forall j:: 0 <= j < values.Length ==>

leq(meet(Gamma valuesi[j],L valuesi(j)),
L valuesi(j,head+1));

label Consumer1: head, Gamma head :=
head + 1, meet(Gamma head,L head());

assert G Consumer@Consumer1();
Rely Consumer();

D. User-defined conditions

Next, the user needs to provide pre and postconditions for
methods that are called. The GetValue method must return a
consistent pair of outputs, i.e., GetValue() is updated to

method GetValue() returns (v:int, Gamma v:L, c:bool, Gamma c:L)
ensures (Gamma v == High <==> c == true) &&

Gamma c == Low

The HighProcess method does not constrain its input and
hence does not need to be updated. The Process method, on
the other hand, requires its input to be Low and is updated
accordingly.

method Process(v:int, Gamma v:L)
requires Gamma v == Low

The user also needs to weaken any modified rely conditions
of forking threads that are not transitive. For example, the
rely generated after the Consumer thread is forked, (R Main ||
G Producer) || G Consumer, needs to be weakened by removing
the conjunct head == old(head) from G Producer.

Finally, program invariants are added as preconditions to
each thread and loop invariants are updated as required.
For the case study, the precondition tail <= values.Length &&
minL valuesi == Low && Gamma valuesi.Length == values.Length is

added to each thread, and the invariant tail <= values.Length &&
minL valuesi == Low to each loop. The need for these additional
constraints is determined as they would be in a standard Dafny
development. With these changes in place, the full program
can be proven secure using the Dafny verifier.

VIII. CONCLUSION

This paper has shown that program verifiers like Dafny,
which were built for verifying functional correctness of se-
quential programs, can also be used for verifying information
flow security for concurrent programs. Our approach captures
the information flow rules of the state-or the-art approaches by
Murray et al. [3], [4] and Winter et al. [5] which utilise com-
positional rely/guarantee reasoning for thread-local analysis. It
also extends these approaches to handle a number of constructs
that commonly arise in real software: arrays, information
declassification, dynamic thread creation and termination, and
method calls.

The approach transforms a Dafny program by adding (i) a
security policy, comprising a security lattice, security classi-
fications and declassification predicates, (ii) rely and guaran-
tee conditions for each thread, and (iii) assertions, auxiliary
variables and methods, and lemmas needed to verify security.
The latter, based on the program syntax, can be automatically
generated by a front-end transpiler.

For the approach to be practical for larger programs,
tool support is essential. A prototype tool covering basic
information flow (not arrays nor declassification) and basic
rely/guarantee reasoning (not dynamic thread creation) has
been developed as an extension to Dafny’s source code
(https://github.com/dafny-lang/dafny). The tool runs in two
phases. The first phase generates skeleton code for the security
policy and rely and guarantee conditions which the user
fills in before running the second phase. The second phase
generates the assertions and other annotations required to
verify security based on the program code. The output of the
second phase can be modified further, e.g., to add method pre
and postconditions, as required.

The prototype tool also includes a way of modelling an
atomic compare-and-swap (CAS) operator in Dafny. This
allows threads to use locks, a common synchronization mech-
anism in concurrent programs. The information flow checks
required when using a CAS operator can be found in [5].

Future work will consider using Boogie directly to reason
about unstructured assembly code, following the ideas in [32].
This will allow the analysis to account for any optimisations to
the code introduced during compilation (a well known source
of security leaks) [33]. Also, approaches to automatically
generating security policies for value-dependent information
flow analysis [34] and rely/guarantee conditions for general
concurrent programs [35] will be investigated to further lessen
the burden on the programmer when using our approach.

Ackowledgements Thanks to Daniel Parkinson and Sanni
Bosamia for their contributions to the ideas in this paper.
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