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Abstract. Declassification refers to the controlled release of sensitive
information by a program. It is well recognised that security analyses,
formal or otherwise, need to take declassification into account to be prac-
tically usable. This paper introduces the concept of declassification pred-
icates which enable a programmer to define precisely what can be declas-
sified in a given program, and where in the program it can be released.
We show how declassification predicates can be added to an existing in-
formation flow logic, and how the extended logic can be implemented
within the Dafny program verifier.

1 Introduction

Information flow analyses track the flow of data through a program, and can
hence detect when sensitive data flows to program locations which are considered
to be accessible by an attacker. Such analyses range from simple security type
systems [15, 12] to more advanced logics which use predicates to represent the
program state and the potentially dynamic security classifications of program
variables [11, 16]. These analysis techniques typically equate security with the
notion of non-interference [5]. Non-interference holds when sensitive data does
not influence the data held in program locations considered to be accessible to
an attacker.

While non-interference provides a highly intuitive notion of information flow
security, it is too strict to be used with many programs in practice. Consider, for
example, a simple password checking program. In such a program, a user’s pass-
word would be regarded as sensitive data. But this sensitive data influences what
an attacker sees (success or failure) when they enter a guess for the password.
Other examples include a program in which employees’ salaries are sensitive,
but their average may be released for statistical purposes, or a program which
determines (and hence releases) whether a financial transaction can proceed al-
though the balance of the account from which the money is being transferred is
sensitive. In all cases, the information which is released, and hence accessible to
an attacker, is influenced by the sensitive data.

This realisation has led to a range of proposals for weakening non-interference
to allow controlled declassification of sensitive information. Sabelfeld and Sands
[14] identify four dimensions of declassification related to how the release of



information is controlled: what information can be released; where in the program
the information can be released; who can release the information; and when
the information can be released. While approaches considering the who and
when dimensions have been developed, e.g., Zdancewic and Myers consider the
who dimension with their notion of robust declassification [17], there has been a
significant focus on the what and where dimensions.

To capture the what dimension of declassification, Sabelfeld and Myers [13]
introduce the concept of delimited release. It requires the programmer to specify
a number of expressions in a program, referred to as escape hatches, whose values
can be released. An escape hatch is specified in the program via a declassify
annotation. When such an escape hatch is specified, other occurrences of the
expression, either before or after the annotated expression, are also declassified.
Hence, the notion is concerned solely with what information can be released and
not where in the program it can be released.

In contrast, Mantel and Sands define a notion of security based on intransitive
non-interference [8] which considers solely the where dimension. Declassification
is allowed at any annotated program step, but only at annotated program steps.
A similar approach is provided by Mantel and Reinhard [7] along with two
notions of security to capture the what dimension of declassification.

To capture both the what and where dimensions in a single definition of se-
curity, Askarov and Sabelfeld introduce localized delimited release [3]. As with
delimited release, the programmer specifies the expressions which can be released
via a declassify annotation. However, only the annotated occurrence of a partic-
ular expression, and those following it, are declassified. The annotation therefore
marks the point in the program from which the expression becomes declassified.

In this paper we present a new notion of security, qualified release, which
combines the what and where dimensions, and demonstrate that it is more gen-
eral, i.e., applicable to more programs, than localized delimited release. The
key to our definition is a concept we call declassification predicates. These are
predicates that must be true at the point in the program where declassification
occurs. They can be used to describe a range of values that an escape-hatch ex-
pression can take at the point where its value is released. We begin in Section 2
with an overview of the earlier work described above. Then, in Section 3, we
demonstrate how declassification predicates can overcome the shortcomings of
existing approaches and define the notion of qualified release. In Section 4, we
show how qualified release can be enforced by encoding declassification predi-
cates in an existing information flow logic from Winter et al. [16]. In Section 5,
we present an implementation of the logic with declassification predicates in the
Dafny program verification tool [6]. We conclude in Section 6.

2 Exisiting approaches

2.1 Non-interference

In information flow analyses in which declassification is not considered, the stan-
dard definition of security is non-interference [5]. Given a lattice of security clas-



sifications, non-interference states that data classified at a level lower than or
equal to a given level ` cannot be influenced by data at levels higher than `.
When ` is the highest level of data accessible to an attacker, this means the
attacker cannot deduce anything about the data classified higher than level `.
We refer to data classified at a security level higher than ` as high data and all
other data as low data. Similarly, a variable that is able to hold high or low data
is referred to as a high variable, and a variable that is only able to hold low data
as a low variable.

Non-interference can be formally defined in terms of comparing two runs
of the program under consideration. For concurrent programs, if the runs start
with the same low data then at each point in the program the low data should
remain the same [9].1 Let a program configuration 〈c,m〉 denote a program c and
memory, i.e., mapping of variables to values, m, and let 〈c,m〉 −→ 〈c′,m ′〉 and
〈c,m〉 −→n 〈c′,m ′〉 denote that 〈c,m〉 reaches configuration 〈c′,m ′〉 in one or
n ≥ 1 program steps, respectively. Let m1 =` m2 denote that memories m1 and
m2 are indistinguishable at security levels ` and below. This relation between
memories is referred to as low equivalence.

Definition 1. Non-interference for program c
Program c is secure if the following holds.

∀m1,m2,n, c
′,m ′1·

m1 =` m2 ∧ 〈c,m1〉 −→n 〈c′,m ′1〉 ⇒
∃m ′2, c

′′ · 〈c,m2〉 −→n 〈c′′,m ′2〉 ∧ m ′1 =` m ′2

This can equally be defined in terms of a bisimulation over configurations.
Here we use an intuitive definition based on that for sequential programs. The
premise of the implication in the above definition does not require the high data
to be the same in m1 and m2. Hence, if high data which differs between m1 and
m2 is declassified in c and then assigned to a low variable, the condition fails.
Non-interference is, therefore, too strong to use in the presence of declassification.

2.2 Delimited release

Delimited release [13] is a weakening of non-interference that allows identified
expressions, referred to as escape hatches, to be declassified in a program. Escape
hatches are identified as annotated expressions of the form declassify(e, d) where
e is the expression to be declassified, i.e., e is the escape hatch, and d the level
to which it is to be declassified. It is a requirement that d is not higher than `,
the security level accessible by an attacker.

Under delimited release, the condition m ′1 =` m ′2 in the consequent of Defini-
tion 1 need only hold when all escape hatches have the same value in the initial
memories m1 and m2. Let m1 I (E ) m2 denote that all expressions in set E are
indistinguishable on memories m1 and m2.

1 When concurrency is not a consideration, this definition (as well as the others in this
section) can be weakened to only consider the point where the program terminates.



Definition 2. Delimited release of escape hatches E on program c
Program c is secure if the following holds.

∀m1,m2,n, c
′,m ′1·

m1 =` m2 ∧ 〈c,m1〉 −→n 〈c′,m ′1〉 ⇒
∃m ′2, c

′′ · 〈c,m2〉 −→n 〈c′′,m ′2〉 ∧ (m1 I (E ) m2 ⇒ m ′1 =` m ′2)

This definition obviously equates to non-interference when there are no de-
classified expressions in a program, i.e., when E = ∅. To illustrate how it cap-
tures the what dimension of declassification, consider the following examples
adapted from [13].

Example 1. Average salary
A program uses high variables h1, . . . , hn to store the salaries of employees

in an organisation. While these salaries are sensitive and have a security level
higher than ` (the level accessible by a potential attacker), the average can be
released for statistical purposes. The average is stored in a low variable avg .

avg := declassify((h1 + . . .+ hn)/n, `)

Given that the annotation of the expression does not change its value, this
program does not satisfy non-interference since the final value of avg is influenced
directly via the values of h1, . . . , hn . However, it does satisfy delimited release
which only requires avg to be the same after two runs of the program if those
runs start from memories in which the average of the salaries is the same.

Consider, however, extending the program as follows.

h2 := h1; . . . hn := h1; avg := declassify((h1 + . . .+ hn)/n, `)

In this case, the program releases not the average of the initial salaries,
but the initial value of h1. This program does not satisfy delimited release. For
example, if one run starts with h1 = v and h2 = u and the other with h1 = u
and h2 = v , for some values u and v , then the runs will start from memories in
which the average of the salaries are the same. Yet the values of avg won’t agree
after the runs; it will be v for the first run and u for the second.

It is in this way that delimited release controls what is released; in this case
the average of the initial salaries. 3

Example 2. Electronic wallet
An electronic wallet indicates whether a transaction of amount k can pro-

ceed despite the balance h being sensitive and having a security level higher
than ` (the level accessible by a potential attacker). The amount of a successful
transaction is removed from h and added to a low variable amt .

if declassify(h ≥ k , `) then h := h − k ; amt := amt + k else skip

Again this program does not satisfy non-interference (since amt is influenced
by h), but does satisfy delimited release (since amt will have the same final value



for two runs of a program in which it has the same initial value and same value
for the released expression h ≥ k in the initial state). When extended as follows,
however, the program does not satisfy delimited release.

n := 0;
while(n < N )

if declassify(h ≥ k , `) then h := h − k ; amt := amt + k else skip
n := n + 1

Rather than releasing the expression h ≥ k (as specified), this program re-
leases how many transactions of amount k between 0 and an arbitrary value N
can occur. It does not satisfy delimited release since the expression h ≥ k will
be the same for an initial memory with h = 2 ∗ k and another with h = 4 ∗ k ,
but the value released through amt will be different when N ≥ 2. 3

2.3 Localized delimited release

Consider the following program where out1 and out2 have security level `, and
h has a security level higher than `.

out1 := h; out2 := declassify(h, `)

This satisfies delimited release even though it seems it is releasing the value of
h early. Definition 2 only requires two runs to agree on out1 when they agree on
the value of h (identified as an escape hatch expression in the second instruction).
That is, the definition is concerned with what can be released, not where.

To weaken non-interference for the where dimension of declassification, Man-
tel and Sands [8] modify the bisimulation underlying non-interference. Instruc-
tions which declassify an expression only need to maintain low equivalence of
memories when the expression is equivalent in both memories. All other instruc-
tions need to always maintain low equivalence. Hence, the above program would
be regarded as insecure since the first instruction does not maintain low equiva-
lence for memories with different values of h. However, the extended versions of
Examples 1 and 2 would be regarded as secure (since only the where, and not
the what, dimension is considered by this definition). This is also true of other
approaches which focus on the where dimension, including those which represent
the knowledge of the attacker [2, 4].

Localized delimited release [3] combines the idea of escape hatches from de-
limited release with a similar modification of the bisimulation underlying non-
interference. Let 〈c,m,E 〉 denote a program configuration with an additional
element E denoting the set of escape hatches encountered so far in the program.

Definition 3. Localized delimited release on program c

Program c is secure if for all initial states i1 and i2 such that i1 =` i2, there exists
a bisimulation Ri1,i2 such that 〈c, i1,∅〉Ri1,i2 〈c, i2,∅〉 and for all programs c1



and c2, and memories m1 and m2, the following holds.

〈c1,m1,E1〉Ri1,i2 〈c2,m2,E2〉 ⇒
1. (i1 I (E1) i2 ⇔ i1 I (E2) i2) ∧
2. (i1 I (E1) i2 ⇒

(i) m1 =` m2 ∧
(ii)∀ c′1,m

′
1,E

′
1 ·

(〈c1,m1,E1〉 −→ 〈c′1,m ′1,E ′1〉 ⇒
∃ c′2,m

′
2,E

′
2 ·

〈c2,m2,E2〉 −→ 〈c′2,m ′2,E ′2〉 ∧
〈c′1,m ′1,E ′1〉Ri1,i2 〈c′2,m ′2,E ′2〉))

The configurations related by Ri1,i2 correspond to those reached by two runs
of the program c which start from any low-equivalent states. Note that the escape
hatches encountered during two runs of a program may differ due to branching
on high data. (Any branch taken based on low data will be the same for two runs
whose states are low-equivalent.) The definition of Ri1,i2 requires that the escape
hatches of the first run are indistinguishable in the initial states of the runs, i1
and i2, precisely when the escape hatches of the second run are indistinguishable
in i1 and i2 (requirement 1). Furthermore, when they are indistinguishable in the
initial states, the current program states are low-equivalent (requirement 2(i)),
and any step of the first run can be matched by a step of the second run to reach
configurations again related by Ri1,i2 (requirement 2(ii)).

Localized delimited release agrees with delimited release for the programs in
Examples 1 and 2. However, the program out1 := h; out2 := declassify(h, `) is
insecure under localized delimited release.

3 Declassification predicates

Sabelfeld and Sands [13] define a security type system for ensuring delimited
release. As well as tracking information flow, the type system keeps track of
which variables have been updated and which have been declassified. The key
constraint placed on secure programs is that escape-hatch variables must not
be updated before they are declassified. The same type system is shown to also
enforce localized delimited release by Askarov and Sabelfeld [3].

It is easy to see that this type system will find the extended programs in
Examples 1 and 2 insecure (as required). Both extended programs change high
variables before declassifying them. Relying on such a simple check, however,
limits how declassification can be used. For example, consider the following pro-
gram in which employees are awarded an annual bonus (which is between 0 and
10% of their salary) before the average of their salaries are released. b1, . . . , bn
are the bonuses provided as inputs to the program.

h1 := h1 + b1; . . . hn := hn + bn ; avg := declassify((h1 + . . .+ hn)/n, `)

This program illustrates a reasonable release of information, but would be re-
garded as insecure by the type system.



Similarly, consider an electronic wallet which can indicate whether two trans-
actions of amount k can proceed.

n := 0;
while(n < 2)

if declassify(h ≥ k , `) then h := h − k ; amt := amt + k else skip
n := n + 1

Again this is a reasonable release of information, but cannot be shown to be
secure using the type system.

In both examples above, we want to declassify the identified expression in
the current state of the program. The type system, however, requires the current
values of escape-hatch variables to be equal to their initial state values. As
the examples of Section 2 show, this is key to capturing what is declassified.
Modifying Definitions 2 and 3 to refer to the current states in place of the
initial states of the runs would result in them capturing the where dimension
of declassification, and no longer the what dimension. As a consequence, the
extensions of both Example 1 and 2 would be regarded as secure.

To allow such a modification and not lose the what dimension, we propose
introducing constraints at the points of declassification. These constraints, which
we call declassification predicates, provide a specification of precisely what can
be released with respect to the initial state of the program. For the salaries ex-
ample above, we want to release a value between the average of the initial values
(corresponding to the case where all employees get a minimal bonus of 0) and
the average of the values obtained by adding 10% to each of the initial values
(corresponding to the case where all employees get the maximal bonus). The
declassification predicate is written as a function Pi(e) where e is the expression
being declassified and i is the initial state of the run in which the predicate is
being evaluated. Let [[v ]]i denote the value of variable v in state i . The declassi-
fication predicate for the salaries program is

Pi(e) =̂
([[h1]]i + . . .+ [[hn ]]i)/n ≤ e ≤ ([[h1]]i + [[h1]]i/10 + . . .+ [[hn ]]i + [[hn ]]i/10)/n

Provided the inputs b1, . . . , bn are between 0 and 10% of the salaries h1, . . . , hn

respectively, this predicate will hold at the point of declassification. Hence, the
above program will be regarded as secure. However, the predicate will not hold
at the point of declassification of the extended program of Example 1, making
that program insecure (as desired).

For the electronic wallet example, we want to release the information about
whether [[h]]i ≥ k and then, after a successful transaction, whether [[h]]i − k ≥ k .
A suitable declassification predicate is

Pi(e) =̂ ([[h]]i ≥ k ⇔ e) ∨ ([[h]]i − k ≥ k ⇔ e)

In general, there may be more than one declassification predicate associated
with a program, and each declassified expression must be annotated with the



predicate which needs to hold. When a declassification predicate does not hold,
the expression is interpreted with its usual, i.e., non-declassified, security classi-
fication.

To support declassification predicates, we define a notion of security which
we call qualified release. Qualified release differs from localized delimited release
since it assumes that an escape-hatch expression is only released at the instruc-
tion where it is annotated as being declassified (similarly, to the approach of
Mantel and Sands [8]). In contrast, with localized delimited release once an
escape-hatch expression is released, it remains released for the rest of the pro-
gram. For example, the program out1 := declassify(h, `); out2 := h is secure
under localized delimited release when h is a high variable, and out1 and out2
are low.

Hence, we modify requirement 1 and the premise of requirement 2 of Defini-
tion 3 so that the escape-hatch expressions are compared in the current states
of the runs, m1 and m2, rather than the initial states, i1 and i2. That is, the
conditions on low-equivalence of future states (requirements 2(i) and 2(ii)) need
only hold when all escape hatches have the same value in the state at which they
are released. Furthermore, an annotated expression is only considered to be an
escape hatch when the associated declassification predicate holds.

Qualified release is defined below where we let εi(c,m) denote the set of
expressions e where

– the first instruction in c has an expression declassify(e, d) such that d is not
higher than `, the security level accessible by an attacker (the requirement
from Section 2), and

– m satisfies the associated declassification predicate Pi(e) where i is the initial
state of the run that led to the configuration 〈c,m〉.

Definition 4. Qualified release on program c

Program c is secure if for all initial states i1 and i2 such that i1 =` i2, there
exists a bisimulation Ri1,i2 such that 〈c, i1〉Ri1,i2 〈c, i2〉 and for all programs c1
and c2, and memories m1 and m2, the following holds.

〈c1,m1〉Ri1,i2 〈c2,m2〉 ⇒
1. (m1 I (εi1(c1,m1)) m2 ⇔ m1 I (εi2(c2,m2)) m2) ∧
2. m1 =` m2 ∧
3. (m1 I (εi1(c1,m1)) m2 ⇒

∀ c′1,m
′
1 ·

(〈c1,m1〉 −→ 〈c′1,m ′1〉 ⇒
∃ c′2,m

′
2 · 〈c2,m2〉 −→ 〈c′2,m ′2〉 ∧ 〈c′1,m ′1〉Ri1,i2 〈c′2,m ′2〉))

For requirement 1 and the premise of requirement 3, the escape-hatch expressions
are compared in the current states of the runs, m1 and m2, rather than the initial
states, i1 and i2, as in Definition 3. This allows the variables in the escape-hatch
expressions to be modified before declassification.

Like localized delimited release, when there is no declassification in a program
qualified release is equivalent to non-interference. It requires that the states



reached by a pair of runs, after any given number of steps from low-equivalent
states, are low-equivalent.

In programs with declassification, the where dimension of declassification is
captured by only enforcing low-equivalence when the escape-hatch expressions in
the current states of the runs are indistinguishable. Note that when the two runs
have identical values for their high variables initially, all escape-hatch expressions
will be indistinguishable allowing the bisimulation to traverse the entire program.

The what dimension of declassification is enforced by the declassification
predicates which must hold for each associated expression to be in εi1(c1,m1),
and hence be declassified.

4 Enforcing qualified release

Due to the need to be able to evaluate arbitrary predicates Pi(e) for qualified
release, it cannot be enforced by a simple security type system (such as that
designed for delimited release in [13]). A program logic which keeps track of
the current state is required. In this section, we show how it can be enforced in
the program logic developed by Winter et al. [16]. For presentation purposes, we
focus on a subset of this logic supporting static security classifications of variables
in single-threaded programs. Our approach, however, is equally applicable to
the full logic for dynamic security classifications that change as the program
executes (often referred to as value-dependent security classifications [11]) and
multi-threaded programs.

In this subset of the logic, the function L maps each program variable to its
(static) security classification. In a secure program, each program variable x is
only allowed to hold data whose security level is lower than or equal to L(x ).
The security level of the data held in variable x , when it can be determined from
the program, is captured in an auxiliary variable Γx . The security level of an
expression e in a program which is so far judged to be secure is calculated from
the security level of each variable x in e as follows.

ΓE (e) =̂
⊔

x∈vars(e) (Γx u L(x ))

Note that t denotes the join operator (or least upper bound) of the security
lattice and u denotes the meet operator (or greatest lower bound). Hence, if
the security level of x can be determined, since it will be less than or equal to
L(x ), the expression Γx u L(x ) equates to Γx . If it cannot be determined, the
expression equates to L(x ), accounting for all possible values of Γx . The security
level of expression e is the highest of the values for each of its variables.

The logic is then expressed in terms of a weakest precondition predicate
transformer wpif over a simple language comprising skips, assignments, condi-
tionals (if-then-else) and loops (while).2 Starting from the last line of code and
the postcondition true, the predicate transformer introduces proof obligations

2 For capturing concurrent algorithms, the simple language also supports atomic
compare-and-swap (CAS) instructions which are not considered in this paper.



associated with information flow which are then transformed successively over
the rest of the code to a predicate which must hold in the code’s initial state.
That is, a program c starting in an initial state satisfying S0 is secure when
S0 ⇒ wpif (c, true).

A skip instruction has no effect.

wpif (skip,Q) =̂ Q

For an assignment instruction, the predicate transformer is defined as follows
where def (e) is true when e is defined, i.e., won’t throw an exception.

wpif (x := e,Q) =̂ ΓE (e) v L(x ) ∧ def (e) ∧ Q [x ← e, Γx ← ΓE (e)]

The first conjunct is a check that the expression e’s security level is lower than
or equal to that which x is allowed to hold. The second conjunct ensures e
is defined. This is needed since throwing of exceptions can reveal information
about sensitive data. For example, a divide-by-zero exception can reveal that a
sensitive variable holds value 0. The final conjunct updates the values of x and
Γx in the postcondition Q as in the standard weakest precondition transformer
for a pair of assignments.

For a conditional instruction, we require that the branching condition is
defined and has a security level lower than or equal to `, the highest security
level of data which a potential attacker can access. This is not common to all
information flow logics, but is used in Winter et al. [16] to prohibit information
being leaked when an attacker can observe the timing of the chosen branch (and
hence deduce the value of the branching condition [1, 10]).

wpif (if b then c1 else c2,Q) =̂
ΓE (b) v ` ∧ def (b) ∧ (b ⇒ wpif (c1,Q)) ∧ (¬ b ⇒ wpif (c2,Q))

The final two conjuncts are the standard weakest precondition transformer for
conditionals (with wpif replacing wp).

For while loops, the security level of the guard similarly needs to be defined
and low for each iteration of the loop, i.e., whenever the loop’s invariant is true.
For a program with variables x1, . . . , xn we have

wpif (while(b) c,Q) =̂
(∀ x1, . . . , xn · Inv ⇒ def (b) ∧ ΓE (b) v `) ∧
Inv ∧ (∀ x1, . . . , xn · (Inv ∧ b ⇒ wpif (c, Inv)) ∧ (Inv ∧ ¬ b ⇒ Q))

where the final two conjuncts are the standard weakest precondition transformer
for partial correctness of loops (with wpif replacing wp). Note that since guards
do not contain sensitive data (as ensured by the first conjunct), whether or not
a loop terminates does not leak information.

To add declassification predicates to the logic, we introduce program annota-
tions of the form declassifyP (...) where P is the associated declassification pred-
icate with initial values of variables replaced by auxiliary variables, v0

1 , . . . , v
0
n ,



i.e., additional variables which do not affect the program execution. These aux-
iliary variables are initialised to the corresponding program variables to deter-
mine if a program c is secure. That is, we check S0 ⇒ wpif (c′, true) where c′ is
v0
1 := v1; . . . ; v0

n := vn ; c.
We assume that when an expression is declassified, the declassification is

applied to the entire expression. That is, the syntax added to include annotations
is x := declassifyP (e, `) for assignments, and if declassifyP (b, `) then c1 else c2
and while(declassifyP (b, `)) c for conditionals and loops.

The logic is then extended with the following rules, where d is the level to
which information is being declassified and ` is the level of access of an attacker.

wpif (x := declassifyP (e, d),Q) =̂
d v L(x ) ∧ P(e) ∧ def (e) ∧ Q [x ← e, Γx ← d)]

wpif (if declassifyP (b, d) then c1 else c2,Q) =̂
d v ` ∧ P(b) ∧ def (b) ∧ (b ⇒ wpif (c1,Q)) ∧ (¬ b ⇒ wpif (c2,Q))

wpif (while(declassifyP (b, d)) c,Q) =̂
(∀ x1, . . . , xn · Inv ⇒ def (b) ∧ P(b)) ∧ d v ` ∧
Inv ∧ (∀ x1, . . . , xn · (Inv ∧ b ⇒ wpif (c, Inv)) ∧ (Inv ∧ ¬ b ⇒ Q))

Each of the rules checks that the declassification predicate holds at the point
of declassification. Hence, they will judge a program which does not satisfy a
declassification predicate as insecure. This is stricter than necessary since an
expression can be used with its usual classification when the predicate does not
hold. However, the rules provide a simple extension to the logic which suffices
in most situations. A proof of soundness of the extended logic with respect to
Definition 4 is provided in Appendix A. To provide an intuitive understanding
of the new rules, we revisit the suggested extensions to Examples 1 and 2 of
Section 3.

Example 3. Average salary with bonuses
Let b1, . . . , bn be between 0 and 10% of the salaries h1, . . . , hn respectively.

Let P(e) =̂ (h0
1 + . . .+ h0

n)/n ≤ e ≤ (h0
1 + h0

1/10 + . . .+ h0
n + h0

n/10)/n and c
be the following program (where n > 0 and avg has security level `).

h1 := h1 + b1; . . . hn := hn + bn ; avg := declassifyP ((h1 + . . .+ hn)/n, `)

The program is secure since the proof obligation P((h1 + . . .+ hn)/n) intro-
duced by wpif over the final instruction, is transformed to

(h0
1 + . . .+ h0

n)/n ≤ (h1 + b1 + . . .+ hn + bn)/n)
≤ (h0

1 + h0
1/10 + . . .+ h0

n + h0
n/10)/n

by the preceding instructions. It is further transformed to

(h1 + . . .+ hn)/n ≤ (h1 + b1 + . . .+ hn + bn)/n)
≤ (h1 + h1/10 + . . .+ hn + hn/10)/n

by the initialisation of the auxiliary variables h0
1 := h1; . . . ; h0

n := hn , which
then evaluates to true given the constraints on b1, . . . , bn . 3



Example 4. Electronic wallet, two withdrawals
Let P(e) =̂ (h0 ≥ k ⇔ e) ∨ (h0 − k ≥ k ⇔ e) and c be the following

program (where k ≥ 0 and amt has security level `).

n := 0;
while(n < 2)

if declassifyP(h ≥ k , `) then h := h − k ; amt := amt + k else skip
n := n + 1

Since the final instruction of this program is a loop, we need a loop invariant to
apply the logic. It is easy to see from the loop body, that when n = 0, h = h0

and when n = 1, either h = h0 when the if condition evaluated to false on the
first loop iteration, or h = h0− k when the if condition evaluated to true. Hence
we choose the following as the invariant.

(n = 0⇒ h = h0) ∧
(n = 1⇒ (h0 ≥ k ⇒ h = h0 − k) ∧ (h0 < k ⇒ h = h0)

The while loop introduces this invariant and the proof obligation P(h ≥ k) which
is (h0 ≥ k ⇔ h ≥ k) ∨ (h0 − k ≥ k ⇔ h ≥ k). The former is transformed to
h = h0 by the first instruction (since n is replaced by 0) while the latter (which
does not refer to n) is not changed. They are then both transformed to true by
the initialisation of the auxiliary variable h0 := h. 3

5 Dafny encoding

Being based on weakest precondition calculations, the wpif -based information
flow logic is readily encoded in a program verification tool such as Dafny [6].
The lattice of security levels can be encoded as an enumerated type along with
functions defining when two levels are ordered, and for returning the meet and
join of any two levels. For example, a standard diamond lattice where level A is
higher than levels B and C which are in turn higher than level D (but B and
C are not ordered) can be encoded in Dafny as follows.

datatype SL = A | B | C | D

function order(l1:SL, l2:SL):bool {

l1 == A || l1 == l2 || l2 == D

}

function join(l1:SL, l2:SL):SL {

if order(l1,l2) then l1 else if order(l2,l1) then l2 else A

}

function meet(l1:SL, l2:SL):SL {

if order(l1,l2) then l2 else if order(l2,l1) then l1 else D

}



Note that order(l1, l2) is true precisely when l2 v l1. To check the encoding is
indeed a lattice, the following lemmas, which can be proved automatically by
Dafny, are added.

lemma partialorder(l1:SL, l2:SL, l3:SL)

ensures order(l1,l1)

ensures order(l1,l2) && order(l2,l1) ==> l1 == l2

ensures order(l1,l2) && order(l2,l3) ==> order(l1,l3)

lemma joinLemma(l1:SL,l2:SL,l3:SL)

ensures order(join(l1,l2),l1) && order(join(l1,l2),l2)

ensures order(l3,l1) && order(l3,l2) ==> order(l3,join(l1,l2))

lemma meetLemma(l1:SL,l2:SL,l3:SL)

ensures order(l1,meet(l1,l2)) && order(l2,meet(l1,l2))

ensures order(l1,l3) && order(l2,l3) ==> order(meet(l1,l2),l3)

Then for each program variable x , ghost variables (which are used for spec-
ification purposes and are not part of the compiled program) can be added for
L(x ), Γx and the initial value of x . These allow the security checks (including
declassification predicates) added by the wpif rules to be encoded as program
assertions. For example, consider Example 3 with salaries h1, h2 and h3 and
their associated bonuses at security level C , and an attacker able to access data
at security level D . This can be encoded within a Dafny class as follows (for
readability the full encoding for h2 and h3 is elided, but follows that for h1).

var h1:int, h2:int, h3:int, avg: int; // salaries

ghost var h01:int, h02:int, h03:int, avg0:int; // initial values

ghost const L_h1 := C; ...; const L_avg := D;

ghost var Gamma_h1: SL, ..., Gamma_avg: SL;

predicate P(e:int)

reads this // allows read access to the variables declared above

{

(h01+h02+h03)/3 <= e <= (h01+h01/10+h02+h02/10+h03+h03/10)/3

}

method average(b1:int, b2:int, b3:int)

requires 0 <= b1 <= h1/10 && ...

modifies this // allows changes to the variables declared above

{

h01 := h1; h02 := h2; h03 := h3; // set initial values

assert order(L_h1,join(meet(Gamma_h1,L_h1),C)) && ...

h1 := h1 + b1; Gamma_h1 := join(meet(Gamma_h1,L_h1),C); ...;

assert order(L_avg,D) && P((h1+h2+h3)/3);

avg := (h1+h2+h3)/3; Gamma_avg := D; // declassify to level D

}

The program of Example 3 is captured by the method average. The re-
quires clause of the method ensures the bonuses are within 10% of the associ-
ated salaries. The assertions capture the checks required by the wpif rules for



the instructions which follow them (note that Dafny automatically checks for
definedness of expressions).

For example, consider the final line of code which represents the assignment
avg := declassP ((h1 + h2 + h3)/3). Applying the wpif rule for assignments in-
volving declassification, we would get D v L(avg) ∧ P((h1 + h2 + h3)/3) ∧
def ((h1 + h2 + h3)/3) ∧ Q [avg ← (h1 + h2 + h3)/3, Γavg ← D ]. The final two
conjuncts are routinely checked by Dafny (given that we have explicitly included
the update to Γavg). The other conjuncts are included in the assertion and are
hence also checked. Dafny can prove each assertion in this example automati-
cally, proving that the program is secure. Similarly, other examples in this paper
can be automatically proven to be secure or insecure as required. Importantly,
the insertion of the assertions into the code, as well as the declaration and up-
dates of ghost variables (apart from the values of L which must be provided)
can be readily automated to reduce the programmer’s burden.

6 Conclusion

In this paper, we have introduced declassification predicates and an associated
notion of security called qualified release. Declassification predicates enable pro-
gram developers to precisely specify what sensitive information can be released
by a program, and where in the program it can be released. We have shown how
they can be incorporated into an information flow logic for checking program
security, and checked using the Dafny program verifier. Future research includes
investigating the application of declassification predicates to a wide range of sce-
narios where information release is required, and their use in larger, real-world
programs.

Acknowledgements Thanks to Kirsten Winter for her feedback on this paper.
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A Soundness

Theorem 1. Given a program c with variables v1, . . . , vn and set of initial states
S0, if S0 ⇒ wpif (v0

1 := v1; . . . ; v0
n := vn ; c, true), where v0

1 , . . . , v
0
n are fresh,

then qualified release (Definition 4) holds for all initial states i1, i2 ∈ S0.

Proof
Let m1 and m2 be two program states such that m1 =` m2. Following Defini-
tion 4, we need to prove that there exists a relation Rm1,m2 such that 〈c,m1〉
Rm1,m2〈c,m2〉 for each program c considered secure under wpif . The proof is
by induction over the instructions of the simple programming language whose
operational semantics with respect to an initial state i is given below.

Let stop denote the program with no instructions, and εi(stop,m) = ∅.

〈skip,m〉 −→ 〈stop,m〉 εi(skip,m) = ∅

〈x := e,m〉 −→ 〈stop,m[x 7→ e ′]〉 when e = declassifyP (e ′, d)
〈x := e,m〉 −→ 〈stop,m[x 7→ e]〉 otherwise
εi(x := e,m) = {e ′} when e = declassifyP (e ′, d) and d v ` and

m satisfies P(e ′)
εi(x := e,m) = ∅ otherwise

〈c1; c2,m〉 −→ 〈c′1; c2,m ′〉 when 〈c1,m〉 −→ 〈c′1,m ′〉
〈c1; c2,m〉 −→ 〈c2,m ′〉 when 〈c1,m〉 −→ 〈stop,m ′〉

〈if b then c1 else c2,m〉 −→ 〈c1,m〉 when b is true
〈if b then c1 else c2,m〉 −→ 〈c2,m〉 when b is false
εi(if b then c1 else c2,m) = {b′} when b = declassifyP (b′, d) and d v ` and

m satisfies P(b′)
εi(if b then c1 else c2,m) = ∅ otherwise

〈while(b) c,m〉 −→ 〈c; while(b) c,m〉 when b is true
〈while(b) c,m〉 −→ 〈stop,m〉 when b is false
εi(while(b) c,m) = {b′} when b = declassifyP (b′, d) and d v ` and

m satisfies P(b′)
εi(while(b) c,m) = ∅ otherwise

skip According to the operational semantics, the skip instruction changes
neither the state m nor introduces escape-hatch expressions, and results in the
program stop. Therefore, choosing Rm1,m2

= {(〈skip,m1〉, 〈skip,m2〉), (〈stop,m1〉,
〈stop,m2〉)} will satisfy Definition 4. For both configuration pairs, requirement 1
of Definition 4 holds trivially and requirement 2 holds due to m1 =` m2 holding
in the starting state. Requirement 3 holds for the second pair due to there being
no further program steps and, since it holds for the second pair, also holds for
the first pair.

x := e An assignment updates the state m and results in the program
stop. If the assignment has a declassification annotation then (according to the



wpif rule) the program will only be secure when the associated predicate is
true in any state that may hold immediately before the assignment. Assume
this is the case, and hence the declassification predicate is true in m1 and
m2. Given this, any escape hatches introduced only depend on e and the level
of declassification d (see the operational semantics). Hence, requirement 1 of
Definition 4 trivially holds. Consider the relation Rm1,m2

= {(〈x := e,m1〉,
〈x := e,m2〉), (〈stop,m ′1〉, 〈stop,m ′2〉)}, where m ′1 and m ′2 are derived from m1

and m2, respectively, by updating the value of x .
For the first configuration pair, if the released expressions are distinguishable

on m1 and m2 then there is nothing further to prove. If they are indistinguish-
able then, since the assignments will replace x by an expression which is in the
released expressions and at a level d v ` (as required by the wpif rule), require-
ment 2 (which holds for the first pair) is preserved. Requirement 3 also holds for
the second pair (as argued for skip) and hence holds for the first pair.

If the assignment does not have a declassification annotation then no escape
hatches will be introduced and requirement 1 trivially holds. The value of x will
be replaced by e for both initial states. The wpif rule for assignment only holds
when ΓE (e) v L(x ). Hence, if x is low so is e, and low equivalence of states
(requirement 2) is preserved. Requirement 3 is also satisfied by the first pair due
to the second pair satisfying all requirements.

c1; c2 By the induction hypothesis, there exists a relation R1
m1,m2

such
that 〈c1,m1〉R1

m1,m2
〈c1,m2〉 and R1

m1,m2
satisfies Definition 4. Let 〈c1,m1〉 →n

〈c′1,m ′1〉 and 〈c1,m2〉 →n 〈c′1,m ′2〉, for some n. Note that both ending configu-
rations have the same program, c′1, since the logic does not allow branching on
high data.

If ¬ (m ′1 I (εi(c
′
1,m

′
1)) m ′2) then there are no further requirements to prove

and the following relation satisfies Definition 4 for c1; c2.

Rm1,m2
= {(〈c1

1 ; c2,m
′
1〉, 〈c2

1 ; c2,m
′
2〉) |

∃n · 〈c1,m1〉 −→n 〈c1
1 ,m

′
1〉 ∧ 〈c1,m2〉 −→n 〈c2

1 ,m
′
2〉 ∧

〈c1
1 ,m

′
1〉R1

m1,m2
〈c2

1 ,m
′
2〉}

If m ′1 I (εi(c
′
1,m

′
1)) m ′2 and 〈c′1,m ′1〉 → 〈stop,m ′′1 〉 and 〈c′1,m ′2〉 → 〈stop,m ′′2 〉,

i.e., c′1 terminates after its next instruction, then m ′′1 =` m ′′2 by Definition 4. By
the induction hypothesis, there exists a relation R2

m′′
1 ,m′′

2
satisfying Definition 4

where 〈c2,m ′′1 〉R2
m′′

1 ,m′′
2
〈c2,m ′′2 〉. Consider then the following relation.

Rm1,m2
= {(〈c1

1 ; c2,m
′
1〉, 〈c2

1 ; c2,m
′
2〉) |

∃n · 〈c1,m1〉 −→n 〈c1
1 ,m

′
1〉 ∧ 〈c1,m2〉 −→n 〈c2

1 ,m
′
2〉 ∧

〈c1
1 ,m

′
1〉R1

m1,m2
〈c2

1 ,m
′
2〉}

∪ {(〈c1
2 ,m

′′′
1 〉, 〈c2

2 ,m
′′′
2 〉) |

∃n · 〈c2,m ′′1 〉 −→n 〈c1
2 ,m

′′′
1 〉 ∧ 〈c2,m ′′2 〉 −→n 〈c2

2 ,m
′′′
2 〉 ∧

〈c1
2 ,m

′′′
1 〉R2

m′′
1 ,m′′

2
〈c2

2 ,m
′′′
2 〉}

This clearly relates 〈c1; c2,m1〉 and 〈c1; c2,m2〉. We now show that it also
satisfies Definition 4 by considering two cases: a sequence of steps in program
c1, and a sequence of steps in program c2.



First case: 〈c1,m1〉 −→n 〈c1
1 ,m

′
1〉 and 〈c1,m2〉 −→n 〈c2

1 ,m
′
2〉 such that

〈c1
1 ,m

′
1〉R1

m1,m2
〈c2

1 ,m
′
2〉. The latter implies requirements 1 and 2 for Rm1,m2 . If

c1
1 has not terminated then requirement 3 follows from requirement 3 of R1

m1,m2
.

If c1
1 has terminated, i.e., m ′1 = m ′′1 and m ′2 = m ′′2 (since the absence of branching

on high data means the runs will terminate together), then from the operational
semantics for sequential composition we know that 〈c1; c2,m1〉 −→n 〈c2,m ′′1 〉
and 〈c1; c2,m2〉 −→n 〈c2,m ′′2 〉. And since 〈c2,m ′′1 〉 and 〈c2,m ′′2 〉 are related by
R2

m′′
1 ,m′′

2
, they are also related by Rm1,m2 and we have requirement 3.

Second case: 〈c2,m ′′1 〉 −→n 〈c1
2 ,m

′′′
1 〉 and 〈c2,m ′′2 〉 −→n 〈c2

2 ,m
′′′
2 〉 such that

〈c1
2 ,m

′′′
1 〉R2

m1,m2
〈c2

2 ,m
′′′
2 〉. As before, the latter implies requirements 1 and 2 for

Rm1,m2
. In this case, requirement 3 of Rm1,m2

also follows from requirement 3
of R2

m′′
1 ,m′′

2
.

if b then c1 else c2 By the induction hypothesis, there exists relations R1
m1,m2

and R2
m1,m2

satisfying Definition 4 such that 〈c1,m1〉R1
m1,m2

〈c1,m2〉, and 〈c2,m1〉
R2

m1,m2
〈c2,m2〉. Consider the first configuration pair of the following relation.

Rm1,m2
= {(〈if b then c1 else c2,m1〉, 〈if b then c1 else c2,m2〉)}
∪R1

m1,m2
∪ R2

m1,m2

If the guard has a declassification annotation then, following the proof for as-
signment, requirements 1 and 2 trivially hold, and requirement 3 follows from
the requirements holding for subsequent configurations. These hold due to the
fact that the wpif rule for conditionals requires ΓE (b) v ` or, when b is de-
classified to security level d , d v `. Hence, when any released expressions are
indistinguishable on m1 and m2, the choice of branch c1 or c2 will be the same
for the low-equivalent states m1 and m2 (according to the operational seman-
tics). Therefore, all resulting configurations will be related by either R1

m1,m2
or

R2
m1,m2.

while(b) c The wpif rule for loops requires a loop invariant which holds in
both m1 and m2 to be provided. Let M be the set of all memories satisfying the
loop invariant and consider the following relation. By the induction hypothesis,
for each m ′1,m

′
2 ∈ M such that m ′1 =` m ′2 there exists a relation R1

m1,m2
such

that 〈c,m ′1〉R1
m′

1,m
′
2
〈c,m ′2〉 and R1

m′
1,m

′
2

satisfies Definition 4.

Rm1,m2
=∪

m′
1,m

′
2∈M
{(〈while(b) c,m ′1〉, 〈while(b) c,m ′2〉), 〈stop,m ′1〉, 〈stop,m ′2〉}
∪R1

m′
1,m

′
2

Given m1,m2 ∈ M , the proof follows the proof for conditionals with the following
changes based on the operational semantics: (i) when b is false, the subsequent
program is stop and the state is unchanged, and (ii) when b is true, the sub-
sequent program is c; while(b) c. Note that in the latter case, since the loop
invariant will be true after c terminates, requirement 3 will hold due to the dis-
tributed union over all states satisfying the invariant in the definition of Rm1,m2 .
�


