
Compositional reasoning for non-multicopy atomic
architectures
NICHOLAS COUGHLIN∗, Defence Science and Technology Group, Australia; School of ITEE, The

University of Queensland, Australia

KIRSTEN WINTER, Defence Science and Technology Group, Australia; School of ITEE, The University of

Queensland, Australia

GRAEME SMITH, Defence Science and Technology Group, Australia; School of ITEE, The University of

Queensland, Australia

Rely/guarantee reasoning provides a compositional approach to reasoning about concurrent programs. How-

ever, such reasoning traditionally assumes a sequentially consistent memory model and hence is unsound on

modern hardware in the presence of data races. In this paper, we present a rely/guarantee-based approach for

non-multicopy atomic weak memory models, i.e., where a thread’s stores are not simultaneously propagated

to all other threads and hence are not observable by other threads at the same time. Such memory models

include those of the earlier versions of the ARM processor as well as the POWER processor.

This paper builds on our approach to compositional reasoning formulticopy atomic architectures, i.e., where
a thread’s stores are simultaneously propagated to all other threads. In that context, an operational semantics

can be based on thread-local instruction reordering. We exploit this to provide an efficient compositional

proof technique in which weak memory behaviour can be shown to preserve rely/guarantee reasoning on a

sequentially consistent memory model. To achieve this, we introduce a side-condition, reordering interference
freedom on each thread, reducing the complexity of weak memory to checks over pairs of reorderable

instructions.

In this paper we extend our approach to non-multicopy atomic weak memory models. We utilise the idea

of reordering interference freedom between parallel components. This by itself would break compositionality

but serves as a vehicle to derive a refined compatibility check between rely and guarantee conditions which

takes into account the effects of propagations of stores that are only partial, i.e., not covering all threads. All

aspects of our approach have been encoded and proved sound in Isabelle/HOL.

CCS Concepts: • Theory of computation→ Logic and verification; Hoare logic; Automated reasoning.

Additional Key Words and Phrases: Verification, rely/guarantee reasoning, weak memory models, non-

multicopy atomicity

ACM Reference Format:
Nicholas Coughlin, Kirsten Winter, and Graeme Smith. 2022. Compositional reasoning for non-multicopy

atomic architectures. 1, 1 (August 2022), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Nicholas Coughlin, Defence Science and Technology Group, Australia; School of ITEE, The University

of Queensland, Australia, nicholas.coughlin@uqconnect.edu.au; Kirsten Winter, Defence Science and Technology Group,

Australia; School of ITEE, The University of Queensland, Australia, kirsten@itee.uq.edu.au; Graeme Smith, Defence Science

and Technology Group, Australia; School of ITEE, The University of Queensland, Australia, smith@itee.uq.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2022.

HTTPS://ORCID.ORG/0000-0001-8758-0666
HTTPS://ORCID.ORG/0000-0002-8519-2026
HTTPS://ORCID.ORG/0000-0003-1019-4761
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-8758-0666
https://orcid.org/0000-0002-8519-2026
https://orcid.org/0000-0003-1019-4761
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Coughlin et al.

1 INTRODUCTION
Reasoning about concurrent programs with interference over shared resources is a complex task.

The interleaving of all thread behaviours leads to an exponential explosion in observable behaviour.

Rely/guarantee reasoning [14] is one approach to reduce the complexity of the verification task.

It enables reasoning about one thread at a time by considering an abstraction of the thread’s

environment given as a rely condition on shared resources. This abstraction is justified by proving

that all other threads in the environment guarantee the assumed rely condition. The approach

limits the interference between threads to the effects of the rely condition (specified as a relation

over states).

Xu et al. [37] show how rely/guarantee reasoning can be used to allow reasoning over individ-

ual threads in a concurrent program using Hoare logic [13]. We introduce a similar approach in

[36] to allow thread-local reasoning, in the context of information flow security, using weakest

precondition calculation [10]. These approaches work equally well for concurrent programs ex-

ecuted on weak memory models under the implicit assumption that the code is data-race free.

This is a reasonable assumption given that most programmers avoid data races due to them lead-

ing to unexpected behaviour when the code’s execution is optimised under the weak memory

model of the compiler [4, 15] or underlying hardware [3, 7, 30]. However, data races may be in-

troduced inadvertently by programmers, or programmers may introduce data races for efficiency

reasons, as seen in non-blocking algorithms [22]. These algorithms appear regularly in the low-level

code of operating systems, e.g., seqlock [5] is used routinely in the Linux kernel, and software

libraries, e.g., the Michael-Scott queue [21] is used as the basis for Java’s ConcurrentLinkedQueue in

java.util.concurrent.

This paper defines a proof system for rely/guarantee reasoning that is parameterised by the

weak memory model under consideration. In a previous publication [8] we restricted our focus to

those memory models that are multicopy atomic, i.e., where a thread’s stores become observable

to all other threads at the same time. This includes the memory models of x86-TSO [29], ARMv8

[26] and RISC-V [35] processor architectures, but not POWER [28], older ARM [11] processors nor

C11 [4]. As shown by Colvin and Smith [7], multicopy atomic memory models can be captured in

terms of instruction reordering. That is, they can be characterised by a reordering relation over

pairs of instructions in a thread’s code, indicating when two instructions may execute out-of-order.

This has been validated against the same sets of litmus test used to validate the widely accepted

weak memory semantics of Alglave et al. [3].

Consequently, the implications of weakmemory can be captured thread-locally, enabling composi-

tional reasoning. However, thread-local reasoning under such a semantics is non-trivial. Instruction

reordering introduces interference within a single thread, similar to the effects of interference

between concurrent threads and equally hard to reason about. For instance, a thread with 𝑛 reorder-

able instructions may have 𝑛! behaviours due to possible reordering. To tackle such complexity, we

exploit the fact that many of these instructions will not influence the behaviour of others. We reduce

the verification burden to a standard rely/guarantee judgement [37], over a sequentially consistent

memory model, and a consideration of the pair-wise interference between reorderable instructions

in a thread, totalling 𝑛(𝑛−1)/2 pairs given 𝑛 reorderable instructions. The resulting proof technique

has been automated and shown to be sound on both a simple while language and an abstraction of

ARMv8 assembly code using Isabelle/HOL [24] (see https://bitbucket.org/wmmif/wmm-rg).

This paper extends the work of [8] in that it additionally provides an approach to compositional

reasoning for non-multicopy atomic architectures. For non-multicopy atomic processors such as

POWER and older versions of ARM, the semantics of Colvin and Smith refers to a storage subsystem
to capture each component’s view of the global memory. This view depends on the propagations

, Vol. 1, No. 1, Article . Publication date: August 2022.

java.util.concurrent
https://bitbucket.org/wmmif/wmm-rg

Compositional reasoning for non-multicopy atomic architectures 3

of writes performed by the hardware. It is this view of a component that provides the point of

reference for the rely/guarantee reasoning.

To capture the semantics of propagations which deliver a particular view, one can utilise the

notion of instruction reorderings between components. However, reasoning about such reorderings

can not be performed thread-locally, and the compositionality of the approach would be lost. Instead

we reason over reorderings of an instruction with behaviours of the rely condition, which abstractly

represents the behaviours of the instructions of other components. By lifting the argument of

reordering interference freedom between components to the abstract level, compositionality is

maintained. We show how this global reordering interference freedom manifests itself in our theory

as a specialisation of the compatibility between guarantee and rely conditions that is standard in

rely/guarantee reasoning [14].

There are a number of approaches for verifying concurrent code under weak memory models

[1, 2, 12, 17–19, 33, 34], which are centred around relations between instructions in multiple threads,

thereby precluding the benefits of thread-local reasoning. Notable amongst these is the work by

Abdulla et al. [1, 2] which aims at automated tool support via stateless model checking and is based

on the axiomatic semantic model of [3]. Instead of thread-local reasoning the approaches deal with

execution graphs which include not only the interleaving behaviour of concurrent threads but also

“parallelisation” of sequential code resulting from weak memory behaviour. Techniques to combat

the resulting state-space explosion and improve scalability include elaborate solutions to dynamic

partial order reduction, context bounds for a bug-finding technique [1] and (for a sound approach)

coarsening the semantic model of execution graphs through reads-from equivalences [2].

Approaches that propose a purely thread-local analysis for concurrent code under weak memory

models include the work by Ridge [27] and Suzanne et al. [32]. Both capture the weak memory

model of x86-TSO [29] by modelling the concept of store buffers. This limits their applicability to

that of this relatively simple memory model and prohibits adaption to weaker memory models.

Closer to our approach are the proof systems for concurrent programs under the C11 memory

model developed by Lahav et al. [19] and Dalvandi et al. [9]. These proof system are based on the

notion of Owicki-Gries reasoning with interference assertions between each line of code to capture

potential interleavings.

However, to achieve a thread-local approach the authors of [19] present their logic in a

“rely/guarantee style” in which interference assertions are collected in “rely sets” whose stability

needs to be guaranteed by the current thread. This leads to a fine-grained consideration of interfer-

ence between threads whereas in standard rely/guarantee reasoning the interference is abstracted

into a rely condition which summarises the effects of the environment. Moreover, similarly to [1, 2]

the semantic model is based on (an abstraction of) the axiomatic model in [3] so that the interfer-

ence between threads includes additionally weak memory effects thereby further complicating

the analysis over each instruction. A somewhat-related approach to capture assertions on thread

interference is presented in [18] which computes the reads-from relation between threads which is

then taken into account by the thread-local static analyser.

In contrast, the work in [9] provides a more expressive view-based assertion language which

allows for the use of the standard proof rules of Owicki-Gries reasoning for concurrent systems

despite the effects of the weak memory model including non-multicopy atomicity. As a consequence,

the complications of weakmemory effects need to be taken into account when crafting the assertions

to show interference freedom. In our approach the constraints that define the guarantee and rely

conditions are specified as simple relational predicates over the shared variables. The intricacies of

weak memory effects and non-multicopy atomicity are hidden in the proof technique given by our

logic which is proven sound with respect to the weak memory model.

, Vol. 1, No. 1, Article . Publication date: August 2022.

4 Coughlin et al.

We begin the paper in Section 2 with a formalisation of a basic proof system for rely/guarantee

reasoning introduced in [37]. In Section 3, we abstractly introduce reordering semantics for weak

memory models and our notion of reordering interference freedom which suffices to account for the

effects of the weak memory model under multicopy atomicity. We discuss the practical implications

of the approach. To take the effects of non-multicopy atomicity into account Section 4 introduces

the additional notion of global reordering interference freedom which is encoded into the proof

system via a refined compatibility check. In Section 5 we present the instantiation of the approach

with a simple language and demonstrate reasoning in Section 6 by means of an example. We

conclude in Section 7.

2 PRELIMINARIES
The language for our framework is purposefully kept abstract so that it can be instantiated for

different programming languages. It consists of individual instructions 𝛼 , whose executions are

atomic, and commands (or programs) 𝑐 which are composed of instructions using sequential

composition, nondeterministic choice, iteration, and parallel composition. Commands also include

the empty program 𝜖 denoting termination.

𝑐 ::= 𝜖 | 𝛼 | 𝑐1 ; 𝑐2 | 𝑐1 ⊓ 𝑐2 | 𝑐∗ | 𝑐1 ∥𝑐2
Note that conditional instructions (like if-then-else and loops) and their evaluation are modelled

via silent steps making a nondeterministic choice during the execution of a program (see Section 5).

A configuration of a program is a pair (𝑐, 𝜎), consisting of a command 𝑐 to be executed and state

𝜎 (a mapping from variables to values) in which it executes. The behaviour of a component, or

thread, in a concurrent program can be described via steps the program, including its environment,

can perform during execution, each modelled as a relation between the configurations before and

after the step. A program step, denoted as (𝑐, 𝜎) 𝑝𝑠→ (𝑐′, 𝜎 ′), describes a single step of the component

itself and changes the command (i.e., the remainder of the program). A program step may be an

action step (𝑐, 𝜎) 𝑎𝑠→ (𝑐′, 𝜎 ′) which performs an instruction that also changes the state, or a silent
step, (𝑐, 𝜎) { (𝑐′, 𝜎) which does not execute an instruction but makes a choice and thus changes

the command only. Hence

𝑝𝑠→= (𝑎𝑠→ ∪ {). An environment step, (𝑐, 𝜎) 𝑒𝑠→ (𝑐, 𝜎 ′), describes a step
of the environment (performed by any of the other concurrent components); it may alter the state

but not the remainder of the program (of the component).

Program execution is defined via a small-step semantics over the command.

𝛼 ↦→𝛼 𝜖

𝑐1 ; 𝑐2 ↦→𝛼 𝑐′
1
; 𝑐2 if 𝑐1 ↦→𝛼 𝑐′

1

𝑐1 ∥𝑐2 ↦→𝛼 𝑐′
1
∥𝑐2 if 𝑐1 ↦→𝛼 𝑐′

1
or 𝑐1 ∥𝑐2 ↦→𝛼 𝑐1 ∥𝑐′2 if 𝑐2 ↦→𝛼 𝑐′

2

(1)

The semantics of program steps is based on the evaluation of instructions. Each atomic instruction

𝛼 has a relation over (pre- and post-) states 𝑏𝑒ℎ(𝛼), formalising its execution behaviour. A program

step (𝑐, 𝜎) 𝑎𝑠→ (𝑐′, 𝜎 ′) requires an execution 𝑐 ↦→𝛼 𝑐′ to occur such that the state is updated according
to the executed instruction 𝛼 , i.e.,

(𝑐, 𝜎) 𝑎𝑠→ (𝑐′, 𝜎 ′) ⇐⇒ ∃𝛼. 𝑐 ↦→𝛼 𝑐′ ∧ (𝜎, 𝜎 ′) ∈ 𝑏𝑒ℎ(𝛼) . (2)

2.1 Rely/guarantee reasoning
A proof system for rely/guarantee reasoning in a Hoare logic style has been defined in [37]. Our

approach largely follows its definitions, but includes a customisable verification condition, 𝑣𝑐 , with

each instruction. This verification condition serves to capture the state an instruction must execute

under to enforce properties such as the component’s guarantee and potentially more specialised

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 5

analyses. For example, in an information flow security analysis (cf. [36]), it can be used to check

that the value assigned to a publicly accessible variable is not classified. We define a Hoare triple

as follows. For simplicity of presentation, we treat predicates as sets of states or equivalently

𝑃 ⊆ 𝑣𝑐 (𝛼) ∩𝑤𝑝 (𝑏𝑒ℎ(𝛼), 𝑄), using the definition of weakest preconditions [10].

𝑃{𝛼}𝑄 =̂ 𝑃 ⊆ 𝑣𝑐 (𝛼) ∩ {𝜎 | ∀𝜎 ′ . (𝜎, 𝜎 ′) ∈ 𝑏𝑒ℎ(𝛼) =⇒ 𝜎 ′ ∈ 𝑄} (3)

The rely and guarantee conditions of a thread, denoted R and G respectively, are relations over

(pre- and post-) states. The rely condition captures allowable environments steps and the guarantee

constrains all program steps. A rely/guarantee pair (R, G) is wellformed when the rely condition

is reflexive and transitive, and the guarantee condition is reflexive.

Given that R is transitive, stability of a predicate 𝑃 under rely condition R is defined such that

R maintains 𝑃.

𝑠𝑡𝑎𝑏𝑙𝑒R (𝑃) =̂ 𝑃 ⊆ {𝜎 | ∀𝜎 ′ . (𝜎, 𝜎 ′) ∈ R =⇒ 𝜎 ′ ∈ 𝑃} (4)

The conditions under which an instruction satisfies G is defined as

𝑠𝑎𝑡 (𝛼,G) =̂ {𝜎 | ∀𝜎 ′ . (𝜎, 𝜎 ′) ∈ 𝑏𝑒ℎ(𝛼) =⇒ (𝜎, 𝜎 ′) ∈ G}. (5)

These ingredients allow us to introduce a rely/guarantee judgement. We do this on three levels:

the instruction level ⊢a, the component level ⊢c, and the global level ⊢. On the instruction level the

judgement requires that the pre- and post-condition are stable under R. This ensures that these
conditions, and hence the Hoare triple, hold despite any environmental interference. Additionally,

the judgement requires that the instruction satisfies the guarantee G.
R,G ⊢a 𝑃{𝛼}𝑄 =̂ 𝑠𝑡𝑎𝑏𝑙𝑒R (𝑃) ∧ 𝑠𝑡𝑎𝑏𝑙𝑒R (𝑄) ∧ 𝑣𝑐 (𝛼) ⊆ 𝑠𝑎𝑡 (𝛼,G) ∧ 𝑃{𝛼}𝑄 (6)

A rely/guarantee proof system on the component and global levels follows straightforwardly and

is given in Figure 1. At the component level, note the necessity for the invariant of the [Iteration]
rule to be stable (such that it continues to hold amid environmental interference). At the global level,

the rule for parallel composition [Par] includes a compatibility check ensuring that the guarantee

for each component implies the rely conditions of the other component. A standard [Conseq] rule
over global satisfiability is supported by the proof system, but omitted in Figure 1.

Such rules are standard to rely/guarantee reasoning [37]. Our modification can be seen in

can be seen in [Comp], in which global satisfiability is deduced from component satisfiability

⊢c plus an additional check on reordering interference freedom, rif (R,G, 𝑐), which we introduce

in Section 3.2. As a consequence, component-based reasoning in this proof system is based on

standard rely/guarantee reasoning which can be conducted independently from the interference

check.

Moreover, the proof system supports a notion of auxiliary variables, common to rely/guarantee

reasoning [31, 37]. These variables increase the expressiveness of the specification (R, G, 𝑃 and 𝑄)

by representing properties of intermediate execution states. Auxiliary variables cannot influence

program execution, as they are abstract, and their modification must be coupled with an instruction

such that they are considered atomic.

3 MULTICOPY ATOMIC MEMORY MODELS
Weak memory models are commonly defined to maintain sequentially consistent behaviour given

the absence of data races, thereby greatly simplifying reasoning for the majority of programs.

However, as we are interested in the analysis of racy concurrent code, it is necessary to reason on

a semantics that fully captures the behaviours these models may introduce.

Colvin and Smith [7] show that weak memory behaviour for multicopy atomic processors such as

x86-TSO, ARMv8 and RISC-V can be captured in terms of instruction reordering. A memory model,

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 Coughlin et al.

[Atom]
R,G ⊢a 𝑃{𝛼}𝑄
R,G ⊢c 𝑃{𝛼}𝑄

[Seq]
R,G ⊢c 𝑃{𝑐1}𝑀 R,G ⊢c 𝑀{𝑐2}𝑄

R,G ⊢c 𝑃{𝑐1 ; 𝑐2}𝑄

[Choice]
R,G ⊢c 𝑃{𝑐1}𝑄 R,G ⊢c 𝑃{𝑐2}𝑄

R,G ⊢c 𝑃{𝑐1 ⊓ 𝑐2}𝑄
[Iteration]

𝑠𝑡𝑎𝑏𝑙𝑒R (𝑃) R,G ⊢c 𝑃{𝑐}𝑃
R,G ⊢c 𝑃{𝑐∗}𝑃

[Conseq]
𝑃 ′ ⊆ 𝑃 R′ ⊆ R G ⊆ G′ 𝑄 ⊆ 𝑄 ′ R,G ⊢c 𝑃{𝑐}𝑄

R′,G′ ⊢c 𝑃 ′{𝑐}𝑄 ′

[Comp]
R,G ⊢c 𝑃{𝑐}𝑄 rif (R,G, 𝑐)

R,G ⊢ 𝑃{𝑐}𝑄

[Par]
R1,G1 ⊢ 𝑃1{𝑐1}𝑄1 R2,G2 ⊢ 𝑃2{𝑐2}𝑄2 G2 ⊆ R1 G1 ⊆ R2

R1 ∩ R2,G1 ∪ G2 ⊢ 𝑃1 ∩ 𝑃2{𝑐1 ∥𝑐2}𝑄1 ∩𝑄2

Fig. 1. Proof rules for rely/guarantee reasoning

in these cases, is characterised by a reordering relation over pairs of instructions indicating whether

the two instructions can execute out-of-order when they appear in a component’s code. This

complicates reasoning significantly. For example, one needs to determine whether an instruction

𝛼 that is reordered to execute earlier in a program can invalidate verification conditions that are

satisfiable under normal executions (following the program order without reordering). In that sense,

we are facing not only interference between concurrent components (which can be visualised

as horizontal interference) but also interference between the instructions within one component

(which can be pictured as vertical interference).

3.1 Reordering semantics
The reordering relation,←↪, of a component is syntactically derivable based on the rules of the

specific memory model (see Section 3.3). In ARMv8, for example, two instructions which do not

access (write or read) a common variable are deemed semantically independent and can change

their execution order. Moreover, weak memory models support various memory barriers that

prevent particular forms of reordering. For example, a full fence prevents all reordering, while a

control fence prevents speculative execution (for a complete definition refer to [7]).

Matters are complicated by the concept of forwarding, where an instruction that reads from

a variable written in an earlier instruction might replace the reading access with the written

value, hence shedding the dependence to the variable in common. This allows it to execute earlier,

anticipating the write before it happens. For example x := z; y := x can execute as y := z; x := z. We

denote the instruction 𝛼 with the value written in an earlier instruction 𝛽 forwarded to it as 𝛼 ⟨𝛽 ⟩ .
Note that 𝛼 ⟨𝛽 ⟩ = 𝛼 whenever 𝛽 does not write to a variable that is read by 𝛼 .

Forwarding can span a series of instructions and can continue arbitrarily, with later instructions

allowed to replace variables introduced by earlier forwarding modifications. The term 𝛾 ≺ 𝑐 ≺ 𝛼

denotes reordering of the instruction 𝛼 prior to the command 𝑐 , with the cumulative forwarding

effects producing 𝛾 [6]. 𝛼 ⟨⟨𝑐 ⟩⟩ denotes the cumulative forwarding effects of the instructions in

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 7

command 𝑐 on 𝛼 . We define both terms recursively over 𝑐 .

𝛼 ⟨𝛽 ⟩ ≺ 𝛽 ≺ 𝛼 =̂ 𝛽 ←↪ 𝛼 ⟨𝛽 ⟩
𝛼 ⟨⟨𝑐1 ;𝑐2 ⟩⟩ ≺ 𝑐1 ; 𝑐2 ≺ 𝛼 =̂ 𝛼 ⟨⟨𝑐1 ;𝑐2 ⟩⟩ ≺ 𝑐1 ≺ 𝛼 ⟨⟨𝑐2 ⟩⟩ ∧ 𝛼 ⟨⟨𝑐2 ⟩⟩ ≺ 𝑐2 ≺ 𝛼

(7)

To capture the effects of reordering, we extend the definition of executions (1) with an extra

rule that captures out-of-order executions: A step can execute an instruction whose original form

occurs later in the program if reordering and forwarding can bring it (in its new form 𝛾) to the

beginning of the program.

𝑐1 ; 𝑐2 ↦→𝛾 𝑐1 ; 𝑐
′
2
if 𝛾 ≺ 𝑐1 ≺ 𝛼 ∧ 𝑐2 ↦→𝛼 𝑐′

2
(8)

3.2 Reordering interference freedom
Our aim is to eliminate the implications of this reordering behaviour and, therefore, enable standard

rely/guarantee reasoning despite a weak memory context. To achieve this, we note that a valid

reordering transformation will preserve the thread-local semantics and, hence, will only invalidate

reasoning when observed by the environment. Such interactions are captured either as invalidation

of the component’s guarantee G or new environment behaviours, as allowed by its rely condition

R. Consequently, reorderings may be considered benign if the modified variables are not related by

G or R.
We capture such benign reorderings via reordering interference freedom. Two instructions are

said to be reordering interference free (rif) if we can show that reasoning over the instructions in

their original (program) order is sufficiently strong to also include reasoning over their reordered

behaviour. Consider the program text 𝛽 ; 𝛼 , where 𝛼 can be forwarded and executed before 𝛽 ,

resulting in an execution equivalent to 𝛼 ⟨𝛽 ⟩ ; 𝛽 . Reordering interference freedom between 𝛼 and 𝛽

under given rely/guarantee conditions is then formalised as follows.

rif a (R,G, 𝛽, 𝛼) =̂ ∀𝑃,𝑄,𝑀. R,G ⊢a 𝑃{𝛽}𝑀 ∧ R,G ⊢a 𝑀{𝛼}𝑄 =⇒
∃𝑀 ′ . R,G ⊢a 𝑃{𝛼 ⟨𝛽 ⟩}𝑀 ′ ∧ R,G ⊢a 𝑀 ′{𝛽}𝑄

(9)

Importantly, rif a is defined independently of the pre- and post-states of the given instructions, as

can be seen by the universal quantification over 𝑃 ,𝑀 and𝑄 in (9). This independence allows for the

establishment of rif a across a program via consideration of only pairs of reorderable instructions,

rather than that of all execution traces under which they may be reordered. Such an approach

dramatically reduces the complexity of reasoning in the presence of reordering, from one of 𝑛!

transformed programs for 𝑛 reorderable instructions to 𝑛(𝑛 − 1)/2 pairs.
The definition of rif a extends inductively over commands 𝑐 with which 𝛼 can reorder. Command

𝑐 is reordering interference free from 𝛼 under R and G, if the reordering of 𝛼 over each instructions

of 𝑐 is interference free, including those variants of 𝛼 produced by forwarding.

rif c (R,G, 𝛽, 𝛼) = rif a (R,G, 𝛽, 𝛼)
rif c (R,G, 𝑐1 ; 𝑐2, 𝛼) = rif c (R,G, 𝑐1, 𝛼 ⟨⟨𝑐2 ⟩⟩) ∧ rif c (R,G, 𝑐2, 𝛼)

(10)

From the definition of executions including reordering behaviour given in (8) we have 𝑐 ↦→𝛼⟨⟨𝑟 ⟩⟩
𝑐′ =⇒ 𝑟 ; 𝛼 ∈ 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝑐) ∧𝛼 ⟨⟨𝑟 ⟩⟩ ≺𝑟 ≺𝛼 , where 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝑐) refers to the set of prefixes of 𝑐 . Program
𝑐 is reordering interference free if and only if all possible reorderings of its instructions over the

respective prefixes are reordering interference free.

rif (R,G, 𝑐) =̂ ∀𝛼, 𝑟, 𝑐′ . 𝑐 ↦→𝛼⟨⟨𝑟 ⟩⟩ 𝑐
′ =⇒ rif c (R,G, 𝑟 , 𝛼) ∧ rif (R,G, 𝑐′) (11)

As can be seen from the definitions, checking rif (R,G, 𝑐) amounts to checking rif a (R,G, 𝛽, 𝛼)
for all pairs of instructions 𝛽 and 𝛼 that can reorder in 𝑐 , including those pairs for which 𝛼 is a new

instruction generated through forwarding. Therefore one can reason about a component’s code as

follows.

, Vol. 1, No. 1, Article . Publication date: August 2022.

8 Coughlin et al.

(1) Compute all pairs of reorderable instructions, i.e., each pair of instructions (𝛽, 𝛼) such that

there exists an execution trace where 𝛼 reorders before 𝛽 according to the memory model

under consideration.

(2) Demonstrate reordering interference freedom for as many of these pairs as possible (using

rif a (R,G, 𝛽, 𝛼)).
(3) If rif a cannot be shown for some pairs, introduce memory barriers to prevent their reordering

or modify the verification problem such that their reordering can be considered benign.

(4) Verify the component in isolation, using standard rely/guarantee reasoning with an assumed

sequentially consistent memory model.

We detail steps 1-3 in the following sections and assume the use of any standard rely/guarantee

reasoning approach for step 4.

3.3 Computing all reorderable instructions
Pairs of potentially reorderable instructions can be identified via a dataflow analysis [16], similar

to dependence analysis commonly used in compiler optimisation. However, rather than attempting

to establish an absence of dependence, we are interested in demonstrating its presence, such that

instruction reordering is not possible during execution. This notion of dependence is derived from

the language’s reordering relation, such that 𝛼 is dependent on 𝛽 iff 𝛽 ↚↪ 𝛼 . All pairs of instructions

for which a dependence cannot be established are assumed reorderable.

The approach is constructed as a backwards analysis over a component’s program text, incre-

mentally determining the instructions a particular instruction is dependent on and, inversely, those

it can reorder before. Therefore, the analysis can be viewed as a series of separate analyses, one

from the perspective of each instruction in the program text.

We describe one instance of this analysis for some instruction 𝛼 . The analysis records a notion

of 𝛼 ’s cumulative dependencies, which simply begins as all instructions 𝛾 for which 𝛾 ↚↪ 𝛼 . The

analysis commences at the instruction immediately prior to 𝛼 in the program text and progresses

backwards. For each instruction 𝛽 we first determine if 𝛼 depends on 𝛽 by consulting 𝛼 ’s cumulative

dependencies. Given a dependence exists, 𝛼 ’s cumulative dependencies are extended to include 𝛽’s

dependencies via a process we refer to as strengthening, such that the analysis may subsequently

identify those instructions𝛼 is dependent on due to its dependence on 𝛽 . If a dependence on 𝛽 cannot

be shown, the instructions are considered reorderable, subsequently requiring rif a (R,G, 𝛽, 𝛼) to
be shown. Moreover, a process of weakening is necessary to remove 𝛼 ’s cumulative dependencies

that 𝛽 may resolve due to forwarding.

To illustrate the evolving nature of cumulative dependencies, consider the sequence 𝛽 ; 𝛾 ; 𝛼

where 𝛾 ↚↪ 𝛼 and 𝛽 ↚↪ 𝛾 but 𝛽 ←↪ 𝛼 . The analysis from the perspective of 𝛼 starts at 𝛾 and

identifies a dependence, due to 𝛾 ↚↪ 𝛼 . Therefore, 𝛼 gains 𝛾 ’s dependencies via strengthening. The

analysis progresses to the next instruction, 𝛽 , for which a dependence can be established due to 𝛼 ’s

cumulative dependencies including 𝛽 ↚↪ 𝛾 . Consequently, despite no direct dependency between 𝛼

and 𝛽 , the sequence does not produce reordering pairs for 𝛼 . Repeating this process for 𝛾 and 𝛽

ultimately finds no reordering pairs over the entire sequence, resulting in no rif a checks.
A realistic implementation of this analysis is highly dependent on the language’s reordering

relation. In most examples, this relation only considers the variables accessed by the instructions

and special case behaviours for memory barriers, as illustrated by the instantiation in Section 5.

Consequently, cumulative dependencies can be efficiently represented as sets of such informa-

tion, for example capturing the variables read by 𝛼 and those instructions it depends on. This

representation lends itself to efficient set-based manipulations for strengthening and weakening.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 9

The analysis has been implemented for both a simple while language and an abstraction of

ARMv8 assembly, with optimisations to improve precision in each context. In particular, precision

can be improved through special handling of the forwarding case as the effects of forwarding

typically result in trivial rif a checks. The implementations have been encoded and verified in

Isabelle/HOL, along with proofs of termination (following the approach suggested in [23]).

3.3.1 Address calculations. Dependence analysis is considerably more complex in the presence of

address calculations. Under such conditions, it is not possible to syntactically identify whether two

instructions access equivalent addresses, complicating an essential check to establishing dependence.

Without sufficient aliasing information the analysis must over-approximate and consider the two

addresses distinct, potentially introducing excess reordering pairs.

The precision of the analysis can be improved using an alias analysis to first identify equivalent

address calculations, feeding such information into the dependency checks. Precision may also

be improved by augmenting the interference check, rif a, with any calculations that have been

assumed to be distinct. For example, consider [𝑥] := 𝑒; [𝑦] := 𝑓 , where [𝑣] := 𝑒 represents a write

to the memory address computed by the expression 𝑣 . If an alias analysis cannot establish 𝑥 = 𝑦, it

is necessary to consider their interference. As they are assumed to reorder, a proof demonstrating

rif a (R,G, [𝑥] := 𝑒, [𝑦] := 𝑓) can assume 𝑥 ≠ 𝑦. Such a property extends to any other comparisons

with cumulative dependencies.

We have implemented such improvements in our analysis for ARMv8, relying on manual an-

notations to determine aliasing address calculations. These aliasing annotations are subsequently

added to each instruction’s verification condition to ensure they are sound.

3.4 Interference checking
Given the set of reordering pairs, it is necessary to demonstrate rif a on each to demonstrate

freedom of reordering interference. Many rif a properties can be shown trivially. For example, if

one instruction does not access shared memory, rif a can be immediately shown to hold as no

interference via R could take place. Additionally, if the two instructions access distinct variables

and these variables are not related by R, then no interference would be observed.

If these shortcuts do not hold, then it is necessary to consider rif a directly. The property can be

rephrased in terms of weakest precondition calculation [10], assisting automated verification.

3.5 Elimination of reordering interference
Step 3 of the process is intended to handle situations where rif a cannot be shown for a particular

pair of instructions. A variety of techniques can be applied in such conditions, depending on the

overall verification goals. In some circumstances, a failure to establish rif a indicates a problematic

reordering such that the out-of-order execution of the instruction pair will violate any variation of

the desired rely/guarantee reasoning. In such circumstances, it is necessary to prevent reordering

through the introduction of a memory barrier.

As these barriers incur a performance penalty, this is not a suitable technique to correct all prob-

lematic pairs. Some reordering pairs can instead be resolved by demonstrating stronger properties

during the standard rely/guarantee reasoning in step 4. We describe a series of techniques that can

be employed to extract these stronger properties by modifying a program’s verification conditions

and/or abstracting over its behaviour. These techniques, while incomplete, are easily automated

and cover the majority of cases.

3.5.1 Strengthening. Establishing rif a may fail in cases where an instruction in a reordering pair

modifies the other’s verification condition. In such circumstances, it is possible to strengthen
verification conditions such that the interference becomes benign by capturing both the in-order

, Vol. 1, No. 1, Article . Publication date: August 2022.

10 Coughlin et al.

and out-of-order execution behaviours. Given a reordering pair (𝛽 , 𝛼), this is achieved by first

determining the weakest 𝑃 that solves 𝑃{𝛼 ⟨𝛽 ⟩ ; 𝛽}(𝑡𝑟𝑢𝑒), representing the implications of each

instruction’s verification conditions when executed out-of-order. This 𝑃 is then used to strengthen

𝛽’s verification condition, such that the stronger constraints are established during the standard

rely/guarantee reasoning stage.

For example, consider the component (𝑦 = 0){𝑧 := 𝑧 + 1;𝑥 := 𝑦}(𝑡𝑟𝑢𝑒) where, due to a specialised
analysis, the assignment to𝑥 has the verification condition 𝑧 = 1 ∨ 𝑦 = 0 (and that for the assignment

to 𝑧 is 𝑡𝑟𝑢𝑒). Assume that R is the identity relation, i.e., no variables are changed by environment

steps, and G is 𝑡𝑟𝑢𝑒 . The rely/guarantee reasoning to establish this judgement is trivial, as 𝑄 is

𝑡𝑟𝑢𝑒 and 𝑥 := 𝑦 will execute in a state where 𝑦 = 0.

However, assuming the two assignments may be reordered, it is necessary to estab-

lish rif a (R,G, 𝑧 := 𝑧 + 1, 𝑥 := 𝑦). Unfortunately, such a property does not hold. For exam-

ple, setting the pre-state of the program, 𝑃 , to be 𝑧 = 0 and the post-state, 𝑄 , to be 𝑡𝑟𝑢𝑒 ,

we have (𝑧 = 0){𝑧 := 𝑧 + 1}(𝑧 = 1) ∧ (𝑧 = 1){𝑥 := 𝑦}(𝑡𝑟𝑢𝑒) but not ∃𝑀 ′ . (𝑧 = 0){𝑥 := 𝑦}𝑀 ′ ∧
𝑀 ′{𝑧 := 𝑧 + 1}(𝑡𝑟𝑢𝑒) since the verification condition of 𝑥 := 𝑦 does not hold in the pre-state 𝑧 = 0.

Applying the strengthening approach, we compute 𝑃 for the out-of-order execution as

𝑧 = 1 ∨ 𝑦 = 0. This predicate is then used as the verification condition for 𝑧 := 𝑧 + 1, which was

originally 𝑡𝑟𝑢𝑒 . With this strengthened verification condition, we have rif a (R,G, 𝑧 := 𝑧 + 1, 𝑥 := 𝑦)
since (𝑧 = 0){𝑧 := 𝑧 + 1}(𝑧 = 1) ∧ (𝑧 = 1){𝑥 := 𝑦}(𝑡𝑟𝑢𝑒) no longer holds.

With rif established, the standard rely/guarantee reasoning in step 4 must demonstrate

(𝑦 = 0){𝑧 := 𝑧 + 1;𝑥 := 𝑦}(𝑡𝑟𝑢𝑒), with the strengthened verification condition for 𝑧 := 𝑧 + 1. This
obviously holds given 𝑦 = 0 initially.

3.5.2 Ignored reads. An additional issue when correcting for rif a derives from the quantification

of the pre- and post-states. This quantification reduces the proof burden, such that only pairs

of reorderable instruction must be considered, but can introduce additional proof effort where

the precise pre- and post-states are well known and limited reordering takes place. For instance,

consider the simple component (𝑡𝑟𝑢𝑒){𝑥 := 1; 𝑧 := 𝑦}(𝑥 = 1) with a rely specification that will

preserve the values of 𝑥 and 𝑧 always and the value of 𝑦 given 𝑥 = 1. The rely/guarantee reasoning

to establish this judgement is trivial. However, the component will fail to demonstrate rif a when
considering the reordering of 𝑥 := 1 and 𝑧 := 𝑦, as their program order execution may establish the

stronger (𝑡𝑟𝑢𝑒){𝑥 := 1; 𝑧 := 𝑦}(𝑥 = 1 ∧ 𝑧 = 𝑦), whereas the reordered cannot.

We employ two techniques to amend such situations. The most trivial is a weakening of the

component’s R specification to remove the relationship between 𝑦 and 𝑥 , as it is unnecessary for

the component’s verification. Otherwise, if this is not possible, the component can be abstracted

to (𝑡𝑟𝑢𝑒){𝑥 := 1; chaos 𝑧}(𝑥 = 1), where chaos 𝑣 encodes a write of any value to the variable 𝑣 .

Consequently, the read of 𝑦 is ignored. Both standard rely/guarantee reasoning and rif can be

established for this modified component, subsequently enabling verification of the original via a

refinement argument.

We propose the automatic detection of those reads that do not impact reasoning and, therefore,

can be ignored when establishing rif . In general, such situations are rare as the analysis targets

assembly code produced via compilation. Consequently, such unnecessary reads are eliminated

via optimisation. Moreover, the R specification infrequently over-specifies constraints on the

environment.

3.6 Soundness
Soundness of the proof system has been proven in Isabelle/HOL and is available in the accompanying

theories at https://bitbucket.org/wmmif/wmm-rg. A proof sketch can be found in Appendix A.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://bitbucket.org/wmmif/wmm-rg

Compositional reasoning for non-multicopy atomic architectures 11

4 NON-MULTICOPY ATOMICWEAK MEMORY MODELS
Some modern hardware architectures, such as POWER and older versions of ARM, implement

weaker memory models, referred to as non-multicopy atomic (NMCA), that cannot be fully char-

acterised by a reordering relation. Under these architectures, a component’s writes may become

observable to other components at different points in time. Consequently, there is no shared state

that all components agree on throughout execution, invalidating a core assumption of standard

rely/guarantee reasoning. Moreover, such systems provide weak guarantees in terms of the cumu-

lativity of writes [3]. For instance, a component may observe the effect of another component’s

instruction before writes that actually enabled the instruction’s execution. This substantially com-

plicates reasoning, as it results in behaviour that appears to execute out-of-order, invalidating a

traditional notion of causality.

Building on the work of Colvin and Smith [7], we observe that the state of any pair of components

can at most differ by writes from other components that the pair has inconsistently observed.

Therefore, we propose a simple modification to the rules introduced in Section 2 to support

reasoning under such memory models and comment on potential improvements to the approach’s

precision.

4.1 Write history semantics
Non-multicopy atomic behaviour can be modelled as an extension to the reordering semantics

introduced in Section 3.1, as demonstrate by Colvin and Smith [7]. Under this extension, each

component is associated with a unique identifier and the shared memory state is represented as

a list of variable writes, i.e. ⟨𝑤1,𝑤2,𝑤3, . . .⟩, with metadata to indicate which components have

performed and observed particular writes. The order of events in this write history provides an

overall order to the system’s events, with those later in the list being the most recent. Each𝑤𝑖 is a

write of the form (𝑥 ↦→ 𝑣)𝑤𝑟
𝑟𝑑𝑠

assigning value 𝑣 to variable 𝑥 , with𝑤𝑟 being the writer component’s

identifier and 𝑟𝑑𝑠 the set of component identifiers that have observed the write. We introduce the

definitionswriter((𝑥 ↦→ 𝑣)𝑤𝑟
𝑟𝑑𝑠
) = 𝑤𝑟 , readers((𝑥 ↦→ 𝑣)𝑤𝑟

𝑟𝑑𝑠
) = 𝑟𝑑𝑠 and var((𝑥 ↦→ 𝑣)𝑤𝑟

𝑟𝑑𝑠
) = 𝑥 to access

metadata associated with a write.

To model the effects of instructions on the write history, it is necessary to associate each with

the identifier for the component that executed them. Moreover, it is necessary to extract the

instruction’s effects in a form suitable for manipulation of the write history. To resolve these issues,

we restrict the possible instructions that the language may execute over the global state to either

store instructions of the form (𝑥 := 𝑣)𝑖 , denoting a write to variable 𝑥 of the constant value 𝑣 from

component 𝑖; load instructions of the form [𝑥 = 𝑣]𝑖 , asserting the variable 𝑥 must hold constant

value 𝑣 from the perspective of component 𝑖; memory barriers such as fence𝑖 , corresponding to the

execution of a fence by component 𝑖; or silent skip instructions, in which a component performs

some internal step.

We refine the relation 𝑏𝑒ℎ to model transitions over the write history for each of these instruction

types. Modifications to the write history are constrained such that they may not invalidate variable

coherence from the perspective of a component. For example, when component 𝑖 executes the

write instruction 𝑥 := 𝑣 , it must introduce a new write event for 𝑥 with the written value of 𝑣 and

place it after all writes to 𝑥 that 𝑖 has observed and any writes that 𝑖 has performed.

𝑏𝑒ℎ((𝑥 := 𝑣)𝑖) = {(ℎ⌢ℎ′, ℎ⌢ (𝑥 ↦→ 𝑣)𝑖{𝑖 }
⌢
ℎ′) |

∀𝑤 ∈ ran(ℎ′) · writer(𝑤) ≠ 𝑖 ∧ (var(𝑤) = 𝑥 =⇒ 𝑖 ∉ readers(𝑤))} (12)

Before such a write may be read by another component, the NMCA system must first propagate
it from the writing component to the reading component. These transitions result in a component’s

, Vol. 1, No. 1, Article . Publication date: August 2022.

12 Coughlin et al.

view of a variable 𝑥 progressing to the next write to 𝑥 that it has not yet observed. They are

modelled as environment effects and can take place at any point during the execution. Moreover,

they are only constrained to respect the order in which individual variables are modified, allowing

components to observe writes to different variables in any arbitrary order. We define the set of

possible propagations as follows.

𝑝𝑟𝑝 =̂ {(ℎ⌢ (𝑥 ↦→ 𝑣) 𝑗𝑟
⌢
ℎ′, ℎ⌢ (𝑥 ↦→ 𝑣) 𝑗

𝑟∪{𝑖 }
⌢
ℎ′) |

𝑖 ∉ 𝑟 ∧ ∀𝑤 ∈ ran(ℎ) · var(𝑤) = 𝑥 =⇒ 𝑖 ∈ readers(𝑤)}
(13)

A component can access the value of a variable via the execution of a load instruction [𝑥 = 𝑣]𝑖 .
This read is constrained to the most recent write to 𝑥 visible to component 𝑖 , which must have

written the value 𝑣 . Additionally, memory barriers may constrain the write history, depending on

the architecture. For instance, the fence𝑖 instruction on ARM ensures that all components have

observed the writes seen by component 𝑖 . Finally, silent skip instructions are trivially defined as id
over the write history.

𝑏𝑒ℎ([𝑥 = 𝑣]𝑖) = {(ℎ⌢ (𝑥 ↦→ 𝑣) 𝑗𝑟
⌢
ℎ′, ℎ⌢ (𝑥 ↦→ 𝑣) 𝑗𝑟

⌢
ℎ′) |

∀𝑤 ∈ ran(ℎ′) · var(𝑤) = 𝑥 =⇒ 𝑖 ∉ readers(𝑤)}
𝑏𝑒ℎ(fence𝑖) = {(ℎ,ℎ) | ∀𝑤 ∈ ran(ℎ) · 𝑖 ∈ readers(𝑤) =⇒ ∀𝑦 · 𝑦 ∈ readers(𝑤)}

(14)

Note that a component’s writes can be perceived out-of-order even if they were considered

ordered within the component’s command, as the environment may decide to propagate writes

to different variables arbitrarily. This can be perceived as a weakening of the reordering relation

semantics, such that only instructions over the same variable are known to be ordered. Additionally,

the propagation of a write from one component to another provides no constraint to relate the

writes the destination and source components have both perceived, beyond the history of the

written variable. Consequently, it is possible to propagate a write𝑤𝑖 from a source component to a

destination component before the destination observes effects that enabled the execution of𝑤𝑖 to

begin with.

To simplify specification and reasoning, we extend the language with a new constructor

𝑐𝑜𝑚𝑝 (𝑖,𝑚, 𝑐), indicating a component with identifier 𝑖 , local state𝑚 and command 𝑐 . Moreover, we

assume the specification of a local behaviour relation, 𝑙𝑏𝑒ℎ, such that (𝑚,𝛼 ′,𝑚′) ∈ 𝑙𝑏𝑒ℎ(𝛼) denotes
that the execution of 𝛼 modifies the local state from𝑚 to𝑚′ and will result in the execution of 𝛼 ′

in the shared state, where 𝛼 ′ must be one of the shared memory instructions introduced above.

Given these definitions, we can extract instructions over the shared state from transitions internal

to a component and ensure appropriate annotation with the component identifier.

𝑐𝑜𝑚𝑝 (𝑖,𝑚, 𝑐) ↦→𝛼 ′
𝑖
𝑐𝑜𝑚𝑝 (𝑖,𝑚′, 𝑐′) ⇐⇒ 𝑐 ↦→𝛼 𝑐′ ∧ (𝑚,𝛼 ′,𝑚′) ∈ 𝑙𝑏𝑒ℎ(𝛼) (15)

This structure is intended to capture the transition from local to global reasoning (as can be

seen in Figure 3 in Section 4.3), with the constraint that systems are constructed as the parallel

composition of a series of 𝑐𝑜𝑚𝑝 commands. Moreover, this structure enables trivial support for

local state, such as hardware registers, and the partial evaluation of instructions via 𝑙𝑏𝑒ℎ, such that

they can be appropriately reduced to the shared memory instructions over which NMCA has been

defined. For instance, an instruction 𝑥 := 𝑟1 + 𝑟2, where 𝑟1 and 𝑟2 correspond to local state, could be

partially evaluated to 𝑥 := 𝑣 based on the values of 𝑟1 and 𝑟2 in𝑚.

4.2 Reasoning under NMCA
We aim to quantify the implications of non-multicopy atomicity such that standard rely/guarantee

reasoning may be preserved on these architectures. We first redefine the implications of a

rely/guarantee judgement in the context of NMCA. To do so, we introduce the concept of a

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 13

view of the write history ℎ for a set of components 𝐼 . This view corresponds to the standard inter-

pretation of shared memory, mapping variables to their current values. As there is no guarantee

that all components in 𝐼 will agree on the value a variable holds, we select the most recent write all

components in 𝐼 have observed, i.e., view𝐼 (ℎ, 𝑥) provides a value 𝑣 for 𝑥 such that

view𝐼 (ℎ, 𝑥) = 𝑣 iff ℎ = ℎ′⌢ (𝑥 ↦→ 𝑣)𝑤𝑟 ⌢
ℎ′′ ∧ 𝐼 ⊆ 𝑟 ∧∀𝑤𝑖 ∈ ℎ′′· var(𝑤𝑖) = 𝑥 =⇒ 𝐼 ⊈ readers(𝑤𝑖)

For brevity, we overload the case of a singleton set, such that view𝑖 = view{𝑖 } . Therefore, a
judgement over a component 𝑖 with command 𝑐 of the form R,G ⊢ 𝑃{𝑐}𝑄 can be interpreted as

constraints over the modifications to view𝑖 throughout execution. Specifically, such a judgement

encodes that for all executions of 𝑐 , given the execution operates on the write history ℎ such that

view𝑖 (ℎ) ∈ 𝑃 and all propagations to 𝑖 modify view𝑖 in accordance with R, then 𝑖 will modify

view𝑖 in accordance with G and, given termination, will end with a write history ℎ′ such that

view𝑖 (ℎ′) ∈ 𝑄 .
This state mapping allows for rely/guarantee judgements over individual components to be

trivially lifted from a standard memory model to their respective views of a write history. However,

arguments for parallel composition are significantly more complex, as it is necessary to relate

differing component views. Specifically, it is necessary to demonstrate that, given the execution of

an instruction 𝛼 by some component 𝑖 satisfies its guarantee specification G𝑖 in state ℎ, formally

view𝑖 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖), then the effects of propagating 𝛼 ’s writes to some other component 𝑗 will

satisfy its rely specification R 𝑗 in its view, i.e., view𝑗 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,R 𝑗). Evidently, establishing such a

notion of compatibility requires reasoning over the differences between the views of any arbitrary

pair of components.

At a high level, we observe that it is possible to relate the views of two components by only

considering the difference in their observed writes, i.e., the writes one component has observed

but the other has not. When considering two components 𝑖 and 𝑗 , this difference manifests as two

distinct sets of writes, those that 𝑖 has observed but 𝑗 has not and those that 𝑗 has observed but

𝑖 has not. Therefore, to successfully map 𝑠𝑎𝑡 (𝛼,G𝑖) from the view of component 𝑖 to that of 𝑗 , it

is only necessary to consider the effects of these two sets of writes on 𝑠𝑎𝑡 (𝛼,G𝑖). Building on the

ideas presented in Section 3.2, we frame the problem in terms of reordering by considering 𝛼 ’s out-

of-order execution with respect to these differing writes and establish a new notion of reordering

interference freedom rif 𝑛𝑚𝑐𝑎 , such that 𝑠𝑎𝑡 (𝛼,G𝑖) must hold independent of any differing writes

between 𝑖 and 𝑗 .

4.2.1 Relating a Pair of Views. We formally define the difference in observed writes between

components given a write historyℎ. To facilitate reasoning over these writes as a form of instruction

reordering, the evaluated writes are converted back into instructions and composed via sequential

composition. We define Δ𝑖, 𝑗 (ℎ) to perform such a conversion, returning a command consisting of

all writes in ℎ that 𝑖 has observed but 𝑗 has not. These writes are sequenced in the same order they

appear in the write history ℎ, therefore respecting any constraints such as variable coherence.

Δ𝑖, 𝑗 (ℎ) =̂

𝑥 := 𝑣 ; Δ𝑖, 𝑗 (ℎ′′)

if ℎ = ℎ′⌢ (𝑥 ↦→ 𝑣)𝑤𝑟 ⌢ℎ′′ ∧ 𝑖 ∈ 𝑟 ∧ 𝑗 ∉ 𝑟 ∧
∀𝑤𝑖 ∈ ℎ′ · 𝑖 ∈ readers(𝑤𝑖) = 𝑗 ∈ readers(𝑤𝑖)

𝜖 otherwise

Note that Δ𝑖, 𝑗 (ℎ) consists only of instructions of the form 𝑥 := 𝑣 , where 𝑥 is a shared variable

and 𝑣 is a constant value, as this reflects their representation in ℎ. Moreover, Δ𝑖, 𝑗 (ℎ) cannot contain
writes performed by component 𝑗 , as it only contains writes 𝑗 has not observed and 𝑗 must have

observed its own instructions.

, Vol. 1, No. 1, Article . Publication date: August 2022.

14 Coughlin et al.

{∆i,j(h)} viewi(h) {αi ; ci} . . .

 $(file_name).log $(file_name).ps $(file_name).eps

{∆j,i(h)} viewj(h) {cj} . . .

view{i,j}(h)

propagation

write history h

. . .w1 w2 w3
w4

2

1

αi

Fig. 2. Non-multicopy atomicity as reordering

We observe that the execution of the command Δ𝑖, 𝑗 (ℎ) with an initial state view{𝑖, 𝑗 } (ℎ), i.e., the
shared view of memory for components 𝑖 and 𝑗 , will terminate in the state view𝑖 (ℎ). The final state
must be view𝑖 (ℎ), as this memory will only differ with view{𝑖, 𝑗 } (ℎ) for some variable 𝑥 if there is

a write in ℎ to 𝑥 that 𝑖 has observed but 𝑗 has not. Therefore, this write must exist in Δ𝑖, 𝑗 (ℎ). A
similar property holds from the perspective of 𝑗 , such that the execution of the command Δ 𝑗,𝑖 (ℎ)
with an initial state view{𝑖, 𝑗 } (ℎ) will terminate in the state view𝑗 (ℎ). Consequently, it is possible to
relate the views of two components 𝑖 and 𝑗 via their respective Δs and their shared view of the

write history, view{𝑖, 𝑗 } (ℎ).

4.2.2 Reordering Before Δ𝑖, 𝑗 . Based on this relation between two component views, we aim to

demonstrate rely/guarantee compatibility when propagating a write instruction 𝛼 from component

𝑖 to component 𝑗 . Given component 𝑖 must evaluate instruction 𝛼 such that view𝑖 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖),
we first establish that 𝛼 can be executed in the share view with 𝑗 and it will still satisfy G𝑖 in such a

context, i.e., view{𝑖, 𝑗 } (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖). As these two views are related by the execution of the write

sequence Δ𝑖, 𝑗 (ℎ), this property can be establish by considering the reordering of 𝛼 before Δ𝑖, 𝑗 (ℎ)
(see step 1⃝ in Figure 2).

The instruction 𝛼 will be reorderable with all writes in the write sequence without changing the

sequential semantics of their execution due to constraints imposed on propagation transitions (cf.

definition (13)). Specifically, when propagating the effects of 𝛼 from component 𝑖 to 𝑗 , component

𝑗 must have already observed all prior writes to the variable 𝛼 modifies. As 𝑗 has observed these

writes, they will not be present in Δ𝑖, 𝑗 (ℎ), resulting in 𝛼 writing to a distinct variable with respect

to the writes it must reorder with. Moreover, 𝛼 must be of the form (𝑥 := 𝑣)𝑖 when propagation

occurs, where 𝑣 is a constant, and, therefore, it’s behaviour must be independent of the writes in

Δ𝑖, 𝑗 (ℎ).
We demonstrate view{𝑖, 𝑗 } (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖) via an induction over the write sequence Δ𝑖, 𝑗 (ℎ) in

reverse, where view𝑖 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖) represents the base case. Recall that the sequence cannot
contain writes from 𝑗 . Consequently it must consist of writes from 𝑖 itself or components other than

𝑖 and 𝑗 . When considering a write from component 𝑖 , the effects of propagating 𝛼 earlier than this

write are equivalent to the reordering behaviour introduced in Section 3.1 with a sufficiently relaxed

reordering relation. We assume component 𝑖 has been verified with a rif condition capturing such

possible reorderings and exploit this condition to preserve 𝑠𝑎𝑡 (𝛼,G𝑖) across all instructions in the

write sequence derived from 𝑖 .

Next, we consider the effects of writes derived from components other than 𝑖 and 𝑗 . This case

captures the main complication introduced by a NMCA system, such that 𝑖 may have demonstrated

𝑠𝑎𝑡 (𝛼,G𝑖) based on writes that 𝑗 has not yet observed. Therefore, the compatibility between 𝑖 and

𝑗 only holds if 𝑠𝑎𝑡 (𝛼,G𝑖) can be shown independently of these writes. We phrase this notion of

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 15

independence as rif 𝑛𝑚𝑐𝑎 and define it in terms of the weakest precondition of some relation E
intended to capture the possible writes 𝑖 may have observed ahead of 𝑗 .

rif 𝑛𝑚𝑐𝑎 (E, 𝛼,G𝑖) =̂𝑤𝑝 (E, 𝑠𝑎𝑡 (𝛼,G𝑖)) ⊆ 𝑠𝑎𝑡 (𝛼,G𝑖)

This property captures that 𝑠𝑎𝑡 (𝛼,G𝑖) must hold prior to the execution of some transition E if

it held after, preserving 𝑠𝑎𝑡 (𝛼,G𝑖) across those writes in Δ𝑖, 𝑗 (ℎ) from components 𝑘 other than 𝑖

and 𝑗 given they satisfy E. To derive a suitable E, we observe that these writes must satisfy the

specification R𝑖 ∩ R 𝑗 , given a similar overall compatibility argument between 𝑘 and both 𝑖 and 𝑗 .

Moreover, according to the constraints imposed by the propagation transition (as outlined above),

these writes must not modify the variable written by 𝛼 . We introduce the relation id𝛼 denoting

all state transitions in which the variable written by 𝛼 does not change, capturing this constraint.

Therefore, the property rif 𝑛𝑚𝑐𝑎 (R𝑖 ∩ R 𝑗 ∩ id𝛼 , 𝛼,G𝑖) is sufficient to establish the induction proof

and ultimately demonstrate view{𝑖, 𝑗 } (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖).

4.2.3 Reordering After Δ 𝑗,𝑖 . With the execution of 𝛼 established in the shared view such that it

must satisfy G𝑖 , we consider its execution in view𝑗 . Following the prior argument, these views are

related by the command Δ 𝑗,𝑖 (ℎ), however, we now consider the preservation of a property after the

execution of this command, modelled by reordering 𝛼 after Δ 𝑗,𝑖 (ℎ).
When propagating 𝛼 to component 𝑗 (see step 2⃝ in Figure 2), it is possible that 𝑗 may have

observed a more recent write to the variable 𝛼 modifies, where recent implies a later placement in

the write history ℎ. This can occur if component 𝑖 placed 𝛼 earlier in ℎ than writes that 𝑗 had already

observed. As view𝑗 maps each variable to its most recent write, 𝑗 ’s view will not be modified by the

propagation of 𝛼 under such conditions, resulting in a trivial compatibility proof. Alternatively, if 𝑗

has not observed a more recent write to the variable 𝛼 modifies, then it must be trivially reorderable

with the write sequence Δ 𝑗,𝑖 (ℎ) following the same argument as the prior section.

To preserve 𝑠𝑎𝑡 (𝛼,G𝑖) across Δ 𝑗,𝑖 (ℎ), we note that the write sequence must not contain writes

derived from component 𝑖 , as 𝑖 must have observed its own writes. Therefore, all writes in Δ 𝑗,𝑖 must

satisfy R𝑖 , i.e., the constraint 𝑖 imposes on writes derived from all other components. Moreover,

the existing argument establishing 𝑠𝑎𝑡 (𝛼,G𝑖) must be stable under R𝑖 , as this is a requirement of

standard rely/guarantee reasoning. Given the properties of stability, 𝑠𝑎𝑡 (𝛼,G𝑖) must therefore be

preserved by the execution of Δ 𝑗,𝑖 , establishing view𝑗 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,G𝑖). Finally, given compatibility

between 𝑖 and 𝑗 such that G𝑖 ⊆ R 𝑗 , the desired property view𝑗 (ℎ) ∈ 𝑠𝑎𝑡 (𝛼,R 𝑗) must hold via the

monotonicity of 𝑠𝑎𝑡 .

Note that reordering 𝛼 after Δ 𝑗,𝑖 (ℎ) reduces to existing proof obligations imposed by standard

rely/guarantee reasoning. This can be attributed to its similarity with scheduling effects, as a

scheduler may place an arbitrary number of instructions from other components between 𝑖’s

execution of 𝛼 and 𝑗 ’s subsequent observation of 𝛼 ’s effects when considering a standard memory

model. Consequently, rif 𝑛𝑚𝑐𝑎 is the only novel constraint imposed when considering a NMCA

system.

4.3 NMCA Rules
We modify the rules [Comp] and [Par] introduced in Figure 1 to enforce NMCA compatibility

conditions. To simplify modifications, we encode rif 𝑛𝑚𝑐𝑎 between components within the check

of compatibility. First, we note that the standard rely/guarantee compatibility condition for two

components 𝑖 and 𝑗 takes the form of G𝑖 ⊆ R 𝑗 . This condition can be reinterpreted to consider the

variable being modified as ∀𝑥, 𝑣 · 𝑠𝑎𝑡 (𝑥 := 𝑣,G𝑖) ⊆ 𝑠𝑎𝑡 (𝑥 := 𝑣,R 𝑗), denoting that the conditions

𝑖 guarantees will hold when executing (𝑥 := 𝑣)𝑖 imply the conditions 𝑗 assumes to hold when it

observes (𝑥 := 𝑣)𝑖 .

, Vol. 1, No. 1, Article . Publication date: August 2022.

16 Coughlin et al.

Evidently, this reinterpretation of compatibility and rif 𝑛𝑚𝑐𝑎 can be combined based on the

transitivity of ⊆ to define our new notion of compatibility under NMCA, such that

compat(G𝑖 ,R𝑖 ,R 𝑗) =̂ ∀𝑥, 𝑣 ·𝑤𝑝 (R𝑖 ∩ R 𝑗 ∩ id𝑥 , 𝑠𝑎𝑡 (𝑥 := 𝑣,G𝑖)) ⊆ 𝑠𝑎𝑡 (𝑥 := 𝑣,R 𝑗)
This notion of compatibility roughly denotes that 𝑖 may have observed some additional writes

from components other than 𝑗 and its argument for compatibility with 𝑗 must be independent of

these writes. Note that R𝑖∩R 𝑗 ∩id𝑥 is reflexive and transitive, due to constraints on R specifications.

Therefore, this property captures the execution in which 𝑖 observes no additional writes, implying

the original compatibility condition, as well as those with an arbitrary number of additional writes

seen by 𝑖 .

A modified rule for parallel composition limited to only two components would be updated to

this new notion of compatibility as follows.

R1,G1 ⊢ 𝑃1{𝑐1}𝑄1 R2,G2 ⊢ 𝑃2{𝑐2}𝑄2 compat(G1,R1,R2) compat(G2,R2,R1)

R1 ∩ R2,G1 ∪ G2 ⊢ 𝑃1 ∩ 𝑃2{𝑐1 ∥𝑐2}𝑄1 ∩𝑄2

However, this approach is limited to two components, due to constraints in establishing compat.
Observe that compat must be demonstrated over each pair-wise combination of components in

a system, due to its dependence on their net environment specification (R𝑖 ∩ R 𝑗). Consequently,
it is necessary to know the rely/guarantee specification for each individual component within a

judgement to successfully demonstrate compatibility with a new component. Unfortunately, the

standard rule for parallel composition merges the individual component specifications in (R𝑖 ∩R 𝑗),
allowing for more abstract reasoning but resulting in the loss of information necessary to establish

the pair-wise compat (i.e., R𝑖 and R 𝑗 are not accessible anymore).

We resolve this issue by retaining the necessary rely specification throughout reasoning. We

modify R and G to partial maps, mapping identifiers of the sub-components to their original

rely/guarantee specification (see Rule [Comp’] in Figure 3). The domain of the partial map corre-

sponds to the sub-components the judgement operates over. We use the syntax𝑀 (𝑘) to represent

accessing map𝑀 with key 𝑘 and [𝑘 → 𝑣] to represent a new partial map, which returns 𝑣 for key

𝑘 . Moreover, we introduce operators over the partial map, such that dom(𝑀), return the domain

of the map 𝑀 , corresponding to the identifiers it holds specifications for, disjoint(𝑀, 𝑁) returns
whether the maps 𝑀 and 𝑁 have disjoint domains (i.e., share any sub-components), and 𝑀 ⊎ 𝑁

combines two disjoint maps. The generalised rule [Par’] is shown in Figure 3. Note that we assert

that the domains of the rely/guarantee specification for two parallel components must be disjoint,

to enforce the uniqueness of identifiers.

The judgement R,G ⊢ 𝑃{𝑐}𝑄 can be interpreted such that for all executions of 𝑐 commencing in

a write history ℎ, given for all 𝑖 in dom(R), view𝑖 (ℎ) ∈ 𝑃 and all propagations to 𝑖 modify view𝑖 in

[Comp’]
R,G ⊢c 𝑃{𝑐}𝑄 rif (R,G, 𝑐)

[𝑖 → R], [𝑖 → G] ⊢ 𝑃{𝑐𝑜𝑚𝑝 (𝑖,𝑚, 𝑐)}𝑄

[Par’]

R1,G1 ⊢ 𝑃1{𝑐1}𝑄1 R2,G2 ⊢ 𝑃2{𝑐2}𝑄2 disjoint(R1,R2)
∀𝑖 ∈ dom(R1) · ∀𝑗 ∈ dom(R2) · compat(G1 (𝑖),R1 (𝑖),R2 (𝑗))
∀𝑖 ∈ dom(R2) · ∀𝑗 ∈ dom(R1) · compat(G2 (𝑖),R2 (𝑗),R1 (𝑗))

R1 ⊎ R2,G1 ⊎ G2 ⊢ 𝑃1 ∩ 𝑃2{𝑐1 ∥𝑐2}𝑄1 ∩𝑄2

Fig. 3. Proof rules for rely/guarantee reasoning under NMCA

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 17

accordance with R(𝑖), then 𝑖 will modify view𝑖 in accordance with G(𝑖) and, given termination, 𝑐

will end with a write history ℎ′ such that view𝑖 (ℎ′) ∈ 𝑄 .

4.4 Soundness
These rules have been encoded in Isabelle/HOL as an abstract theory, with a minimal instantiation

for NMCAversions of the ARM architecture, and are available at https://bitbucket.org/wmmif/wmm-

rg. Based on the work of Colvin and Smith [7], it should be possible to implement a similar

instantiation for the POWER architecture.

4.5 Precision
This approach does not precisely capture the set of writes that may influence a component’s

execution without being fully propagated to all other components in the system. To reason about

such a set, it is necessary to identify those variables that a component may read and their relative

placement with fence instructions. For instance, writesmay be propagated to a particular component

ahead of others, however, if the component does not read these writes then they will not influence

execution. Moreover, even if the component does read these propagated writes, it is possible to

safely reason about the implications as long as any observable behaviour based on the read values

occurs after a fence instruction. This is due to the fence’s effect on the write history, ensuring that

all other components observe the writes that the executing component has seen. We illustrate this

issue via the following example.

Component 1:

𝑥 := 1

Component 2:

𝑟1 := 𝑥 ;
𝑦 := 𝑟1

Component 3:

𝑟2 := 𝑦;
fence;
𝑟3 := 𝑥

Fig. 4. Non-multicopy atomicity example.

Component 1 writes 1 to 𝑥 , while component 2 reads 𝑥 and writes the resulting value to 𝑦.

Finally, component 3 will read 𝑦 followed by 𝑥 . It is assumed that there is no reordering possible

within these components, as component 3’s instructions are ordered by a fence and component 2’s

instructions cannot be reordered without changing their behaviour. We assume that all variables

hold 0 to begin with. Under a sequentially consistent memory model, it should be possible to

establish that component 3 terminates in a state such that 𝑟2 = 1 =⇒ 𝑟3 = 1, as 𝑦 will only hold

the value 1 if 1 has been written to 𝑥 earlier.

This reasoning is trivially preserved on a MCA system, as there are no reorderable instructions to

consider, however, it fails to carry over to a NMCA system. On such a system, it is possible for the

write 𝑥 := 1 from component 1 to be propagated to component 2 before component 3. Component

2 is then able to read 𝑥 and perform the write 𝑦 := 1. If this write is then propagated to component

3 before the earlier write 𝑥 := 1, component 3 can read a value of 1 for 𝑦 and 0 for 𝑥 , violating the

desired post-condition.

It is possible to resolve this issue by introducing a fence instruction in component 2, between its

read and subsequent write. Such a fence would ensure that component 3 must see the same or a

later value for 𝑥 relative to the value component 2 observed when executing 𝑟1 := 𝑥 . Therefore, if

component 2 read a value of 1 for 𝑥 , component 3 must also read a value of 1 after component 2

executes its added fence.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://bitbucket.org/wmmif/wmm-rg
https://bitbucket.org/wmmif/wmm-rg

18 Coughlin et al.

The approach introduced in Section 4.3 can capture the invalidation of reasoning, however, it

is not sufficiently precise to detect that the introduced fence resolves the issue. Observe that, for
rely/guarantee reasoning to establish the desired post-condition, component 3 must know that

the write 𝑦 := 1 will only occur in a state where 𝑥 = 1. Therefore, R3 must be specified such that

𝑠𝑎𝑡 (𝑦 := 1,R3) = (𝑥 = 1). As component 2 performs a write to 𝑦, it must guarantee a similar

condition, such that 𝑠𝑎𝑡 (𝑦 := 1,G2) = (𝑥 = 1). Moreover, the behaviour of component 1 cannot be

more precise than 𝑏𝑒ℎ(𝑥 := 1), as this is its only instruction. Consequently, the compat condition
must at least show𝑤𝑝 (𝑏𝑒ℎ(𝑥 := 1), 𝑥 = 1) ⊆ (𝑥 = 1), when considering whether the guarantee of

component 2 is compatible with the rely of component 3 in a system that includes effects from

component 1. Evidently, this condition reduces to 𝑇𝑟𝑢𝑒 ⊆ 𝑥 = 1, which cannot be shown.

This same reasoning must be performed if a fence is inserted in to component 2, resulting in

a failure to prove the desired post-condition 𝑟2 = 1 =⇒ 𝑟3 = 1. To correct this case, it would be

necessary to identify the reads that can influence the behaviour of a write with no fence between
them and then only consider the possible environment interference for effects on those reads. With

such a technique, the case without a fencewould still fail to show compatibility, while the case with

a fence would be trivially shown, as there would be no reads that could influence 𝑦 := 𝑟1 without

being propagated by the fence first.
We believe that such an extension to the technique is feasible, as a static analysis can identify

the necessary reads via an approach similar to that suggested for reorderable instruction pairs in

Section 3.3. We leave the implementation and verification of this approach to future work.

5 INSTANTIATING THE PROOF SYSTEM
In this section, we illustrate instantiating the proof system with a simple while language. The

Isabelle/HOL theories accompanying this work also include an instantiation for ARMv8 assembly

weakened to allow NMCA behaviour.

We distinguish three different types of state variables: global variables 𝐺𝑙𝑏 and local variables

𝐿𝑜𝑐 , which are program variables, and global auxiliary variables 𝐴𝑢𝑥 . Local variables are unique to

each component and cannot be modified by others.

Atomic instructions in our language comprise skips, assignments, guards, two kinds of fences, and

coupling of an instruction with an auxiliary variable assignment and/or with a specific verification

condition (similar to an assertion)

𝑖𝑛𝑠𝑡 ::= nop | 𝑣 := 𝑒 | guard 𝑝 | fence | cfence | ⟨𝑖𝑛𝑠𝑡, 𝑎 := 𝑒𝑎⟩ | {|𝑝𝑎 |}𝑖𝑛𝑠𝑡

where 𝑣 is a program variable, 𝑒 an expression over program variables, 𝑝 a Boolean expression over

program variables, 𝑎 an auxiliary variable, 𝑒𝑎 an expression over program and auxiliary variables,

𝑝𝑎 a Boolean expression over program and auxiliary variables, and ⟨𝑖𝑛𝑠𝑡, 𝑎 := 𝑒𝑎⟩ denotes the
execution of 𝑖𝑛𝑠𝑡 followed by the execution of 𝑎 := 𝑒𝑎 atomically.

Commands are defined over atomic instructions and their combinations

𝑐𝑚𝑑 ::= 𝑖𝑛𝑠𝑡 | 𝑐𝑚𝑑 ; 𝑐𝑚𝑑 | if 𝑝 then 𝑐𝑚𝑑 else 𝑐𝑚𝑑 | do 𝑐𝑚𝑑 while(𝑝, 𝐼𝑛𝑣)

where 𝐼𝑛𝑣 denotes a loop invariant. Instructions instantiate individual instructions (i.e., 𝛼) in our

abstract language. Sequential composition directly instantiates its abstract counterpart. Conditionals

and loops are defined via the choice and iteration operator, i.e., if 𝑝 then 𝑐1 else 𝑐2 is defined as

(guard 𝑝) ; 𝑐1 ⊓ (guard ¬𝑝) ; 𝑐2, and do 𝑐 while(𝑝, 𝐼𝑛𝑣) as (𝑐 ; (guard 𝑝))∗ ; 𝑐 ; (guard ¬𝑝), where
the invariant 𝐼𝑛𝑣 holds at the start of 𝑐’s execution.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 19

A reordering relation

𝑖𝑛𝑠𝑡←↪ (and its inverse ̸𝑖𝑛𝑠𝑡←↪) is defined over atomic instructions based on syntactic

independence of reorderable instruction [7]. For all instructions 𝛼 and 𝛽

fence ̸𝑖𝑛𝑠𝑡←↪ 𝛼, 𝛼 ̸𝑖𝑛𝑠𝑡←↪ fence, guard 𝑝 ̸𝑖𝑛𝑠𝑡←↪ cfence,
cfence ̸𝑖𝑛𝑠𝑡←↪ 𝛼 if 𝑟𝑑 (𝛼) ⊈ 𝐿𝑜𝑐 ,

guard 𝑝 ̸𝑖𝑛𝑠𝑡←↪ 𝛼 if𝑤𝑟 (𝛼) ∈𝐺𝑙𝑏 ∨𝑤𝑟 (𝛼) ∈𝑟𝑑 (guard 𝑝) ∨ 𝑟𝑑 (guard 𝑝)∩𝑟𝑑 (𝛼) ⊈ 𝐿𝑜𝑐 ,

and for all other cases,

𝛽
𝑖𝑛𝑠𝑡←↪ 𝛼 if𝑤𝑟 (𝛽) ≠ 𝑤𝑟 (𝛼) ∧𝑤𝑟 (𝛼) ∉ 𝑟𝑑 (𝛽) ∧ 𝑟𝑑 (𝛽) ∩ 𝑟𝑑 (𝛼) ⊆ 𝐿𝑜𝑐 .

where 𝑤𝑟 (𝛼) is the program variable written by 𝛼 and 𝑟𝑑 (𝛼) the program variables read by 𝛼 .

Note that a cfence is used to prevent speculative reads of global variables when placed prior to the

reading instruction and after a guard [7].

Forwarding a value to an assignment instruction in our language is defined as (𝑣𝛼 := 𝑒𝛼 [𝑣𝛽\𝑒𝛽]) ≺
(𝑣𝛽 := 𝑒𝛽) ≺ (𝑣𝛼 := 𝑒𝛼) and to a guard as (guard 𝑝 [𝑣𝛼\𝑒𝛼]) ≺ (𝑣𝛼 := 𝑒𝛼) ≺ (guard 𝑝) where
𝑒 [𝑣\𝑒′] replaces every occurrence of 𝑣 in 𝑒 by 𝑒′. The instruction after forwarding carries the same

verification condition as the original instruction, i.e., 𝑣𝑐 (𝛼 ⟨𝛽 ⟩) = 𝑣𝑐 (𝛼).
Note that auxiliary variables and verification conditions do not influence the reordering relation,

as they will not constrain execution behaviour. Moreover, these annotations remain linked to their

respective instructions during reordering and forwarding.

6 PETERSON’S MUTUAL EXCLUSION ALGORITHM
To demonstrate the workings of our technique for NMCA architectures requires a system with

more than two components for this weaker memory model to have a possibly observable effect.

We use the extension of Peterson’s mutual exclusion algorithm which implements the behaviour of

𝑛 components [25] each of which aims to get exclusive access to a critical section.

The proposed solution models 𝑛 − 1 waiting rooms through which the components have to

advance before the critical section can be entered from the last. Each component 𝑝𝑖 maintains

its current waiting room in 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖]. Additionally, for each waiting room which component was

the last to enter is monitored in variables 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [1], . . . , 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1]. This organises the
components’ advancement. These program variables are globally shared between the components

and are accessible outside the critical section. A component can advance from one waiting room to

the next if it is not the last to enter, or if it is the last to enter and no other component is in the

same waiting room or a waiting room ahead (i.e, it is the first to advance to its current waiting

room). The algorithm ensures that only two components can be present in the last waiting room

and only the one that was not the last to enter can access the critical section which provides mutual

exclusion.

The algorithm (shown in Figure 5) depicts one component 𝑝1 instantiating this algorithm. The

parameter 𝑒1 is an auxiliary variable that does not affect the algorithm itself but is used during

reasoning (see further details below). The critical section is represented by a placeholder in the

figure, and fences have been added where required to guarantee mutual exclusion. The other

components 𝑝2, . . . 𝑝𝑛 are encoded similarly.

In the algorithm the outer loop increments 𝑟 over the 𝑛 − 1 waiting rooms the component

has to pass through before it can enter the critical section. Within that loop it first records the

room number the component is about to enter in 𝑙𝑒𝑣𝑒𝑙 [𝑝1]. In a second step the appearance of the

component in the room is notified by setting the component to be the last that has entered the

room. Note that in the following we consider the component to have entered the room only after

this second step. The auxiliary variable 𝑒1 is updated twice to indicate when this entering phase is

, Vol. 1, No. 1, Article . Publication date: August 2022.

20 Coughlin et al.

𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛(𝑝1, 𝑒1, 𝑝2, . . . 𝑝𝑛) =̂ {
var 𝑟 = 1; 𝑟𝑒𝑔1 = 0; . . . ; 𝑟𝑒𝑔𝑛 = 0;

while (0 < 𝑟 < 𝑛, (* branch condition *)

𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝1) ∧ 𝑙𝑒𝑣𝑒𝑙 [𝑝1] = 𝑟 − 1 ∧ ¬𝑒1) (* loop invariant *)

{
⟨ 𝑙𝑒𝑣𝑒𝑙 [𝑝1] := 𝑟, 𝑒1 := tt ⟩;
fence;
⟨ 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟] := 𝑝1, 𝑒1 := ff ⟩;
fence;
do

𝑟𝑒𝑔1 := 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟];
𝑟𝑒𝑔2 := 𝑙𝑒𝑣𝑒𝑙 [𝑝2];

. . .

𝑟𝑒𝑔𝑛 := 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑛];
while(∨

1<𝑖≤𝑛 (𝑟𝑒𝑔𝑖 ≥ 𝑟) ∧ 𝑟𝑒𝑔1 = 𝑝1, (* branch condition *)

𝑟𝑜𝑜𝑚(𝑝1) = 𝑟 ∧ ¬𝑒1 ∧ (𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟] = 𝑝1 ∨ 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝1)) (* loop invariant*)

𝑟 := 𝑟 + 1;
}
{|𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝1) ∧ 𝑟𝑜𝑜𝑚1 = 𝑛 − 1 |} cfence;
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑠𝑒𝑐𝑡𝑖𝑜𝑛

}

Fig. 5. One component of Peterson’s algorithm for 𝑛 components with fences to guarantee correctness under
weak memory

complete, i.e., in the first step entering is set to 𝑡𝑟𝑢𝑒 and in the second step, when the component

has fully entered, entering is completed and 𝑒1 set to 𝑓 𝑎𝑙𝑠𝑒 .

The inner loop implements a busy wait in the current waiting room until the exit conditions

for this room are met and the component can proceed to the next waiting room (i.e., no other

component is ahead or one other component has entered after this one). As initial condition of the

overall system we require that ∀𝑖 ∈ 𝐶 · 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖] = 0 ∧ ¬𝑒𝑖 , where 𝐶 is the set of components.

In order to demonstrate our rely/guarantee reasoning, we define a rely condition for each

component that is reflected by the other components’ guarantee conditions, i.e., ∀𝑝𝑖 ∈ 𝐶 · G𝑖 =∧
𝑗 ·𝑝 𝑗≠𝑝𝑖

R 𝑗 . These conditions refer to the auxiliary variables 𝑒𝑖 , for 0 < 𝑖 ≤ 𝑛, which indicate for

each component whether its current waiting room has been fully entered (i.e., 𝑝𝑖 has set variable

𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 for this room at some stage) . Furthermore, the following auxiliary functions are used:

• 𝑟𝑜𝑜𝑚(𝑝𝑖) determines the waiting room that component 𝑝𝑖 has fully entered

𝑟𝑜𝑜𝑚(𝑝𝑖) =̂
{
𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖] − 1 if 𝑒𝑖 ∧ 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖] > 0

𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖] otherwise

• aheadOf (𝑝𝑖) provides the number of components that component 𝑝𝑖 is ahead of. Let #𝑆

denote the cardinality of set 𝑆 .

aheadOf (𝑝𝑖) =̂ #{ 𝑝 𝑗 | 𝑟𝑜𝑜𝑚(𝑝𝑖) > 𝑟𝑜𝑜𝑚(𝑝 𝑗) ∨
(𝑟𝑜𝑜𝑚(𝑝𝑖) = 𝑟𝑜𝑜𝑚(𝑝 𝑗) ∧ 𝑝𝑖 ≠ 𝑝 𝑗 ∧ 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟𝑜𝑜𝑚(𝑝𝑖)] = 𝑝 𝑗 }

• 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝𝑖) formalises that the number of components 𝑝𝑖 is ahead of is at least the same as

the level of 𝑝𝑖 ’s current waiting room. This constitutes (an abstraction of) the exit condition

to each waiting room, e.g., in the last waiting room 𝑛 − 1 component 𝑝𝑖 needs to be ahead of

, Vol. 1, No. 1, Article . Publication date: August 2022.

Compositional reasoning for non-multicopy atomic architectures 21

at least 𝑛 − 1 other components for its progress into the critical section to be enabled.

𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝𝑖) =̂ aheadOf (𝑝𝑖) ≥ 𝑟𝑜𝑜𝑚(𝑝𝑖)

The rely conditionR𝑖 for the component 𝑝𝑖 can then be phrased as follows where 𝑟 ∈ {1, . . . , 𝑛−1}
ranges over the waiting rooms. Rely conditions for the other components are formalised and can

be explained similarly.

R𝑖 = 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖] = 𝑙𝑒𝑣𝑒𝑙 ′ [𝑝𝑖] ∧ 𝑒𝑖 = 𝑒′𝑖 ∧ 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝𝑖) = 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 ′ (𝑝𝑖)∧ (i)

𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 ′ [𝑟𝑜𝑜𝑚(𝑝𝑖)] = 𝑝𝑖 =⇒ 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟𝑜𝑜𝑚(𝑝𝑖)] = 𝑝𝑖 (ii)

𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑟𝑜𝑜𝑚(𝑝𝑖)] = 𝑝𝑖 ∧ 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 ′ [𝑟𝑜𝑜𝑚(𝑝𝑖)] ≠ 𝑝𝑖 =⇒ 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 ′ (𝑝𝑖) (iii)

∀𝑝 𝑗 ∈ 𝐶 · 𝑟𝑜𝑜𝑚(𝑝 𝑗) < 𝑟𝑜𝑜𝑚(𝑝𝑖) ∧ 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 ′ [𝑟𝑜𝑜𝑚(𝑝𝑖)] = 𝑝𝑖 =⇒
𝑟𝑜𝑜𝑚′ (𝑝 𝑗) < 𝑟𝑜𝑜𝑚′ (𝑝𝑖) (iv)

That is, R𝑖 specifies that
(i) no other component modifies 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑖], 𝑒𝑖 , or 𝑝𝑖 ’s abstract exit condition, only component 𝑝𝑖

itself can do so;

(ii) no other component can set variable 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 of 𝑝𝑖 ’s current waiting room to 𝑝𝑖 ;

(iii) if another component has entered 𝑝𝑖 ’s current waiting room after 𝑝𝑖 then the abstract exit

condition needs to be maintained;

(iv) if 𝑝𝑖 is ahead of component 𝑝 𝑗 (i.e., 𝑝 𝑗 is in a waiting room on a lower level) and 𝑝𝑖 is the

component that last entered its current waiting room after the environment step(s), then 𝑝𝑖
will remain ahead of 𝑝 𝑗 .

Reasoning over the reordering interference freedom (rif) for 𝑝1 showed where fence instructions
were required to eliminate interferences caused by reorderings within the component (as indicated

in Figure 5). For the body of the inner loop it is easy to see that executing the load instructions

out of order does not have an effect on the exit condition of the loop, and can be considered

benign. Contrary to that, an out-of-order execution of the two store instructions before the inner

loop affects the coordination between 𝑝1 and other components which ensures mutual exclusion.

The condition rif a (R1,G1, 𝛽, 𝛼) for these two instructions could not be established, and a fence

instruction was placed after each.

Additionally we have to show global reordering interference freedom (rif 𝑛𝑚𝑐𝑎) by using the

refined compatibility check between pairs of rely and guarantee conditions. Unfolding the definition

given in Section 4.3 results in compatibility conditions for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 ≠ 𝑗 that are of the

form

compat(G𝑖 ,R𝑖 ,R 𝑗) = 𝑤𝑝 (R𝑖 ∩ R 𝑗 ∩ id𝑥 , 𝑠𝑎𝑡 (𝑥 := 𝑣,G𝑖)) ⊆ 𝑠𝑎𝑡 (𝑥 := 𝑣,R 𝑗).
With G𝑖 =⇒ R 𝑗 and monotonicity of𝑤𝑝 we deduce that it suffices to show that

𝑤𝑝 (R𝑖 ∩ R 𝑗 ∩ id𝑥 , 𝑠𝑎𝑡 (𝑥 := 𝑣,R 𝑗)) ⊆ 𝑠𝑎𝑡 (𝑥 := 𝑣,R 𝑗)
in order to prove compat(G𝑖 ,R𝑖 ,R 𝑗).

For example, let 𝑥 := 𝑣 be ⟨𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1] := 𝑝𝑖 ; 𝑒𝑖 := ff⟩. That is, component 𝑝𝑖 is entering the

last waiting room 𝑛 − 1. In this case, to satisfy R 𝑗 , in particular condition (iii), the exit condition of

𝑝 𝑗 , 𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝 𝑗), must be maintained if 𝑟𝑜𝑜𝑚(𝑝 𝑗) = 𝑛 − 1. Since no other component can modify

𝑒𝑥𝑖𝑡𝐶𝑜𝑛𝑑 (𝑝 𝑗) this condition must have been satisfied before the step, i.e.,

𝑠𝑎𝑡 (⟨𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1] := 𝑝𝑖 ; 𝑒𝑖 := ff⟩,R 𝑗) = 𝑟𝑜𝑜𝑚(𝑝 𝑗) = 𝑛 − 1 =⇒ aheadOf (𝑝 𝑗) ≥ 𝑟𝑜𝑜𝑚(𝑝 𝑗).
R𝑖 ∩ R 𝑗 ∩ id𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛−1] abstractly represents all behaviours of some component 𝑝𝑘 (for 𝑘 ≠ 𝑖

and 𝑘 ≠ 𝑗) that do not modify 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1]. This reduces the steps of 𝑝𝑘 to be considered to

, Vol. 1, No. 1, Article . Publication date: August 2022.

22 Coughlin et al.

only local steps and those that modify 𝑙𝑒𝑣𝑒𝑙 [𝑝𝑘] or 𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑚] for𝑚 ≠ 𝑛 − 1. Although these

steps might increase 𝑟𝑜𝑜𝑚(𝑝𝑘) it will remain lower than 𝑟𝑜𝑜𝑚(𝑝 𝑗) and consequently aheadOf (𝑝 𝑗)
remains unaffected. Hence we have

𝑤𝑝 (R𝑖 ∩ R 𝑗 ∩ id𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛−1], 𝑠𝑎𝑡 (⟨𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1] := 𝑝𝑖 ; 𝑒𝑖 := ff⟩,R 𝑗))
= 𝑠𝑎𝑡 (⟨𝑙𝑎𝑠𝑡𝐸𝑛𝑡𝑒𝑟 [𝑛 − 1] := 𝑝𝑖 ; 𝑒𝑖 := ff⟩,R 𝑗)

which proves compatibility of G𝑖 and R 𝑗 for this instruction. We reason over all other instructions

in a similar fashion.

7 CONCLUSION
This paper presents a truly thread-local approach to reasoning about concurrent code on a range of

weak memory models. When considering multicopy atomic memory models, it employs standard

rely/guarantee reasoning to handle interference between components, and a separate check of

reordering interference freedom to handle interference within a component due to weak memory

behaviour.

Reordering interference freedom provides evidence that the weak memory model under consid-

eration will not invalidate properties shown via standard rely/guarantee reasoning. It is a novel

concept that hinges on a thread-local reordering semantics which can be defined for any hardware

architecture as it is based on the notion of instruction dependence, a core concept of processor

pipelining.

Importantly, our approach reduces the check of reordering interference to only pairs of instruc-

tions, thereby significantly reducing its complexity. In situations where freedom of reordering

interference cannot be shown, our approach includes methods to amend the program, to pro-

hibit reordering behaviour, or modify its verification conditions, such that stronger arguments for

reordering interference freedom may be shown.

When considering non-multicopy atomic memory models, the approach is extended via a simple

modification to the rely/guarantee notion of component compatibility. This novel compatibility

property identifies the conditions under which rely/guarantee reasoning between two components

will not be invalidated by the inconsistent observation of writes from other components. Critically,

this modification only alters the approach’s rules when considering parallel composition, preserves

the compositional nature of rely/guarantee reasoning and extends the approach to support all

widely implemented hardware memory models.

The paper exemplifies an instantiation of the approach for a simple while language and NMCA

memory model, and uses it to verify the mutual exclusion property of Peterson’s algorithm extended

to synchronise multiple components. These results, along with a soundness proof for our approach,

have been encoded in Isabelle/HOL. In future work we intend to improve the precision of the

techniques, addressing some of the concerns we raise, and improve tool support to ease verification.

REFERENCES
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2017. Context-Bounded Analysis

for POWER. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017 (Lecture Notes in Computer Science), Axel Legay and Tiziana Margaria (Eds.), Vol. 10206. 56–74. https:

//doi.org/10.1007/978-3-662-54580-5_4

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.

2019. Optimal stateless model checking for reads-from equivalence under sequential consistency. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 150:1–150:29. https://doi.org/10.1145/3360576

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data

Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Thomas

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1145/3360576
https://doi.org/10.1145/2627752

Compositional reasoning for non-multicopy atomic architectures 23

Ball and Mooly Sagiv (Eds.). ACM, 55–66. https://doi.org/10.1145/1926385.1926394

[5] Hans-Juergen Boehm. 2012. Can seqlocks get along with programming language memory models?. In Proceedings of
the 2012 ACM SIGPLAN workshop on Memory Systems Performance and Correctness: held in conjunction with PLDI ’12,
Lixin Zhang and Onur Mutlu (Eds.). ACM, 12–20. https://doi.org/10.1145/2247684.2247688

[6] Robert J. Colvin. 2021. Parallelized Sequential Composition and Hardware Weak Memory Models. In Software
Engineering and Formal Methods - 19th International Conference, SEFM 2021, Virtual Event, December 6-10, 2021,
Proceedings (Lecture Notes in Computer Science), Radu Calinescu and Corina S. Pasareanu (Eds.), Vol. 13085. Springer,

201–221.

[7] Robert J. Colvin and Graeme Smith. 2018. A Wide-Spectrum Language for Verification of Programs on Weak Memory

Models. In Formal Methods - 22nd International Symposium, FM 2018 (Lecture Notes in Computer Science), Klaus Havelund,
Jan Peleska, Bill Roscoe, and Erik P. de Vink (Eds.), Vol. 10951. Springer, 240–257. https://doi.org/10.1007/978-3-319-

95582-7_14

[8] Nicholas Coughlin, Kirsten Winter, and Graeme Smith. 2021. Rely/guarantee reasoning for multicopy atomic weak

memory models. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings (Lecture Notes in Computer Science), Vol. 13047. Springer, 292–310.

[9] Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike Wehrheim. 2020. Owicki-Gries Reasoning for C11

RAR. In 34th European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings
in Informatics (LIPIcs)), Robert Hirschfeld and Tobias Pape (Eds.), Vol. 166. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 11:1–11:26.

[10] Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin,
Heidelberg.

[11] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter

Sewell. 2016. Modelling the ARMv8 architecture, operationally: Concurrency and ISA. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, Rastislav Bodík and Rupak

Majumdar (Eds.). ACM, 608–621. https://doi.org/10.1145/2837614.2837615

[12] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2019. BMC for Weak

Memory Models: Relation Analysis for Compact SMT Encodings. In Computer Aided Verification - 31st International
Conference, CAV 2019 (Lecture Notes in Computer Science), Isil Dillig and Serdar Tasiran (Eds.), Vol. 11561. Springer,

355–365. https://doi.org/10.1007/978-3-030-25540-4_19

[13] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580.

https://doi.org/10.1145/363235.363259

[14] Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In IFIP Congress. 321–332.
[15] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-

memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Giuseppe Castagna and AndrewD. Gordon (Eds.). ACM, 175–189. http://dl.acm.org/citation.cfm?id=3009850

[16] G. A. Kildall. 1973. A unified approach to global program optimization. In Proc. of POPL. ACM, 194–206.

[17] Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis. 2021. PerSeVerE: persistency semantics for

verification under ext4. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434324

[18] Markus Kusano and Chao Wang. 2017. Thread-modular static analysis for relaxed memory models. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Eric Bodden, Wilhelm Schäfer, Arie

van Deursen, and Andrea Zisman (Eds.). ACM, 337–348. https://doi.org/10.1145/3106237.3106243

[19] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015 (Lecture Notes in Computer Science), Magnús M. Halldórsson,

Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.), Vol. 9135. Springer, 311–323. https://doi.org/10.1007/

978-3-662-47666-6_25

[20] N.M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli. 2013. Correct and Efficient Work-stealing for Weak Memory Models.

In PPoPP ’13. ACM, 69–80. https://doi.org/10.1145/2442516.2442524

[21] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
James E. Burns and Yoram Moses (Eds.). ACM, 267–275. https://doi.org/10.1145/248052.248106

[22] Mark Moir and Nir Shavit. 2004. Concurrent Data Structures. In Handbook of Data Structures and Applications.,
Dinesh P. Mehta and Sartaj Sahni (Eds.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420035179.ch47

[23] Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics - With Isabelle/HOL. Springer. https://doi.org/10.1007/978-

3-319-10542-0

[24] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/363235.363259
http://dl.acm.org/citation.cfm?id=3009850
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3106237.3106243
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/2442516.2442524
https://doi.org/10.1145/248052.248106
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9

24 Coughlin et al.

[25] Gary L. Peterson. 1981. Myths About the Mutual Exclusion Problem. Inf. Process. Lett. 12, 3 (1981), 115–116. https:

//doi.org/10.1016/0020-0190(81)90106-X

[26] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM

concurrency: multicopy-atomic axiomatic and operational models for ARMv8. PACMPL 2, POPL (2018), 19:1–19:29.

https://doi.org/10.1145/3158107

[27] Tom Ridge. 2010. A Rely-Guarantee Proof System for x86-TSO. In Verified Software: Theories, Tools, Experiments, Third
International Conference, VSTTE 2010 (Lecture Notes in Computer Science), Gary T. Leavens, Peter W. O’Hearn, and

Sriram K. Rajamani (Eds.), Vol. 6217. Springer, 55–70. https://doi.org/10.1007/978-3-642-15057-9_4

[28] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multipro-

cessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 175–186. https://doi.org/10.1145/1993498.1993520

[29] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a

rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97. https:

//doi.org/10.1145/1785414.1785443

[30] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence. Morgan

& Claypool Publishers. https://doi.org/10.2200/S00346ED1V01Y201104CAC016

[31] Ketil Stølen. 1991. A Method for the Development of Totally Correct Shared-State Parallel Programs. In CONCUR ’91,
2nd International Conference on Concurrency Theory (Lecture Notes in Computer Science), Jos C. M. Baeten and Jan Friso

Groote (Eds.), Vol. 527. Springer, 510–525.

[32] Thibault Suzanne and Antoine Miné. 2018. Relational Thread-Modular Abstract Interpretation Under Relaxed Memory

Models. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018 (Lecture Notes in Computer
Science), Sukyoung Ryu (Ed.), Vol. 11275. Springer, 109–128. https://doi.org/10.1007/978-3-030-02768-1_6

[33] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols,

and separation. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 691–707. https:

//doi.org/10.1145/2660193.2660243

[34] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 867–884.

https://doi.org/10.1145/2509136.2509532

[35] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. 2016. The RISC-V instruction set manual.
Volume 1: User-level ISA, version 2.2. Technical Report EECS-2016-118. Department of Electrical Engineering and

Computer Science, University of California, Berkeley.

[36] Kirsten Winter, Nicholas Coughlin, and Graeme Smith. 2021. Backwards-directed information flow analysis for

concurrent programs. In IEEE Computer Security Foundations Symposium (CSF 2021). IEEE Computer Society.

[37] Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable

Concurrent Programs. Formal Aspects of Computing 9, 2 (1997), 149–174. https://doi.org/10.1007/BF01211617

A SOUNDNESS FOR THE PROOF SYSTEM UNDER MCA
We include a proof sketch establishing soundness of the system under a MCA memory model. This

argument can be extended to NMCA memory models via the arguments presented in Section 4.2.

To prove soundness of the proof system, we reason over a program’s configuration traces. A

configuration consists of a pair (𝑐, 𝜎), containing a command 𝑐 to be executed and state 𝜎 (a

mapping from variables to values) in which it executes. We denote the set of configurations by

C. We define the computations of a program as sequences of configurations which are linked via

program or environment steps, starting with the initial configuration.
1

𝑐𝑝 (𝑐) =̂ {𝑡 ∈ seq(𝐶𝑜𝑛𝑓 𝑖𝑔𝑠) | ∃𝜎0 . 𝑡0 = (𝑐, 𝜎0)∧
∀𝑖 . 0 < 𝑖 < 𝑙𝑒𝑛(𝑡). (𝑡𝑖−1, 𝑡𝑖) ∈ (

𝑝𝑠→ ∪ 𝑒𝑠→)} (16)

We define the properties of such computations below, where 𝑡𝑖 = (𝑐𝑖 , 𝜎𝑖).
• 𝑡 satisfies precondition 𝑃 if the initial state of 𝑡 satisfies 𝑃 ,

𝑝𝑟𝑒 (𝑡, 𝑃) =̂ 𝜎0 ∈ 𝑃
1
Note that 𝑙𝑒𝑛 (𝑠) denotes the length of sequence 𝑠 and 𝑠𝑖 provides its 𝑖-th element.

, Vol. 1, No. 1, Article . Publication date: August 2022.

https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.2200/S00346ED1V01Y201104CAC016
https://doi.org/10.1007/978-3-030-02768-1_6
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/BF01211617

Compositional reasoning for non-multicopy atomic architectures 25

• 𝑡 adheres to rely condition R if all its environment steps adhere to R,
𝑟𝑒𝑙𝑠 (𝑡,R) =̂ (∀𝑖 .0 < 𝑖 < 𝑙𝑒𝑛(𝑡).(𝑡𝑖−1, 𝑡𝑖) ∈

𝑒𝑠→ =⇒ (𝜎𝑖−1, 𝜎𝑖) ∈ R).
• 𝑡 adheres to guarantee G if all its program steps adhere to G,

𝑔𝑟𝑠 (𝑡,𝐺) =̂ (∀𝑖 .0 < 𝑖 < 𝑙𝑒𝑛(𝑡).(𝑡𝑖−1, 𝑡𝑖) ∈
𝑝𝑠→ =⇒ (𝜎𝑖−1, 𝜎𝑖) ∈ 𝐺)

• 𝑡 satisfies post-condition 𝑄 if upon termination its final state satisfies 𝑄 ,

𝑝𝑜𝑠𝑡 (𝑡,𝑄) =̂ 𝑙𝑒𝑛(𝑡) ∈ 𝑁 ∧ 𝑐𝑙𝑒𝑛 (𝑡)−1 = 𝜖 =⇒ 𝜎𝑙𝑒𝑛 (𝑡)−1 ∈ 𝑄 .
Validity of a judgement over a program, |= 𝑐 sats [𝑃,R,G, 𝑄], states that for all computations of

the program if the initial state satisfies 𝑃 and every environment step adheres to R then the final

state, if the computation terminates, satisfies 𝑄 and each program step adheres to G.
|= 𝑐 sats [𝑃,R,G, 𝑄] =̂ ∀𝑡 ∈ 𝑐𝑝 (𝑐).

𝑝𝑟𝑒 (𝑡, 𝑃) ∧ 𝑟𝑒𝑙𝑠 (𝑡,R) =⇒ 𝑔𝑟𝑠 (𝑡,G) ∧ 𝑝𝑜𝑠𝑡 (𝑡,𝑄) (17)

Soundness of the proof system requires that the rely/guarantee judgement implies its validity.

Theorem A.1. Soundness

R,G ⊢ 𝑃{𝑐}𝑄 =⇒ |= 𝑐 sats [𝑃,R,G, 𝑄]

Proof sketch:
At the heart of the proof we have that if two sequentially composed instructions are deemed correct

(via rely/guarantee judgements) and they can reorder and are reordering interference free, then

the sequential composition of the reordered (and forwarded) instructions is correct. This follows

straightforwardly from (9).

R,G ⊢a 𝑃{𝛽}𝑀 ∧ R,G ⊢a 𝑀{𝛼}𝑄 ∧ rif a (R,G, 𝛽, 𝛼) =⇒
∃𝑀 ′ .R,G ⊢a 𝑃{𝛼 ⟨𝛽 ⟩}𝑀 ′ ∧ R,G ⊢a 𝑀 ′{𝛽}𝑄

(18)

This property extends to programs as follows. If an instruction, which can reorder to the start of

a program is interference free in the program then correctness of the original program implies

correctness of the executions in which the reordered instruction occurs first. This can be shown by

structural induction using (18) and (10).

R,G ⊢c 𝑃{𝑟 }𝑀 ∧ R,G ⊢a 𝑀{𝛼}𝑄 ∧ rif c (R,G, 𝑟 , 𝛼) =⇒
∃𝑃 ′, 𝑀 ′ . 𝑃 ⊆ 𝑃 ′ ∧ R,G ⊢a 𝑃 ′{𝛼 ⟨⟨𝑟 ⟩⟩}𝑀 ′ ∧ R,G ⊢c 𝑀 ′{𝑟 }𝑄

(19)

Note that we may weaken the precondition 𝑃 of the original program to 𝑃 ′ for the reordered

program. This is to ensure all intermediate states in the reordered program (such as𝑀 ′) are stable
in cases where conjuncts from 𝑃 would lead to unstable conjuncts in intermediate states.

From (19) it follows that component level judgements over a program 𝑐 are preserved across

interference-free execution steps reordered to the start of 𝑐 .

R,G ⊢c 𝑃{𝑐}𝑄 ∧ rif c (R,G, 𝑟 , 𝛼) ∧ 𝑐 ↦→𝛼⟨⟨𝑟 ⟩⟩ 𝑐
′ =⇒

∃𝑃 ′, 𝑀 ′ . 𝑃 ⊆ 𝑃 ′ ∧ R,G ⊢a 𝑃 ′{𝛼 ⟨⟨𝑟 ⟩⟩}𝑀 ′ ∧ R,G ⊢c 𝑀 ′{𝑐′}𝑄
(20)

Property (20) straightforwardly extends to global rely/guarantee judgements. Note that reordering

interference freedom is a component level condition and is hidden in the global rely/guarantee

judgement ⊢. The global judgement can only be shown by lifting the component level judgement

⊢c to the global level using proof rule [Comp] (see Figure 1) which includes rif (R,G, 𝑐) as a
precondition.

R,G ⊢ 𝑃{𝑐}𝑄 ∧ 𝑐 ↦→𝛼⟨⟨𝑟 ⟩⟩ 𝑐
′ =⇒

∃𝑃 ′, 𝑀 ′ . 𝑃 ⊆ 𝑃 ′ ∧ R,G ⊢a 𝑃 ′{𝛼 ⟨⟨𝑟 ⟩⟩}𝑀 ′ ∧ R,G ⊢ 𝑀 ′{𝑐′}𝑄
(21)

With (21) and the component and global proof rules (Figure 1) we can prove via induction over

environment and program steps of each computation the validity of the global judgement. If the

program is correct and for each computation of the program it holds that the precondition is

, Vol. 1, No. 1, Article . Publication date: August 2022.

26 Coughlin et al.

satisfied by the initial state and each environment step adheres to the rely condition, then the final

state satisfies the post-condition (in the case when the computation terminates) and all program

steps adhere to the guarantee condition.

𝑡 ∈ 𝑐𝑝 (𝑐) ∧ R,G ⊢ 𝑃{𝑐}𝑄 ∧ 𝑝𝑟𝑒 (𝑡, 𝑃) ∧ 𝑟𝑒𝑙𝑠 (𝑡,R) =⇒ 𝑝𝑜𝑠𝑡 (𝑡,𝑄) ∧ 𝑔𝑟𝑠 (𝑡,G)
Using (17) this proves the theorem.

, Vol. 1, No. 1, Article . Publication date: August 2022.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Rely/guarantee reasoning

	3 Multicopy atomic memory models
	3.1 Reordering semantics
	3.2 Reordering interference freedom
	3.3 Computing all reorderable instructions
	3.4 Interference checking
	3.5 Elimination of reordering interference
	3.6 Soundness

	4 Non-multicopy atomic weak memory models
	4.1 Write history semantics
	4.2 Reasoning under NMCA
	4.3 NMCA Rules
	4.4 Soundness
	4.5 Precision

	5 Instantiating the proof system
	6 Peterson's mutual exclusion algorithm
	7 Conclusion
	References
	A Soundness for the proof system under MCA

