
Noname manuscript No.
(will be inserted by the editor)

Information-flow control on ARM and POWER
multicore processors

Graeme Smith · Nicholas Coughlin ·
Toby Murray

Received: date / Accepted: date

Abstract Weak memory models implemented on modern multicore proces-
sors are known to affect the correctness of concurrent code. They can also
affect whether or not the concurrent code is secure. This is particularly the
case in programs where the security levels of variables are value-dependent, i.e.,
depend on the values of other variables. In this paper, we illustrate how in-
struction reordering allowed by ARM and POWER multicore processors leads
to vulnerabilities in such programs, and present a compositional, flow-sensitive
information-flow logic which can be used to detect such vulnerabilities. The
logic allows step-local reasoning (one instruction at a time) about a thread’s se-
curity by tracking information about dependencies between instructions which
guarantee their order of occurrence. Program security can then be established
from individual thread security using rely/guarantee reasoning. The logic has
been proved sound with respect to existing operational semantics using Is-
abelle/HOL, and implemented in an automatic symbolic execution tool.

Keywords Information-flow security · Weak memory models · Non-blocking
algorithms

G. Smith
Defence Science and Technology Group, Australia

School of Information Technology and Electrical Engineering
The University of Queensland, Australia E-mail: smith@itee.uq.edu.au

N. Coughlin
School of Information Technology and Electrical Engineering
The University of Queensland, Australia E-mail: n.coughlin@uq.edu.au

T. Murray
School of Computing and Information Systems
The University of Melbourne, Australia E-mail: toby.murray@unimelb.edu.au

2 Graeme Smith et al.

1 Introduction

It is well known that compiler optimisations may violate security guarantees
apparent at the level of source code [11], even when these optimisations have
been proven to preserve functional correctness. For example, compilers may
reorder instructions, or even remove them as seen in dead code elimination.
While these modifications may not change the functional outcomes of a pro-
gram, they may modify the durations within which secret information is held
in memory. Consequently, this data may be leaked due to correctness issues in
the application or malicious code linked to the compiled binary.

Moreover, some security properties, such as an absence of timing side-
channels, cannot be established directly via preservation of traditional program-
language semantics. Since traditional semantics ignore timing, and semantics
preservation ignores internal branching, the compiler is able to introduce ar-
bitrary control flow and calculations with data-dependent timings potentially
leaking secret information.

One approach to combating such a problem would be to establish a suffi-
ciently detailed semantics and ensure preservation of security properties via a
verified compiler [20, 38]. See Barthe et al. [3] and Sison and Murray [36] for
recent work in this direction. However, this approach represents a tremendous
amount of effort since current verified compilation projects focus on traditional
semantics. Alternatively, security properties can be shown on the late stages
of the compilation process under the assumption they are preserved by the
final compilation stages, or on the assembly instructions directly [5]. Under
the latter approach, only a semantics of the hardware assembly instructions is
required.

Optimisations implemented by the processor architecture need to be taken
into account when verifying security properties at the assembly level. For ex-
ample, when considering concurrency, the architecture’s memory model can
lead to additional security violations when compared to an analysis that as-
sumes a sequentially consistent memory model. This has been shown for the
TSO architecture by Vaughan and Milstein [39] and for TSO, PSO and IBM-
370 by Mantel et al. [22]. While TSO [35] is widely used (by chip manufacturers
Intel, AMD and SPARC), PSO and IBM-370 are not supported on recent pro-
cessors. More relevant architectures are ARM [14,31] and IBM POWER [33];
the former being widely used in mobile devices [13]. These architectures are
significantly weaker than those studied by the papers above, yet have received
little attention from the security foundations community.

In recent work [37], we provide an information-flow logic for reasoning
about security on the latest (revised) version of ARMv8 [31].1 This logic is re-
stricted to a core subset of (abstracted) ARM instructions, ignoring the differ-
ent types of memory barriers available, and mechanisms inherent in low-level
assembly code such as address shifting. Furthermore, the ARMv8 architec-
ture is simpler than previous ARM architectures, and also simpler than IBM

1 We will refer to this revised version as simply ARMv8 in the remainder of this paper.

Information-flow control on ARM and POWER multicore processors 3

POWER, due to being multi-copy atomic, i.e., an update to a variable by a
given thread is seen by all other threads at the same time.

In this paper, we extend the work of [37] to provide a more complete logic
and reasoning approach, not just for ARMv8, but also for earlier versions of
ARM and for POWER. We also describe how reasoning in the logic can be
automated via symbolic execution.

We begin in Section 2 by providing an overview of information-flow logics
for concurrent programs. In Section 3 we introduce instruction reordering as
a common weak memory model optimisation, and explain how it can lead to
security vulnerabilities in a concurrent setting. We also introduce instruction
dependencies as a key concept in determining information-flow under typi-
cal hardware optimisations. In Section 4, we show how this concept can be
used in defining information-flow rules for various ARM instructions and op-
timisations. This includes a number of instructions not covered in our earlier
work such as store fences, control fences, compare-and-swap, load-acquire and
store-release instructions and address shifting. It also includes optimisations
not covered by our earlier work such as write elimination and load speculation.

Our logic has been encoded in Isabelle/HOL [30] and proved sound with
respect to an encoding of operational semantics of ARM and POWER [8].
We provide a high-level overview of the soundness argument in Section 5.
Our logic enforces a so-called constant-time [2] security guarantee that forbids
programs from branching on secrets and from performing secret-dependent
memory accesses. This kind of property is commonly used to guard against
timing channel leakage via caches. However, we make the novel observation
that constant-time security appears to be a necessary ingredient for ensur-
ing the absence of leakage via the resolution of nondeterminism in the weak
memory model itself (see Section 5.3).

We have also encoded the logic for ARMv8 in a prototype symbolic exe-
cution tool building on that for C code of Ernst and Murray [12]. This tool is
described in Section 7.

In Section 8, we consider using the logic for IBM POWER and define
rules for additional memory barrier instructions available on POWER. Both
POWER and earlier versions of ARM are non-multi-copy atomic. In Section 9,
we reflect on security vulnerabilities that non-multi-copy atomicity can intro-
duce, and argue that these do not affect the soundness of our logic. In Sec-
tion 10 we apply our logic and symbolic execution tool to a case study, a
cross-domain work stealing deque, before concluding in Section 11.

2 Information flow control for concurrent programs

Information-flow logics [32] comprise a set of rules, typically one for each kind
of program instruction, which are used to determine whether an instruction can
leak information. To do this, the logic needs to assign a security classification
to each variable, denoted L(x) for variable x . This denotes the maximum
security level of data the variable may hold. Generally, the security levels are

4 Graeme Smith et al.

defined by a lattice, the simplest being a two-point lattice with values High
and Low such that Low v High and High 6v Low . This simple lattice indicates
that High data (representing sensitive information) should not flow to variables
with Low classification (assumed to be visible to an attacker trying to learn
sensitive information), but the other direction of flow is allowed (capturing
confidentiality).

Each rule in an information-flow logic refers to the context in which the
instruction occurs. This context keeps track of required information such as the
security level of the data held by program variables. In flow-sensitive logics,
the context is updated by the rule to provide the context for the following
instruction in the program. For example, a typical rule for assignment is

Γ ` e : t t v L(x)
Assign

Γ {x := e} Γ [x 7→ t]

where the premisses state that from the security levels in the context Γ , we
can deduce the security level t of expression e, and that t is lower than the
security classification of variable x . The rule updates Γ so that x maps to t .

An important issue when reasoning about concurrent systems is composi-
tionality. For scalability, we want to reason about individual threads in isola-
tion and combine this reasoning to deduce properties of the entire program.
One way to do this is to utilise rely/guarantee reasoning [6, 16]. An assump-
tion (or rely condition) expresses what a thread can rely on its environment
(the other threads) doing. For example, a thread may rely on the fact that
no other thread writes to a variable x . A guarantee expresses what a thread
guarantees to its environment. For example, a thread may guarantee that it
does not write to a variable x . Reasoning done on an individual thread will be
valid in the wider context of its execution if all of its assumptions are matched
by a guarantee from all other threads. For example, if the thread assumes that
no other thread writes to a variable x then all other threads must guarantee
that they do not.

Mantel et al. [23] adopt this approach in their seminal concurrent information-
flow logic by associating variables referenced by a thread with one or more of
the following modes.

– ass-noread - the variable is not read by another thread
– ass-nowrite - the variable is not written to by another thread
– guar -noread - this thread does not read the variable
– guar -nowrite - this thread does not write to the variable

Their context Γ is restricted to low variables with mode ass-noread and high
variables with mode ass-nowrite, i.e., domΓ = {x | (L(x) = Low ∧ x ∈ ass-
noread) ∨ (L(x) = High ∧ x ∈ ass-nowrite)}.

There are then two assignment rules. The first is for variables not in Γ .
If the variable is low, the third premise ensures that it is not assigned a high
value. Γ is not updated since another thread may overwrite the value in x
before this thread’s next instruction.

Information-flow control on ARM and POWER multicore processors 5

x 6∈ domΓ Γ ` e : t t v L(x)
Assign1

Γ {x := e} Γ

The second rule is for variables in Γ . In this case, it is not necessary to
restrict the value assigned to x ; if it is a low variable, the thread is relying on
it not being read, so there is no chance of information leaking via the variable.
Also, since the thread relies on high variables in Γ not being written to, and
low variables only being overwritten with lower, and not higher, values, the
security level of the value written can be used when the rule for the following
instruction is applied (and hence is maintained in the context Γ).

x ∈ domΓ Γ ` e : t
Assign2

Γ {x := e} Γ [x 7→ t]

Murray et al. [29] extend this approach to allow value-dependent security
classifications, i.e., where the security classification of a variable depends on
the values held by one or more other variables [21, 27, 40]. In that work, L(x)
denotes a predicate on the program’s variables.2 This predicate is true if, and
only if, x ’s classification is low. Variables which appear in such predicates, and
hence control the security classification of other variables, are called control
variables. Control variables are always low and are not included in Γ .

The modes of Mantel et al. are replaced by

– AssNoRW - the variable is not read or written to by another thread
– AssNoW - the variable is not written to by another thread (but may be

read by it)
– GuarNoRW - this thread does not read or write to the variable
– GuarNoW - this thread does not write to the variable (but may read it)

The variables in Γ are the non-control variables that are stable, i.e., that
are associated with either mode AssNoW or AssNoRW and hence are as-
sumed not to be writable by other threads. As well as Γ , an instruction’s
context includes the sets of stable variables, captured by the ordered pair
S = (AssNoW ,AssNoRW), and a predicate P reflecting the current program
state.3 C denotes the set of control variables of a program.

For non-control variables, there are again two rules for assignment. The
first is for non-stable variables. It requires that t , the security level of the value
assigned to x , is less than x ’s classification under P , i.e., unless P ⇒ ¬ L(x),
t must be low. This is denoted by t vP L(x).

x 6∈ domΓ ∪ C Γ ` e : t t vP L(x)
Assign1

Γ,S ,P {x := e} Γ,S ,P

2 L(x) is denoted Ltype x in [29]. It actually denotes a set of predicates; here we simplify
our presentation by referring to the conjunction of that set’s elements.

3 Again P in [29] is a set of predicates and we simplify our presentation by referring to
the conjunction of that set’s elements.

6 Graeme Smith et al.

The second rule is for stable variables. It is only necessary to restrict
the value assigned to x if x 6∈ snd S , i.e., x can be read by other threads.4

The rule updates Γ with the new security level for x , and updates P to the
strongest postcondition reachable from P when executing x := e (denoted
here as P [x := e]), restricting the resulting predicate to stable variables. The
restriction is necessary since unstable variables may be modified by another
thread and hence should not appear in P when checking the next instruction
in the program.

x ∈ domΓ Γ ` e : t x 6∈ snd S ⇒ t vP L(x)
Assign2

Γ,S ,P {x := e} Γ [x 7→ t],S ,P [x := e] � S

Although both Mantel et al.’s and Murray et al.’s approaches allow as-
sumptions and guarantees to change during the execution of a program, neither
provide a means of ensuring modes are consistent between threads, i.e., that
the assumptions of one thread are guaranteed by all others. This is due to not
enforcing synchronisation between threads when an assumption is updated.
Such synchronisation is required for other threads to update their guarantees
to match the new assumption. This issue is addressed in Covern [28], an ex-
tension to the approach of Murray et al. in which locks protect access to shared
variables, allowing the owner of a lock to assume no other thread can write
to the variables that the lock protects, or read those variable, as appropriate.
For this paper, we focus on non-blocking (i.e. lock-free) code, and avoid the
issue by assuming that assumptions and guarantees do not change during the
execution of a program. A more flexible approach is the subject of ongoing
work as discussed in Section 11.

2.1 Timing sensitivity

The approach of Murray et al. does not allow branching based on a high value.
The justification for this restriction is based on the fact that a compositional
information-flow logic must be timing-sensitive, i.e., information should not
be leaked to an attacker who is able to time the execution of a program. As
argued in [28], this is not possible in the presence of paths entered depending
on the value of a high value.

For example, consider the program in Figure 1 in which high is a high vari-
able and low and output are low variables. Both threads are timing-insensitive
secure since low is never dependent on the value of high. However, when they
are composed the value written to output is more likely to be 0 than 1 when
high is 0. Hence, although the threads are timing-insensitive secure, their com-
position is not. This does not require a probabilistic argument: under a round-
robin scheduler with time slices less than the time it takes to execute the loop,
the result output = 1 would indicate that high 6= 0.

4 We use sndS to denote the second element of pair S . Similarly, we will use fstS to
denote the first element.

Information-flow control on ARM and POWER multicore processors 7

Thread 1:

low := 0;
if (high=0)
then while (high < 1000) high++;
else skip;
low := 1;

Thread 2:

output := low;

Fig. 1 Example illustrating the need for timing-sensitive security.

The first thread is obviously not timing-sensitive secure (as its execution
time depends directly on high) and hence under timing-sensitive security the
issue with compositionality does not arise. Eliminating branching on high val-
ues from code can be achieved using program transformations as described,
for example, in [2, 25].

3 Weak memory models

Hardware weak memory models, as exemplified by TSO [35], ARM [14,31] and
IBM POWER [33], aim at optimising assembly code by restricting accesses to
global shared memory: a well known cause of inefficiency in multicore sys-
tems. This can be achieved, for example, by buffering writes to memory and
letting the hardware control when those writes actually occur, or by allow-
ing speculative execution of code occurring in a branch of the program before
evaluating whether that branch should be taken (which may require access to
shared memory). It can also be achieved by propagating writes to other cores
rather than the shared memory (referred to as non-multi-copy atomicity since
different cores may receive a particular write at different times).

The effects of such optimisations can lead to the instructions of one thread
appearing to occur out-of-order from the perspective of threads running on
other cores. For example, if a thread t buffers the writes to variables x and
y while executing the code x := 1; y := 2 and then the hardware flushes the
value assigned to y first, it appears to threads running on other cores as if t
executed the code y := 2; x := 1.

Colvin and Smith [8, 9] define four constraints related to this perceived
reordering of assignments on weak memory models. These constraints, which
are common to all contemporary weak memory models, ensure that the se-
quential semantics of the thread on which the reordering occurs is unchanged.
An assignment x := e can be reordered with an assignment y := f if, and only
if,

(i) x and y are distinct variables;
(ii) x is not referred to in f ;
(iii) y is not referred to in e; and
(iv) e and f do not reference any common global variables.

Constraint (i) is obviously required as x := 1; x := 2 has a different final
value of x (and hence different behaviour) than x := 2; x := 1. Constraint (ii)

8 Graeme Smith et al.

is required since x := 1; y := x will result in a different value for y than
y := x ; x := 1 when the initial value of x is not 1. Similarly, constraint (iii)
is required since x := y ; y := 1 can result in a different value for x than
y := 1; x := y . Finally, constraint (iv) is required so that the order of updates
and accesses of each global variable, considered individually, is maintained:
x := z ; y := z will not behave the same as y := z ; x := z in an environment
which modifies z since the former will never result in y having an earlier value
of z than x .

In contemporary processors, constraint (ii) is weakened by forwarding which
allows a program such as x := e; y := x to be reordered to y := e; x := e
when e does not refer to global variables, i.e., the effect of the first assignment
is taken into account when determining whether the second can be reordered
with it.

Specific memory models may add additional constraints, e.g., TSO does
not allow a write to a global variable to be reordered with a subsequent
write to a global variable. Fences are a means by which the programmer
can enforce ordering where necessary in their program. For example, letting
fence denote a full fence (e.g., the instruction DMB on ARM), the program
x := 1; fence; y := 2 ensures the write to x is seen by other threads before
the write to y .

A full set of reordering constraints for TSO, ARM and POWER which have
been validated against existing test suites on hardware is provided in [8, 9].
These include reordering constraints related to other types of instructions
such as branch instructions and fences. For ARM and POWER, we have the
following constraints for branch instructions.

(v) An assignment x := e following a branch instruction with branching
condition b can be reordered with the branch instruction if, and only if,
x is a local variable and does not appear free in b, and b and e do not
reference common global variables.

(vi) An assignment x := e preceding a branch with branching condition b
can be reordered with the branch if, and only if, x does not appear free
in b, and b and e do not reference common global variables.

(vii) Two branch instructions can be reordered if, and only if, their branching
conditions do not reference common global variables.

In rule (v) the assignment is speculatively executed (before the branch
condition is evaluated). It is therefore restricted to assignments to local vari-
ables since if it is later determined that the branch should not be executed, it
is necessary to discard the results of such assignments. This cannot be done
with assignments to global variables.

As with assignment, constraint (vi) is weakened by forwarding. A program
such as x := e; if (x = f) ... can be reordered to if (e = f) x := e; ... when e
does not refer to global variables.

Information-flow control on ARM and POWER multicore processors 9

write:

x := data

secret write:

z := z+1;
x := secret;
...
x := 0;
z := z+1

read:

do
do

r1:= z;
while (r1 % 2 6= 0)
r2 := x;

while (z 6= r1)
y := r2

secret read:

y := x

Fig. 2 An IO-driver object with operations for accepting input from a keyboard at unclas-
sified (write) and classified (secret write) levels, and for reading input data at unclassified
(read) and classified (secret read) levels.

3.1 Instruction reordering and value-dependent security

To illustrate how instruction reordering may affect security in the presence
of value-dependent security classifications [29], we introduce the example of
Figure 2. In this example, the four operations are of an IO-driver object which
receives input data from an IO device, such as a keyboard, and stores it in
the variable x . This variable is intended to be an abstract representation of
an input buffer.

As well as a simple write operation, the object has a secret write operation.
This is used when the user indicates (via the keyboard or another input device)
that the information to be input is classified. The operation sets a variable z ,
which is initially 0, to an odd number by incrementing it before allowing the
input data to be assigned to x . After allowing the data to be read (how this is
done is elided in the abstract representation of Figure 2), the operation enters
some unclassified data in x (the value 0) before setting z back to an even
number by incrementing it again. Since x is guaranteed to be low whenever z
is even, the value-dependent security classification for x is L(x) = (z % 2 = 0).

Consider the operations which read from the buffer. We have a secret read
operation which can only be called by applications that are allowed access to
classified information, as well as a general read operation which all applications
can call. To avoid leaks of classified data, the latter should not read the variable
x when z is odd; this is the only time when x can contain classified data. A
naive approach would be to use an if statement in read to disallow reading x
when z is odd: if (z % 2 = 0) then y := x else skip where y is a variable which
the application calling the operation can access. Obviously, this will not work
in a concurrent setting since the check of z ’s value could be made immediately
before z is incremented for the first time by secret write and subsequently the
assignment to y made immediately after x is assigned the classified data; a
classic Time-of-check to time-of-use (TOCTOU) vulnerability.

To avoid this undesirable behaviour, we could ensure mutual exclusion
between the operations secret write and read using a lock; each of these op-
erations would acquire the lock as it first step and release it as its last. This,
however, would be highly inefficient. Firstly, there may be many applications
running and wishing to access the keyboard data, and requiring each to ac-

10 Graeme Smith et al.

secret write:
z := z+1;
fence;
x := secret;
...
x := 0;
fence;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 6= 0)
fence;
r2 := x;
fence;

while (z 6= r1)
y := r2

Fig. 3 Versions of the operations (secret write) and (read) which are secure when run on
ARM and POWER processors.

quire the lock before reading would create an obvious bottleneck. Secondly,
the secret write operation should preferably not be made to acquire a lock as
it needs to react without delay in order to accept (real-time) keyboard input.

A better solution is to use a non-blocking algorithm [24]. Such algorithms
allow threads to run concurrently on the same object with no, or minimal,
use of locking. For example, consider the implementation of read in Figure 2
where r1 and r2 are local variables. This operation waits in a loop until z is
even (and hence x does not contain classified information) and then reads x
into r2. It then checks that z has not changed (and hence has been even the
entire time since it was checked) before copying the value of r2 to y . Since
z can only stay at its current value or increase, if its value is the same as at
some earlier time t , we can deduce that z has not changed since time t .

This algorithm allows the secret write operation to operate without locking
or delay, and allows multiple threads to call the read operation simultaneously.
It is based on a Linux read-write mechanism called seqlock [4], and is a typical
example of a non-blocking algorithm.

The implementation in Figure 2 is secure on a sequentially consistent mem-
ory model, i.e., one that does not allow instruction reordering. It is also secure
on a memory model such as TSO where writes are seen by other threads in
the order in which they occur. For weaker memory models such as ARM and
POWER, this is not the case. These memory models allow writes by a thread
to be seen out-of-order by other threads since no additional constraints are
added to the four common reordering constraints for assignments presented in
Section 3.

For example, consider the operation secret write. If from the perspective of
threads running read , the assignment of the classified data to x occurred before
the first assignment to z then that classified data could be read into the variable
y . To avoid this situation, a fence is required between these two assignments.
Similarly, if the second assignment to z occurred before the assignment of 0 to
x then again the classified data in x could be read into y . The solution again is
to maintain the order by placing a fence between these assignments. A secure
version of secret write is given in Figure 3.

Similar issues arise with the read operation. Firstly, since r2 is a local vari-
able, the assignment to r2 could be reordered with the first branch instruction
(rule (v)) and further reordered with the assignment to r1. This results in

Information-flow control on ARM and POWER multicore processors 11

reading a value of x into r2 before checking that z is even. If this value is
classified and subsequently z is made even by secret write, the check will pass
and the classified information in r2 will be able to be passed into y . A fence
before the assignment to r2 will prevent this reordering.

Secondly, if the assignment to r2 is reordered with the second branch condi-
tion (rule (vi)) then it is possible that a secret write operation begins after the
check of that branch condition and r2 is loaded with classified data. Again,
a fence can prevent the reordering. A secure version of read is included in
Figure 3.

3.2 Instruction dependencies

The value-dependent information-flow logic of Murray et al. [29] described in
Section 2 is not capable of detecting the security leaks present in the code
of Figure 2 when run on ARM or POWER processors. Γ and P ignore the
effects of reordering possible under the processors’ memory models. This is
not a problem for Γ as it is only consulted for the reads of an instruction.
If an instruction containing an expression e is reordered before a prior write
to a variable x then, according to the constraints in Section 3, either (i) x is
not in e, or (ii) x is in e and the reordering involves forwarding. In case (i),
the assignment does not affect the value of Γ for any of the variables in e
and hence does not affect the sensitivity of the data contained in e. In case
(ii), since forwarding involves taking into account the prior assignment’s effect,
using the updated value for x in Γ is appropriate.

P , on the other hand, cannot be used directly to determine the security
level of a variable or expression. For example, the code z := z + 1; x := secret
of Figure 2 does not ensure z is incremented before the assignment to x .
To extend information-flow analysis to account for such weak memory model
effects, we need to restrict P to include only the effects of those instructions
which have definitely occurred prior to the instruction being considered.

To do this, we introduce a function W mapping instructions to sets of
variables. W (α) denotes the set of variables which are known to be up-to-date
when instruction α is reached, i.e., all writes to them before α in the program
have occurred. We then restrict P at instruction α to those variables in W (α).
For example, consider the code z := z + 1; x := secret starting from a state
where z = 0. After the first assignment W (x := secret) would include x (since
rule (i) prevents any earlier writes to x being reordered with x := secret), but
would not include z . Hence, the predicate P at this point would not refer to
the purported fact that z = 1.

Importantly, the value of W (α) changes as we step through a program.
Hence, W (α) is not necessarily the same for different occurrences of the same
instruction α. For example, given the code z := x ; y := x ; z := 0; y := x ,
after the first assignment W (y := x) contains z since the first assignment must
occur before the second due to constraint (iv) of Section 3. However, after the

12 Graeme Smith et al.

third assignment W (y := x) does not contain z since the fourth assignment
can be reordered before the third.

Let W [α] be the update of W when instruction α occurs. After the first
assignment above, W (y := x) is extended to include z plus any variables
whose prior writes in the program cannot be reordered after z := x . This
can be captured by W [z := x](y := x) = W (y := x) ∪W (z := x); note that
W (z := x) contains z since no writes to z can be reordered with z := x (rule (i)
of Section 3). After the third assignment, z is removed from W (y := x). This
can be captured by W [z := 0](y := x) = W (y := x)−wr(z := 0) where wr(α)
is the set of variables written to by α.

As the above illustrates, the update of W at each instruction depends on
whether it can be reordered with preceding instructions. Colvin and Smith [8,9]

define a reordering relation α
R⇐ β〈α〉 on instructions α and β, where β〈α〉

encodes the instruction β with the effects of forwarding the earlier assignment
α.

Recall that forwarding enables reordering of instructions such as those in
x := e; y := x by replacing the occurrence of x in the second assignment
with the value e (forwarded from the first assignment). That is, we replace
x := e; y := x by x := e; y := e which is then reorderable under the rules
(i)−(iv) to y := e; x := e. Forwarding the value of an assignment x := e
can therefore be formalised as replacing each occurrence of x in an expression
or branch condition with e, and leaving other instructions, such as fences,
unchanged. Given [b] denotes a branch condition, we define forwarding as
follows.

y := f〈x :=e〉 = y := f [e/x] if e does not refer to global variables
[b]〈x :=e〉 = [b][e/x] if e does not refer to global variables

β〈α〉 = β for other instructions

We restate the relevant parts of relation
R⇐ of [8, 9] corresponding to con-

straints (i) to (vii) of Section 3 below.

x := e
R⇐ y := f if constraints (i), (ii), (iii) and (iv) hold

[b]
R⇐ x := e if constraint (v) holds

x := e
R⇐ [b] if constraint (vi) holds

[b1]
R⇐ [b2] if constraint (vii) holds

The update of W when an instruction α occurs is then defined as follows.

W [α](β) =

{
W (β〈α〉)− wr(α) if α

R⇐ β〈α〉
W (β) ∪W (α) otherwise

When updating W for an instruction α, a subsequent instruction β could

execute out-of-order given α
R⇐ β〈α〉 holds. As a result, we remove the writes

of α from β’s W mapping. Returning to the example z := z + 1; x := secret ,

Information-flow control on ARM and POWER multicore processors 13

irrespective of the value of W (x := secret) before execution, after the first as-
signment {z} will not be in W (x := secret). This is because x := secret〈z :=z+1〉

is x := secret and since z := z + 1
R⇐ x := secret the first case above applies.

This case sets W (x := secret) to its current value with wr(z := z + 1) = {z}
removed.

It is necessary to use W (β〈α〉) rather than W (β) in this case of the def-
inition, as forwarding may weaken constraints from other instructions earlier
than α, allowing for writes to other variables to execute out-of-order. To il-
lustrate this weakening case, consider x := y ; y := 5; z := y in which for-
warding enables reordering of y := 5 and z := y . Assume before the first

assignment that W (z := 5) = {z}. Since x := y
R⇐ z := 5〈x :=y〉, after the

first assignment W (z := 5) = {z} − {x} = {z}. Similarly, after the second
assignment W (z := 5) = {z} − {y} = {z}. Also, after the second assignment
W (z := y) = W (z := 5) − {x} = {z}. Hence, when the third assignment is
evaluated, neither x nor y are considered to be up-to-date.

This function can be used in any rules where we need to refer to the prior
writes in a program that have definitely occurred. In some rules, we also need
to refer to the prior reads in a program that have definitely occurred. Let R
be a function mapping instructions to sets of variables such that R(α) denotes
the set of variables whose prior reads in the program have occurred. Updates
to R can be calculated in an analogous fashion to those of W as follows (where
rd(α) is the set of variables read by α).

R[α](β) =

{
R(β〈α〉)− rd(α) if α

R⇐ β〈α〉
R(β) ∪ R(α) otherwise

Considering the example z := z + 1; x := secret once more, we have
that after the first assignment R(x := secret) does not include variables in
rd(z := z + 1) = {z}. This reflects that the read of z in z := z + 1 need not
occur before the assignment x := secret .

4 Information flow on ARMv8

In this section, we present our information-flow logic for ARMv8 (we consider
earlier versions of ARM in Section 9). We let Var be the set of all program
variables. Variables are partitioned into global (i.e., shared) variables Global ,
and local variables Local , i.e., Var = Global ∪ Local and Local ∩ Global = ∅.
We let var(e) denote the set of variables which occur free in an expression e.

Our logic is defined over a high-level programming language which can
model ARM and POWER instructions (as in [9]). Let b and e represent
boolean and value expressions respectively, with the constraint that they are
deterministic and their execution time is data-independent. Additionally, we
let x represent any program variable, r represent a Local variable, g represent
a Global variable, and l a value expression over Local variables. Our language
is then defined in terms of commands c as follows.

14 Graeme Smith et al.

a ::= x := e | r := CAS(g , l , l) | acq(r , g) | rel(g , l)
f ::= fence | fence.st | cfence | eieio | loadgate | storegate
c ::= skip | c; c | if (b) then c else c | while (b) do c | a | f

where r := CAS(g , l , l) is a compare-and-swap instruction (detailed in Sec-
tion 4.13), acq(r , g) and rel(g , l) denote load-acquire and store-release instruc-
tions respectively (detailed in Section 4.14), and f denotes a range of fences
(detailed in Sections 4.11 and 8).

The reordering semantics [8,9], upon which this logic is based, is defined in
terms of Kleene algebra. Therefore, we define our language constructs accord-
ingly. A statement if (b) then c1 else c2 represents the sequence of instructions
([b]; c1) u ([¬ b]; c2) where u is non-deterministic choice, and [b] and [¬ b]
acts as guards, resolving the statement to one branch or the other in any state.
Similarly, while (b) do c denotes ([b]; c)∗; [¬ b]. The do c while (b) construct
used in the code of Figures 2 and 3 is simply a shorthand for c ; while (b) do c.

We restrict classifications to operate over a two-point security lattice, con-
taining High and Low , structured such that Low v High and High 6v Low .
Moreover, we allow for the specification of a value-dependent security policy L,
mapping variables to their value-dependent security classifications as detailed
in Section 4.2.

The logic supports variable modes AssNoW , AssNoRW , GuarNoRW and
GuarNoW , similar to prior work [28,29]. We represent these modes as a map-
ping M from modes to sets of variables, e.g., x ∈ M (AssNoRW) indicates
that x is assumed to not be read or written by another thread. These modes
only apply to Global variables as Local variables can only be read or written by
their thread. We introduce stable M =̂ M (AssNoRW)∪M (AssNoW)∪Local
to denote the set of variables that no other component will modify.

4.1 State

Our information-flow logic is applied as a forward pass over the command c
of an individual thread, under mode state M , using judgements of the form
Γ,P ,D {c}M Γ ′,P ′,D ′. These individual judgements are then composed to
establish information-flow properties over a concurrent system.

The logic’s state is an extension of the program state with the information
required to evaluate information flow under a weak memory model. It consists
of the triple Γ,P ,D , where Γ encodes the type context, mapping variables to
the security level of their values (which are either High or Low); P encodes a
predicate over the program state; and D captures instruction dependencies as
a tuple (W ,R), where W and R are the functions introduced in Section 3.2.
For brevity, we introduce the shorthands DW =̂ fst D and DR =̂ snd D .
Additionally, we introduce an update function D [α] =̂ (DW [α],DR[α]).

We introduce a concept of well-formedness for the logic’s state, to ensure
modifications from concurrent threads cannot invalidate properties and, there-
fore, judgements. The first component of this ensures that the free variables in

Information-flow control on ARM and POWER multicore processors 15

P are all in stable M , avoiding invalidation due to an assignment in a concur-
rent thread. Similarly, it is necessary to restrict the domain of Γ to stable M ,
as threads may modify other variables and, consequently, the security level of
their values.

wf M Γ P =̂ var(P) ⊆ stable M ∧ domΓ = stable M

Initial conditions for the logic’s P and Γ components may be any pair
satisfying the wf property given an initial mode setting M . We default to
the weakest possible values, such that P is True and Γ maps variables in
stable M to High. The initial D is structured such that all instructions map
to all variables; formally ∀α ·DW (α) = DR(α) = Var .

4.2 Classifications

As in the work of Murray et al. [28, 29], the logic supports a security policy
L, mapping variables to their value-dependent classifications. These value-
dependent classifications are encoded as predicates over control variables, such
that L(x) is true precisely when x has a security level Low . To illustrate,
consider the example of Section 2, in which L(x) = (z % 2 = 0). This policy
states that the classification of x depends on the value of control variable z ,
such that x must hold Low information when z is even. The security policy L
is provided by the user and remains unmodified throughout execution.

We let C be the set of control variables of a program, such as z in the run-
ning example. These variables are restricted to having Low classifications. Such
a restriction avoids possible side-channels due to changes in classifications. For
example, if an attacker is permitted to access variables with value-dependent
classifications when they are Low but not when they are High, the difference
in access permissions may introduce a side-channel.

We prevent Local variables from being used as control variables, formally
Local ∩ C = ∅, as it is not possible for threads to coordinate based on variables
they cannot read. Moreover, we assume that Local variables are classified as
High, allowing them to hold any information. This is enforced via a constraint
on the security policy: ∀ r : Local · L(r) = False.

The logic determines the classification of a variable x based on L, given the
current state predicate P . To enable this, we introduce lowP (x) =̂ P ` L(x)
and highP (x) =̂ P ` ¬ L(x) to determine if x is provably Low or High respec-
tively. Note that, given insufficient information in P , it may not be possible to
demonstrate either of these conditions in which case the classification of x is
considered unknown. It is necessary to handle this unknown case as though ei-
ther classification is valid. To achieve this, it is necessary to distinguish whether
a read or write is taking place.

First, consider writing to a variable x . If it is possible to show x is classified
as High, then it can hold any value. However, if it is Low , then the value written
to it must be Low . Therefore, it is necessary to assume a Low classification

16 Graeme Smith et al.

when writing to a variable with unknown classification as it is the constraining
case. We capture this defaulting behaviour with WP .

WP (x) =̂

{
High if highP (x)
Low otherwise

Second, consider reading from a variable x . If it is possible to show x is
classified as Low , then it can be included in an expression without changing the
expression’s security level. However, if it is High, the expression is consequently
considered High. Therefore, it is necessary to assume a High classification
when reading from a variable with unknown classification. We introduce RP

to capture this behaviour.

RP (x) =̂

{
Low if lowP (x)
High otherwise

When considering variable reads in expressions, it is also necessary to con-
sider the local type context Γ . Γ may provide more accurate security levels
for values held in variables in stable M , such as capturing situations where a
stable variable is classified High but currently holds Low data. To simplify the
use of Γ , we introduce a total mapping, defaulting to RP where necessary.

ΓP (x) =̂

{
Γ (x) if x ∈ domΓ
RP (x) otherwise

We also define the following shorthand for determining the security level t
of an expression e, as the highest level of any free variable in e.

Γ,P ` e : t =̂ t =tx∈var(e) ΓP (x)

4.3 Skip

Based on the preceding sections, we now introduce the rules of our logic. The
rule for the skip instruction leaves the program state unchanged.

Skip
Γ,P ,D {skip}M Γ,P ,D

4.4 Sequential composition

The rule for sequential composition introduces an intermediate state between
the composed commands.

Γ,P ,D {c1}M Γ ′,P ′,D ′ Γ ′,P ′,D ′ {c2}M Γ ′′,P ′′,D ′′
Seq

Γ,P ,D {c1; c2}M Γ ′′,P ′′,D ′′

Information-flow control on ARM and POWER multicore processors 17

4.5 Consequence

The Conseq rule is based on the consequence rules of Hoare logic [15]. It is
typically required when applying rules for if and while instructions to ensure
both branches result in the same state and to establish loop invariants, respec-
tively. The rule allows for the state before a command to be strengthened, and
the state after the command to be weakened. To express this, we introduce
an ordering on the logic’s state such that a stronger state captures all valid
information flow exhibited under a weaker state.

Γ,P ,D ≥M Γ ′,P ′,D ′ =̂ (∀α ·DW (α) ⊇ D ′W (α) ∧ DR(α) ⊇ D ′R(α)) ∧
P ⇒ P ′ ∧
(∀ x : domΓ · Γ (x) v Γ ′(x)) ∧
wf M Γ P ⇒ wf M Γ ′ P ′

For the D component, this ordering ensures all instructions in the stronger
state have greater or equal write and read sets compared to the weaker. There-
fore, the stronger state is aware of all instruction dependencies known in the
weaker. For the predicate P , we use implication as traditionally done in the
consequence rules of Hoare logic. For Γ , the stronger state must have classifica-
tions equal to or lower than those in the weaker. Hence, all valid information-
flow reliant on Low classifications in the weaker state must be valid in the
stronger. Finally, we constrain the preservation of well-formedness across the
states, consequently preserving well-formedness across the Conseq rule.

Γ1,P1,D1 {c}M Γ ′1,P
′
1,D

′
1

Γ2,P2,D2 ≥M Γ1,P1,D1

Γ ′1,P
′
1,D

′
1 ≥M Γ ′2,P

′
2,D

′
2

Conseq
Γ2,P2,D2 {c}M Γ ′2,P

′
2,D

′
2

For example, if a required premise of a rule was Γ,P ,D {skip}M Γ,P ∧ Q ,D ,
we could apply the Conseq rule to weaken the post-state’s program state to
P , i.e., to transform the premise to Γ,P ,D {skip}M Γ,P ,D which is readily
discharged using the Skip rule.

While the use of the Conseq rule requires user interaction, its application
can be automated based on the context, e.g., through the introduction of a
specialised rule for if instructions as in Murray et al. [28, 29]. We introduce
such specialised rules for if and while instructions in Section 7.

4.6 If

The rule for if statements restricts the branching condition to be Low to pro-
vide a timing-sensitive analysis as discussed in Section 2.1. The rule requires
that both branches result in the same context, which can be established using
the Conseq rule.

18 Graeme Smith et al.

Γ,Pb ` b : Low
Γ,P ∧ [b]M ,D [b] {c1}M Γ ′,P ′,D ′

Γ,P ∧ [¬ b]M ,D [b] {c2}M Γ ′,P ′,D ′

If
Γ,P ,D {if (b) then c1 else c2}M Γ ′,P ′,D ′

When demonstrating a Low classification for the boolean expression b,
it is necessary to ensure a Low classification under all possible reorderings.
This can be achieved by restricting P to those variables for which all writes
are known to have occurred, DW (b), eliminating others through existential
quantification of their free references in P . To facilitate this, we introduce an
operation to restrict a predicate P to a set of variables V .

P |V =̂ ∃ y1, ...yn · P where {y1, .., yn} = Var \V

Therefore, given b can be shown to have a Low classification under P |DW (b),
then this outcome should hold for all possible reorderings. We employ the
shorthand Pα =̂ P |DW (α) to represent this restriction in the rule.

Moreover, it is necessary to preserve well-formedness properties when ma-
nipulating the logic state. As we assume the pre-state (Γ,P) is well-formed,
it is only necessary to enforce well-formedness on the modifications to the
state, specifically, the conjunctions of b and ¬ b. We introduce the notation
[b]M =̂ b |stable M to ensure only stable variables are referenced as required
for well-formedness.

4.7 While

The rule for while statements, like that for if statements, restricts the loop
condition to be Low to provide a timing-sensitive analysis. Moreover, the rule
requires the pre-state to be a loop invariant that is maintained throughout
all loop iterations. This restriction on the context can be established using
the Conseq rule to set the context before the loop to be the loop’s invariant.
Outcomes of the boolean expression b are introduced into appropriate states
restricted to maintain well-formedness.

Γ,Pb ` b : Low Γ,P ∧ [b]M ,D [b] {c}M Γ,P ,D
While

Γ,P ,D {while (b) do c}M Γ,P ∧ [¬ b]M ,D [b]

4.8 Non-blocking loops

The logic is restricted to constant mode annotations M throughout a thread.
Evidently, this is insufficient in the event that a thread gains stability or ex-
clusive access to a variable under certain conditions. To illustrate, consider the
example in Figure 2, in which the read operation temporarily gains stability
on z to demonstrate an information-flow property: the algorithm speculates

Information-flow control on ARM and POWER multicore processors 19

on z ’s stability, rolling back changes in the event that a secret write operation
interleaves. This temporary reliance on stability is common in non-blocking
algorithms.

To enable support for such algorithms in the logic, we introduce a rule
specialised for non-blocking loops, such as the outer loop in the read operation.
Such loops are annotated by the programmer with a set of variables v which
we expect to be stable ({z} in the running example). The annotation allows
thread-local reasoning to assume that the nominated variables are stable using
the following rule (where c can be a while or do loop).

domΓn = domΓ ′n = v
∀ x ∈ domΓn · Γn(x) = RPx =0

(x)

Γ ∪ Γn ,P ,D {c}Mv Γ ′ ∪ Γ ′n ,P ′,D ′
NonBlocking

Γ,P ,D {cv}M Γ ′,P ′,D ′

To evaluate the loop, Γ is updated with a value for each variable x in the
set v based on what is known to have occurred if x were read; the (branch)
condition x = 0 is used for this read. For read in Figure 2, Γ would be extended
with a mapping from z to RPz =0

(z). Since P before the loop is the initial
value True, RPz =0

(z) = RTrue(z) which is Low since lowTrue(z) holds, i.e.,
True ` L(z) holds since L(z) = True.

Also, M is replaced by M v which extends M to include variables in v in
the set of variables with mode AssNoW and variables in Global in the set of
variables with mode GuarNoW . For read , we would have z ∈ AssNoW and
{z , x} ∈ GuarNoW . The extension of GuarNoW in M v ensures that, while
in the loop, no writes can be made by the thread to any global variables.
This is required in such non-blocking algorithms so that the execution can be
discarded and restarted when one or more variables in v is discovered not to
be stable.

For the rule to be sound, we require that the loop cannot be exited unless
the variables in v are stable from the time that it is entered. This check requires
reasoning about the functionality of the code and is outside of the scope of the
logic (similar to the obligation that assumptions are matched by guarantees
on other threads). In the case of read , the proof follows from the fact that the
value of z is never decreased.

4.9 Non-control variable assignment

We introduce two assignment rules, distinguished based on writes to control
and non-control variables. For an assignment x := e, where x is not a control
variable, it is necessary to demonstrate a valid flow of information from the
expression e to x . That is, the classification of x must be greater than the
security level of the value being written. Similar to the If rule, we restrict P
to those variables that are up-to-date from the perspective of x := e, denoted
as Px :=e . Therefore, the proof obligations are preserved under any reordering

20 Graeme Smith et al.

with write operations. This check is not required if modes prevent any other
threads in the system from reading x .

x 6∈ C
Γ,Px :=e ` e : t x 6∈ M (AssNoRW)⇒ t v WPx :=e (x)

Assign
Γ,P ,D {x := e}M Γ [x 7→ t]M ,P [x := e]M ,D [x := e]

The logic state is updated according to the assignment, and well-formedness
enforced on the changes. Γ is updated to map x to its new type t derived from
the expression e. To achieve this, we introduce the notation Γ [x 7→ y]M to
denote Γ updated so that x maps to y if x is a stable variable based on M .
This operation ensures the domain of Γ remains equal to stable M .

We introduce P [x := e] as a shorthand for the strongest postcondition of
x := e given a precondition P .

P [x := e] =̂ ∃ v . P [v/x] ∧ x = e[v/x]

We extend this shorthand to P [x := e]M to represent the strongest post-
condition restricted to stable variables based on M . This ensures the state
only refers to variables in stable M ensuring well-formedness.

4.10 Control variable assignment

For an assignment x := e where x is a control variable, it is necessary to
consider both information flow and potential classification changes. As stated
in Section 4.1, we constrain the security policy L such that control variables
are always considered Low . Therefore, the instruction x := e is only secure
from an information-flow perspective if the expression e can demonstrate a
Low classification.

We decompose the effects a control variable assignment may have on vari-
able classifications into falling and rising cases. The falling case captures situ-
ations in which a variable’s classification is potentially considered High in the
pre-state and Low in the post-state. This case may introduce an information-
flow leak if High information is not cleared from a falling variable prior to
its classification change. Therefore, a control variable assignment must ensure
all variables with potentially falling classifications hold Low information. To
capture this, we first define the concept of a falling classification based on the
definitions introduced in Section 4.2.

fallingP,P ′(x) = {y : Var | x ∈ var(L(y)) ∧ ¬ lowP (y) ∧ ¬ highP ′(y)}

where P is the pre-state predicate, P ′ is the post-state predicate, and x the
modified variable. Note that it is necessary to consider variables that are
¬ lowP and ¬ highP ′ , rather than highP and lowP ′ respectively. This cap-
tures those variables for which we cannot determine their classification due
to the potential unknown outcomes of lowP and highP ′ . For example, if L(x)

Information-flow control on ARM and POWER multicore processors 21

were z = 0 and P were z < 10 then x might be High. In this case, highP would
be False (as it is not possible to deduce ¬ L(x)). However, ¬ lowP (x) would
be True (as it is also not possible to deduce L(x)).

We need to ensure that all falling variables hold low information. Consider
a variable y , such that the assignment x := e results in its classification falling.
This is secure if y holds a Low value prior to the classification change. Hence
we require Γ (y) = Low at the point of the classification change. However,
this is not enough. Instruction reordering may result in the corresponding
write of Low information to y and the assignment x := e being reordered.
Consequently, y ’s classification may fall without its High information being
cleared. To account for this, it is also necessary to consult DW (x := e) to
ensure all writes to y have definitely occurred.

Alternatively, if the falling variable y is in the M (AssNoRW) set, then
changes to its classification are inconsequential as no other thread can read its
value. The required condition for falling variables is captured below.

fallingP,P ′(x) ⊆ M (AssNoRW) ∪ ({y : Var | Γ (y) = Low} ∩DW (x := e)})

Next we consider the rising case. This case describes the inverse of the
falling in which a variable is potentially Low in the pre-state and High in the
post-state. Such a situation may introduce a leak if the classification change
can reorder with earlier reads of the rising variable, potentially resulting in
these reads returning High information where Low is anticipated. To illustrate,
consider the example out := y ; x := e, where out is visible to an attacker,
therefore constraining the first assignment to writing a Low value. Assuming
a pre-state capable of demonstrating a Low classification for y , the example
appears to implement the desired property. However, these instructions may
reorder and execute as x := e; out := y enabling a write of High information
to out if y ’s classification rises after x := e is executed (e.g. if some other
thread places classified data into y in between the assignment to x and the
assignment of out).

To handle this situation, we introduce a definition to capture variables with
rising classifications, which parallels that of the falling set.

risingP,P ′(x) = {y : Var | x ∈ var(L(y)) ∧ ¬ highP (y) ∧ ¬ lowP ′(y)}

Given a variable y in the rising set, it is necessary to show that there are no
reorderable reads of the variable. This can be achieved using the dependency
analysis on reads, ensuring y is in DR(x := e).

risingP,P ′(x) ⊆ DR(x := e)

We merge these falling and rising proof obligations into a single property.

secure updateΓ,P,U ,V ,M (x := e) =̂
fallingP1,P2(x) ⊆ M (AssNoRW) ∪ ({y : Var | Γ (y) = Low} ∩U }) ∧
risingP1,P2

(x) ⊆ V

22 Graeme Smith et al.

where P1 is the pre-state predicate P |U and P2 is the post-state predicate
P [x := e] |V . We define this property in terms of variable sets U and V , rep-
resenting the sets of up-to-date writes and reads respectively, rather than con-
sulting D based on x := e to enable the reuse of the definition of secure update
in the CAS rule of Section 4.13.

Note that it is possible for a variable to be in both the rising and falling
sets, in the event that its classification is unknown in both the pre-state and
post-state. The following rule is sufficient to demonstrate preservation of the
security policy due to a control variable assignment.

x ∈ C
Γ,Px :=e ` e : Low secure updateS (x := e)

AssignC
Γ,P ,D {x := e}M Γ [x 7→ Low]M ,P [x := e]M ,D [x := e]

where S =̂ Γ,P ,DW [x := e],DR[x := e],M

4.11 Fences

ARMv8 supports a variety of fences. Below, we list the most important of
these fences and their properties.

– A full fence (DMB or DSB in ARM) ensures all instructions before it take
effect in memory before any instruction after it.

– A store fence (DMB.ST or DSB.ST in ARM) ensures all store instructions
before it take effect in memory before any store instructions after it.

– A control fence (ISB in ARM) can be placed between a branch instruction
and following loads to prevent the loads being speculatively executed. That
is, a branch before a control fence cannot be reordered with it, and a load
after a control fence cannot be reordered with it.

Support for fences depends on suitable definitions for the
R⇐ relation. For

the fences above, this relation is as follows [8].

fence
R: α

α
R: fence

x := e
R: fence.st if x ∈ Global

fence.st
R: x := e if x ∈ Global

[b]
R: cfence

cfence
R: x := e

Certain invariants for the DW and DR sets can be derived from these def-
initions. For example, in the case of a fence, updates to D will never remove
writes and reads from DW [fence] and DR[fence] respectively, as no operation
can reorder with fence. Consequently, given D is initialised to map all instruc-
tions to Var , the invariant DW (fence) = DR(fence) = Var will be maintained

Information-flow control on ARM and POWER multicore processors 23

writer thread:
1 z := 0;
2 x := 0;
3 while (true)
4 z := z+1;
5 fence;
6 x := secret;

...
7 x := 0;
8 fence;
9 z := z+1

reader thread:
10 while(true)
11 do
12 do
13 r1:= z;
14 while (r1 % 2 6= 0)
15 fence;
16 r2 := x;
17 fence;
18 while (z 6= r1)
19 y := r2

Fig. 4 Writer and reader threads using the operation secret write and read of Figure 3.

across all instructions. Therefore, whenever applying an update due to a fence,
D is reset to initial conditions as all instructions will map via DW and DR

to Var . A similar property can be seen for fence.st as an action writing to a
Global variable will never reorder with it. As a result, DW (fence.st) ⊇ Global
will be maintained across all instructions.

As these instructions do not manipulate the predicate P or classification
context Γ , their information-flow properties are trivial. As we prevent branch-
ing based on High information, it is not possible to introduce a side-channel
based on the conditional execution of a fence (as in [39]).

α ∈ {fence, fence.st, cfence}
Fence

Γ,P ,D {α}M Γ,P ,D [α]

4.12 Example revisited

We now have enough of the logic to illustrate its application to the example
of Figure 3. Two threads which call the secret write and read operations are
shown in Figure 4.

The sequential composition rule allows us to step through a program one
line at a time. The values of Γ , P and D following a given line can be calculated
from the applied rule. If we reach a line of code that no rule can be applied to,
this indicates a potential security leak. For example, consider the writer thread
in Figure 4 for which we will assume M (AssNoW) = {z , x}. This thread
initialises the variables z and x and then repeatedly calls the secret write
operation of Figure 3. Applying rules AssignC and Assign to lines 1 and 2,
respectively, shows that the code up to line 2 is secure. Following line 2, we
have Γ = {z 7→ Low , x 7→ Low}, P = (z = 0 ∧ x = 0), DW (z := z + 1) = {z},
DW (x := secret) = DW (x := 0) = {x} and DR(z := z + 1) = DR(x :=
secret) = DR(x := 0) = {x , z}.

The Conseq rule can then be applied to weaken P to z % 2 = 0 ∧ x = 0
and leave Γ and D unchanged. These values become the starting point for
evaluating lines 4 to 9. We can show that these lines are also secure by applying
rules AssignC, Fence and Assign. Note that without the fence at line 5, z
would not be a member of DW (x := secret) and hence not in Px :=secret .

24 Graeme Smith et al.

Therefore, Assign would not be applicable (since, with L(x) = (z%2 = 0),
the value of z is required to be odd for this assignment to be secure). Hence,
no rule would be applicable for line 6. This demonstrates how the leak of x
would be detected by the logic if lines 4 and 6 could be reordered.

Similarly, without the fence at line 8, no rule would be applicable to line 9.
In this case, since z becomes even at line 9, the variable x must hold Low
data to satisfy secure update. This could not be ascertained, however, since x
would not be in DW (z := z + 1). This demonstrates how the leak of x would
be detected by the logic if lines 7 and 9 could be reordered.

The reasoning for the reader thread is similar. The most interesting aspect
of it is the use of the Non-Blocking rule. The reason that the reader thread
is secure, is that it only reaches line 19 when z is stable from line 13 (when
it is assigned to r1) until line 18 (where it is checked to be equal to r1).
The algorithm works on the principle that there is a high chance of z being
stable while these lines are executed, and hence the reader thread will reach
line 19 without too many iterations of the outer do-loop. Hence, we annotate
the outer-do loop with the set {z} so that the Non-Blocking rule can be
applied.

4.13 Compare-and-swap

A compare-and-swap CAS instruction is an atomic operation for updating a
variable based on its current value. r := CAS(g , l1, l2) updates the Global
variable g to the value of expression l2 if g = l1, and otherwise leaves g
unchanged. The local variable r records whether or not the write occurred.
Due to the atomic nature of the instruction, we restrict expressions l1 and l2
to only refer to Local variables.

The rule is structured as a composition of the If and Assign rules. We
assume the action of conditionally modifying g may introduce a timing side-
channel, and therefore restrict the boolean expression g = l1 to be Low .

Moreover, it is necessary to demonstrate that g can hold the value of l2,
given g = l1. To account for this, we introduce an intermediate predicate
P ′ =̂ P ∧ g = l1, capturing the state where a write occurs, and use that
state to determine the classification of g . Note that we do not need to ensure
P ′ is well-formed due to the atomic nature of the CAS.

Finally, it is necessary to consider the implications of classification changes
if g is a control variable. We reuse the definition of secure update to enforce
these constraints. Note that r is a Local variable and, therefore, cannot be a
control variable.

The rule for CAS instructions is as follows where op =̂ r := CAS(g , l1, l2).

Γ,Pop ` g = l1 : Low
Γ,P ′op ` l2 : t

g 6∈ M (AssNoRW)⇒ t v WP ′
op

(g)

secure updateS (g := l2)
CAS

Γ,P ,D {op}M Γ [g 7→ t , r 7→ Low]M ,P
′′,D [op]

Information-flow control on ARM and POWER multicore processors 25

where P ′ is the intermediate predicate described above, P ′′ is a post-state
predicate described below, and S =̂ Γ,P ′,DW [op],DR[op],M .

Γ , P and D are updated according to the semantics of the operation. The
Γ update captures assignments to both g and r . For r , this is trivial, as it
encodes the outcome of the comparison g = l1, which must be Low . The value
of g varies depending on the outcome of g = l1. Therefore, it is necessary to
determine both possible security levels of the value held in g and take the
highest classification, as done in the MergeIf rule. When g = l1 is false, the
value of g remains unmodified. As g = l1 is restricted to being Low , in this
case Γ (g) = Low . Otherwise, when g = l1 is true, the value of g corresponds
to t , the type of l2. The final type of g is the highest of the two, which is
trivially t .

To compute the post-state predicate P ′′, we introduce a ternary opera-
tor b ? e1 : e2, evaluating to e1 when b holds, and e2 otherwise. Moreover, we
introduce the following pairwise assignment operator given the two written
variables are distinct.

P [(x , y) := (e1, e2)] =̂
∃ v1v2. P [v1/x][v2/y] ∧ x = e1[v1/x][v2/y] ∧ y = e2[v1/x][v2/y]

In the context of the CAS instruction, we can show g 6= r as g is Global ,
while r is Local . P ′′ is hence defined as follows where we restrict the free
variables of the resulting predicate to those that are in stable M to preserve
well-formedness.

P ′′ =̂ P [(g , r) := (g = l1 ? l2 : g , g = l1)]M

To facilitate updates to D , it is necessary to define the reordering rules
for a CAS instruction. To ensure a sound analysis, we introduce the weakest
reordering constraints for a CAS based on its sub-instructions. That is, we allow
the most possible reorderings and hence the greatest scope for information
leaks.

For forwarding, we always apply the conditional store g := l2 as it will
always remove reordering constraints. Inversely, we do not forward the store
to r as this introduces references to g preventing additional reorderings.

x := e〈r :=CAS(g,l1,l2)〉 = x := e[l2/g]

For the reordering relation, the CAS is only guaranteed to load g and
evaluate l1 storing the result in r . Therefore, we define the reordering relation
to be consistent with that for these instructions.

α
R: r := CAS(g , l1, l2) if α

R: r := (g = l1)

r := CAS(g , l1, l2)
R: α if r := (g = l1)

R: α

26 Graeme Smith et al.

4.14 Load-acquire/store-release

ARMv8 supports load and store instructions with acquire/release memory
orderings. The load-acquire acq(r , g) operation loads a Global variable g into
the Local variable r and ensures no memory operations later in program order
may reorder before it. The store-release rel(g , l) operation stores the local
expression l to the Global variable g and ensures all memory operations earlier
in program order have been completed. These operations may be forwarded,
using the corresponding forwarding definitions for their traditional assignment
forms, g := l and r := g for rel(g , l) and acq(r , g) respectively. We introduce

appropriate
R⇐ definitions for these instructions below.

acq(r , g)
R: α

α
R: acq(r , g) if α

R: r := g

α
R: rel(g , l)

rel(g , l)
R: α if g := l

R: α

We support these instructions as variants of the traditional assignment
rules, but with modified reordering relations. This results in different restric-
tions on P and modified updates to D for the instructions. First, we introduce
a rule for rel(g , l) where g 6∈ C.

g 6∈ C
Γ,Prel(g,l) ` l : t g 6∈ M (AssNoRW)⇒ t v WPrel(g ,l)

(g)
Release

Γ,P ,D {rel(g , l)}M Γ [g 7→ t]M ,P [g := l]M ,D [rel(g , l)]

A similar definition is possible in the event g ∈ C.

g ∈ C
Γ,Prel(g,l) ` l : Low secure updateS (g := l)

ReleaseC
Γ,P ,D {rel(g , l)}M Γ [g 7→ t]M ,P [g := l]M ,D [rel(g , l)]

where S =̂ Γ,P ,DW [rel(g , l)],DR[rel(g , l)],M .

Load-acquire instructions load a Global variable into a Local . Since Local
variables are always classified High and cannot be control variables, such an
assignment can never result in an information-flow violation or a change in
classification. Therefore, the rule is a simplified variant of the Assign rule.

Γ,Pacq(r ,g) ` g : t
Acquire

Γ,P ,D {acq(r , g)}M Γ [r 7→ t]M ,P [r := g]M ,D [acq(r , g)]

Information-flow control on ARM and POWER multicore processors 27

4.15 Arrays

We introduce limited support for modelling arrays to the logic. This allows
us to model address shifting; something which is common in assembly-level
programs. We constrain arrays to have a known, static length. Moreover, it
is assumed that the arrays all refer to distinct memory regions and remain
allocated throughout execution.

To enable reuse of existing logic properties and rules, arrays are modelled
as a collection of variables. We introduce the notation An to refer to the nth
element of array A, where n is restricted to a valid index in A’s domain and
must be an integer constant. As traditional Global variables, they may appear
anywhere in the logic state or program that a Global would be expected. For
example, they may appear as control variables and have tracked classifications
in Γ .

We let the expression A[l] refer to an access to A based on the result of l .
To support logic rules over such array accesses, we must resolve the result of
A[l] into the form An . As the outcome of l may be unknown, this may result
in multiple possible resolved variants of the instruction. If this is the case, all
variants must be proved secure.

To enable such a judgement, we first introduce a function to resolve array
accesses in an expression, resolveP . The function returns the set of possible
instructions coupled with a predicate P constraining the index expression.
The function is defined by a recursive traversal over expressions with global
references. We include representative definitions of this function below, where
⊕ is an arbitrary binary operator.

resolveP (A[l]) := {(P ∧ l = n,An) | n ∈ dom A ∧ ¬ (P ` l 6= n)}
resolveP (x) := {(P , x)}
...
resolveP (e1 ⊕ e2) :=

{(P2, e
′
1 ⊕ e ′2) | (P1, e

′
1) ∈ resolveP (e1) ∧ (P2, e

′
2) ∈ resolveP1(e2)}

...
resolveP (x := e) :=

{(P2, x
′ := e ′) | (P1, x

′) ∈ resolveP (x) ∧ (P2, e
′) ∈ resolveP1

(e)}
resolveP (r := CAS(g , l1, l2)) :=

{(P ′, r := CAS(g ′, l1, l2)) | (P ′, g ′) ∈ resolveP (g)}

Note that the resolveP function will reject impossible indices based on P via
the ¬ (P ` l 6= n) test.

Moreover, it is necessary to demonstrate all array accesses are based on
Low information. If this is not the case, cache and reordering effects may be
influenced by High data, potentially introducing side-channels. Thus our logic
enforces a constant-time security guarantee [2] (which we return to later in
Section 5.3). To establish this, we collect all array access expressions for an
instruction using a function indices.

28 Graeme Smith et al.

indices(A[l]) := {l}
indices(x) := ∅
...
indices(e1 ⊕ e2) := indices(e1) ∪ indices(e2)

Given these definitions, we introduce a generic rule for supporting any in-
struction in set a (defined at the beginning of Section 4) in which an unresolved
array access may be found.

α ∈ a
∀ i ∈ indices(α) · P , Γ ` i : Low

∀(P ′, β) ∈ resolveP (α) · Γ,P ′,D {β}M Γ ′,P ′′,D ′

Array
Γ,P ,D {α}M Γ ′,P ′′,D ′

This general rule can be specialised to improve automation. For example, if
the resolve function returns only one possible instruction, e.g., if it were given
A[0] := 1, then only a single judgement must be shown. Moreover, the post-
state of the Array rule would be equivalent to the post-state of the singular
possible access. Otherwise, it is necessary to demonstrate valid judgements for
all possible instructions and merge their post-states. A specialised rule may
employ a similar strategy to the IfMerge rule (introduced later in Section 7)
in which the highest Γ mapping for all variables is maintained; the disjunction
of all possible predicates is taken; and D consists of the intersection of all
possible Ds.

This technique has been employed in the symbolic execution tool (see Sec-
tion 7). Evidently, it does not scale well with large arrays due to the significant
increase in necessary judgements. However, security properties are typically in-
dependent of array length. Therefore, properties shown over small arrays will
in many cases hold over those of any size.

4.16 Weaker memory model concepts

ARM and POWER processors employ a number of additional techniques to
reorder memory operations and improve performance. These techniques can be
seen as a weakening of the constraints (i) to (iv), under particular situations.

To account for these, we weaken the
R⇐ relation accordingly, resulting in fewer

up-to-date writes and reads in D .
The first optimisation is referred to as squashing and is capable of weaken-

ing constraint (i). Constraint (i) prevents repeated writes to the same variable
from reordering, such as x := 2; x := 5. However, the processor can squash
the first write, skipping it entirely. This is not an immediate issue for the
information-flow logic as such a behaviour is a subset of possible thread inter-
leavings where no other thread interleaves to read the first instance, although
it can weaken instruction dependencies.

Information-flow control on ARM and POWER multicore processors 29

To illustrate, consider r := x ; c := r ; c := 1; l := r , where x is controlled
by c and only Low information must be written to l . If squashing were not
possible, the assignments to c would be restricted to execute after the read
of x due to the dependency via r . Therefore, it would not be necessary to
consider potential rises in x ’s classification due to these operations. However
in the presence of squashing, the first write to c may be skipped, eliminating
the dependency via r . This enables the execution c := 1; r := x ; l := r , in
which c := 1 may result in x ’s classification becoming High and subsequently
resulting in a flow of High information to l . To account for this case, we weaken
R⇐ between assignments by removing constraint (i).

Processors may also weaken constraint (iii), which prevents reordering of
x := e and y := f given y is referenced in e. This remains true if y is a Global
variable, as the processor must read its value before modifying it. However
if y is a Local variable, this represents a false dependency between the two
operations as their outcomes are only linked due to register reuse. The pro-
cessor may decide to rename the use of y in y := f and future operations to
another Local variable, thus breaking the false dependency between the two
operations. To account for this, constraint (iii) only applies to cases where y
is a Global variable.

Finally, processors may weaken constraint (iv), which prevents reordering
of x := e and y := f given e and f refer to the same Global variables, via
load speculation. Given two memory load operations, where determining the
first memory address requires a costly computation relative to the second, the
processor may speculate that the two addresses are distinct and perform the
second earlier. If this speculation does not hold, the processor must ensure
the two loads behave as if constraint (iv) held, potentially rolling back opera-
tions. Consequently, any instructions executed due to the speculation cannot
have effects observable to other threads, and therefore cannot involve Global
writes. As the proposed logic is oblivious to the order of Global reads, reorder-
ings introduced due to load speculation cannot introduce an information-flow
violation. Therefore, constraint (iv) can be preserved.

We restate the weakened
R⇐ relation between assignments below.

x := e
R: y := f (ii) if f refers to x

x := e
R: y := f (iii) if e refers to y and y is a Global variable

x := e
R: y := f (iv) if e and f refer to the same Global variables

x := e
R⇐ y := f otherwise

5 Soundness

Our logic has been encoded in Isabelle/HOL [30] and proven sound with re-
spect to a definition of value-dependent non-interference suitable for composi-
tional reasoning [29]. We use formalisation techniques derived from a series of
prior logic encodings [23,28,29], in which a successful application of the logic’s

30 Graeme Smith et al.

rules, along with suitable initial conditions, are shown to establish a strong
bisimulation over a pair of executions of a thread. This bisimulation preserves
the desired security property between its constituent pairs, expressed as a form
of low -equivalence. Low -equivalence is a property that constrains all variables
classified as Low to be equal in both executions. As a result, it is not possible to
distinguish two low -equivalent executions via inspection of only Low variables.
The bisimulation is also closed under global modifications, such that interfer-
ence from parallel threads may not invalidate local reasoning. Finally, given
compatible thread specifications, these local bisimulations can be composed
to establish a security property across a concurrent system.

The formalisation builds directly on the encoding of Covern [28], pre-
serving its definitions of security and compositionality, whilst replacing its
language and logic rules with those detailed in Section 4. Encoding decisions
are made to minimise modifications to these existing theories.

The theories files are available at https://bitbucket.org/wmmif/wmm-if, along
with a series of applications of the logic to small examples. These snippets il-
lustrate the difficulty of applying the logic rules in Isabelle/HOL, motivating
the external automation described in Section 7.

5.1 Compositional Security

To successfully reuse the existing compositional security theory, it is necessary
to prove that the logic’s rules establish a thread-local bisimulation with a series
of properties. We briefly summarise these properties to motivate verification
effort, with a full description of the underlying theory available in foundational
work [28].

First, the bisimulation must be preserved across thread-local operations,
as is standard for a bisimulation definition. Moreover, the bisimulation must
be symmetric, to prevent any distinction between the two executions. These
two properties together constitute a strong bisimulation.

Definition 1 (Strong Bisimulation)

sbisim B ≡ (∀ s, s ′ · s B s ′ ⇒ s ′ B s) ∧
∀ c1,mem1, c2,mem2 · 〈c1,mem1〉 B 〈c2,mem2〉 ⇒
∀ c′1,mem ′1 · 〈c1,mem1〉 → 〈c′1,mem ′1〉 ⇒
∃ c′2,mem ′2 · 〈c2,mem2〉 → 〈c′2,mem ′2〉 ∧ 〈c′1,mem ′1〉 B 〈c′2,mem ′2〉

where 〈c,mem〉 represents a pair of program and memory state, s B s ′ repre-
sents a bisimulation B that relates the states s and s ′, and s → s ′ represents
a transition from state s to s ′ via a thread-local operation.

The bisimulation must enforce low -equivalence on bisimilar memory states.
We define this relation in terms of the security policy L, ensuring equivalence
between the two memories for any variables considered to be Low . Recall that
a variable is considered Low whenever its security policy evaluates to true. The

Information-flow control on ARM and POWER multicore processors 31

low -equivalence definition may evaluate these policies over either of the two
bisimilar memories, as the Low classification constraint on control variables en-
sures equivalent value-dependent classifications. Moreover, the low -equivalence
definition explicitly allows for unreadable variables to hold arbitrary data, as
they cannot influence other threads. This excludes control variables to preserve
the aforementioned symmetry.

Definition 2 (Low Equivalence)

mem1 ≈M mem2 ≡
∀ x 6∈ M (AssNoRW)− C ·mem1 ∈ L x ⇒ mem1 x = mem2 x

where M refers to the variable modes for the current thread, and m ∈ P
represents evaluation of the predicate P to true for a memory m.

Finally, to enable compositional reasoning, the bisimulation must be closed
under global modifications that satisfy the variable modes and preserve low -
equivalence. This is formalised by quantifying over all possible low -equivalent
memories, mem ′1 and mem ′2, constrained such that they do not modify any
variables assumed to be stable. To be closed under global operations, these
new memories must be considered bisimilar.

Definition 3 (Closed under Global Modifications)

closedM B ≡ ∀ c1,mem1, c2,mem2 · 〈c1,mem1〉 B 〈c2,mem2〉 ⇒
∀mem ′1,mem ′2 ·mem ′1 ≈M mem ′2 ⇒

(∀ x ∈ stable M ·mem1 x = mem ′1 x ∧ mem2 x = mem ′2 x)⇒
〈c1,mem ′1〉 B 〈c2,mem ′2〉

5.2 Compositionality Theorem

Given 〈c1,mem1〉 B 〈c2,mem2〉 ⇒ mem1 ≈M mem2, sbisim B and closedM B,
a formal compositionality theorem states how to establish a global bisimula-
tion across a series of threads with compatible modes. That global bisimu-
lation guarantees security for the parallel composition of the threads. This
global bisimulation enforces low -equivalence and satisfies a variant of sbisim
with thread-local state transitions replaced by interleaved thread operations
(parallel composition). The order of the interleaving is defined by a fixed but
arbitrary schedule shared by both executions, as in prior work [28,29], thereby
making scheduling deterministic. Consequently, we adopt the familiar assump-
tion [28,29] that scheduling decisions are not influenced by High information.

At a high level, the proof of the compositionality theorem is structured as
an induction over the scheduler trace, using the sbisim and low -equivalence
properties for the executing thread to preserve both its local bisimulation and
the global notion of low -equivalence, whilst the closedM properties for all other
threads are used to preserve their own bisimulations.

32 Graeme Smith et al.

Note that this proof relies on all threads conforming to their guaranteed
variable modes as well as compatibility of these modes between threads. While
this would be trivial for the proposed logic, as modes do not change throughout
the execution of a thread, demonstrations of sound mode use and compatibility
have been excluded from the verification, as done in prior formalisations [23,
29].

5.3 Semantics

Colvin and Smith [8] provide an operational semantics of ARMv8 which has
been validated against approximately 10,000 litmus tests developed by Al-
glave et al. [1]. Specifically, the semantics has been compared with running
these tests on actual hardware. Its definition is similar to that of a standard
small-step semantics for a Kleene algebra, with the introduction of instruction
reordering based on the behaviours introduced in Section 3. Additionally, weak
memory behaviours are modelled at a thread-local scope, enabling a traditional
thread interleaving interpretation of parallel composition. Consequently, ver-
ification against such a semantics enables reuse of existing compositionality
theorems and language structures, in contrast to alternative weak memory se-
mantics that rely on axiomatic approaches [1] or significantly modify the state
encoding [17].

Notably, this encoding introduces non-determinism into the language to
capture the various reordering and speculation choices that can be made dur-
ing execution. However, the underlying bisimulation theory requires a deter-
ministic language to ensure bisimilar programs observe the same instruction
traces. Consequently, our language encoding includes a reordering schedule,
det , that determines when instruction reordering and speculation takes place,
re-establishing deterministic behaviour.

The schedule is encoded as a list of L and R values, as the semantics only
features two possible choices for each language structure. For instance, α; c
may chose to execute α, encoded as L in the schedule, or reorder an instruction
later in c before α, encoded as R. Note that the semantics also features non-
deterministic choice to support if with speculation, which makes similar use
of det to establish deterministic behaviour.

As a result, our bisimulation only establishes low -equivalence between two
program executions in which the same reordering behaviours occur. This could
result in an information leak if the underlying hardware performs reordering
decisions based on potentially classified information and such decisions are
observed by an attacker. For example, this can occur when reordering array
operations, as their indexing calculations may prevent or allow reordering de-
pending on whether they evaluate to equivalent indices. We eliminate this
side-channel by constraining such indexing operations to be based on public
information, as detailed in Section 4.15, thus enforcing a constant-time secu-
rity guarantee [2]. In general, we observe that constant-time security appears
to be necessary to ensure the absence of leakage via reordering effects—an ob-

Information-flow control on ARM and POWER multicore processors 33

servation that, despite much prior work on noninterference for weak memory
models, we believe is novel.

We assume that, under the enforcement of constant-time security, the hard-
ware will not reorder based on secret information and, hence, it is safe to reason
under all possible deterministic reorderings, as captured by det .

Additionally, the semantics models reordering in the presence of branching
language structures, such as if and while, via refinement to a trace of instruc-
tions with appropriate guards, as detailed in Section 4. We refer to a program
that has been fully refined to a trace of instructions as flat. For example, the
program if (b) then α else γ could be silently rewritten to [b]; α, modelling
speculation of b at the hardware level. Consequently, if α can reorder with [b]
then it may execute prior to the evaluation of the if’s condition. If the later
evaluation of the if’s condition fails, e.g., [b] does not evaluate to true, then
the speculation failed, triggering a rollback that reverts the effects of α at the
hardware level.

The semantics does not model this rollback behaviour and considers a trace
with failed speculation magic. Consequently, these traces are ignored and it is
assumed that only successful speculation cases are observed. This is formalised
by ensuring a trace exists that satisfies all speculated guards at each execution
step. As we do not model rollback behaviours, we must assume the hardware
implements a valid rollback implementation that completely reverts the specu-
lated actions. As demonstrated in other work [18], such an assumption may not
hold on modern hardware, as speculated operations may be observed across a
rollback via the cache. We leave such issues to future work.

We introduce the operation refine c det to resolve all non-deterministic
program structures in c up to the next instruction chosen for execution, based
on det . Moreover, we capture the possibility of an action α reordering prior to
a program c via a new definition α′ < c < α, where α can reorder with all in-
structions in c and their cumulative forwarding effects produce the instruction
α′.

Lemma 1 (Program Split) Given a transition of the form (c, det) →α

(c′, det ′), the program c must refine to a program ca ; α′; cb based on det,
such that ca is flat and α < ca < α′. Additionally, c′ must be equivalent to the
remaining program ca ; cb.

(c, det)→α (c′, det ′)⇒ ∃ ca , cb , α
′·

refine c det = ca ; α′; cb ∧ flat ca ∧ α < ca < α′ ∧ c′ = ca ; cb

We prove Lemma 1 via structural induction over the program semantics.
All cases resolve trivially, as the property definitions in the consequent closely
resemble the structure of the semantics. This lemma is crucial for the soundness
proof, as it allows for the decomposition and recomposition of logic judgements
over the subprograms.

34 Graeme Smith et al.

5.4 Logic

We encode all rules seen in this paper, with the exception of the CAS, acq and
rel instructions which are not covered by the semantics, and the NonBlock-
ing rule whose soundness relies on properties of non-blocking algorithms which
fall outside the logic. For the three instructions not covered by the semantics,
our rules are based on other rules (namely, those for if statements and assign-
ments) which have been proven sound.

A deeply embedded predicate language is used to encode the memory state,
P , and proof obligations. This deep embedding facilitates the variable-based
queries and operations seen in the rules, such as determining free variables in
a security policy and performing existential quantification for a set of vari-
ables. Γ is encoded as a partial map from variables to their classifications,
either Low or High. To more closely reflect an executable implementation of
the logic, the formalisation encodes an over-approximation of the W and R
update operations seen in Section 3.2. This implementation reduces the do-
main of these mappings from all possible instructions to reads and writes of
individual variables and approximates the former based on the later. Details
of this implementation are included in Section 7.

The formalisation encodes a set of core logic rules, from which all others
are derived. This core set covers all supported instruction types, such as as-
signments, fences and guard operations. Additionally, it includes the Seq and
Conseq rules detailed in Section 4, allowing for composition and rewriting
of logic judgements. Finally, the core set includes rules for Kleene algebra op-
erations representing non-deterministic choice and iteration, as illustrated in
Figure 5.

Γ,P ,D {c1}M Γ ′,P ′,D ′

Γ,P ,D {c2}M Γ ′,P ′,D ′

Γ,P ,D {c1 u c2}M Γ ′,P ′,D ′

Γ,P ,D {c}M Γ,P ,D

Γ,P ,D {c∗}M Γ,P ,D

Fig. 5 Rules for Choice and Iteration

Note that the core set does not include rules for language structures such
as if and while. As the semantics handles guards and control flow as sepa-
rate concepts, it is simpler to develop rules for each and then consider their
composition to verify these language structures. For example, recall the rule
for if (b) then c1 else c2, detailed in Section 4.6, which can be rewritten as
([b]; c1)u ([¬ b]; c2). This rule requires Γ,Pb ` b : Low , which implies Γ,Pb `
¬ b : Low . These properties are sufficient to establish Γ,P ,D {b} Γ,P ∧
b,D [b] and Γ,P ,D {¬ b} Γ,P ∧ ¬ b,D [b], covering both variants of the
guard. These can be composed with the other proof obligations of the if rule
using Seq, to establish judgements for each outcome of the if. These are then
composed via the rule for choice, verifying the rewritten if.

Information-flow control on ARM and POWER multicore processors 35

Additionally, we show judgements are preserved across a variety of pro-
gram transforms, the most notable being refine. This holds as the refine op-
eration effectively unfolds choice and iteration operators into an execution
trace of instructions. Therefore, we can establish Γ,P ,D {c} Γ ′,P ′,D ′ ⇒
Γ,P ,D {refine c det} Γ ′,P ′,D ′ for any det .

We now consider the implications of instruction reordering on logic judge-
ments. First, we introduce D [β]f , a forced update to D , such that the reorder-
ing relation is strengthened to ensure all operations are considered ordered
after β and may therefore observe its effects. We also introduce the defini-
tion guards c det to compute the weakest precondition capable of ensuring all
speculated guards in c due to the decisions in det are eventually satisfiable.
Notably, we are able to capture the effects of a single speculated instruction
as guards (α) [R], where [R] is det with a single element R and encodes the
speculation of the single instruction program α.

Lemma 2 (Instruction Judgement Reordering) Given two instructions,

α and β, such that α
R⇐ β〈α〉, and a logic judgement over α; β, a logic judge-

ment must exist for β〈α〉 over the original precondition strengthened to capture
speculation, and a logic judgement must exist for α over a new intermediate
state where the effects of β〈α〉 are visible. Moreover, α’s postcondition must
match that of the original judgement.

α
R⇐ β〈α〉 ∧ Γ,P ,D {α; β}M Γ ′,P ′,D ′ ⇒
∃Γi ,Pi ,Di ·
Γ,P ∧ guards (α) [R],D {β〈α〉}M Γi ,Pi ,Di ∧
Γi ,Pi ,D [β〈α〉]f {α}M Γ ′,P ′,D ′

Proof. First consider the new early judgement over β〈α〉. This is relatively
trivial to establish, as the proof obligations associated with β are shown to hold
regardless of α’s effects on the state. We demonstrate this via the constraints
imposed by D [α]W [β] on β’s original proof obligations, which must be agnostic
to any variables written by α due to their removal from D and subsequent
quantification.

Note that the logic does not ignore all effects α may have on β, specifically
in the event that α is a guard. In this case, the logic allows any proof obligations
associated with β to assume the guard condition for α holds, even if they
may execute out-of-order. This is based on the assumption that only valid
speculation is considered, therefore, even if β executes before α, α’s guard
condition must eventually be true, constraining the state β executes under.
This is captured by the conjunction with the guards condition, which computes
the weakest precondition to ensure successful speculation.

Additionally, it is necessary to consider the implications of forwarding, as
β and β〈α〉 may not be equivalent. This is trivial, as the forwarding operation
does not introduce new behaviour, rather the β〈α〉 represents one of the possible
executions of β under the original ordering.

As a result, it is possible to establish an early judgement over β〈α〉. We then
consider the late judgement over α, from a new intermediate state between

36 Graeme Smith et al.

the two reordered instructions. Note that we consider D [β〈α〉]f rather than
Di for the precondition in this judgement, as β〈α〉 is considered to have been
executed once it has reordered. Therefore, its effects should be visible to α.

Demonstrating this judgement relies on the use of secure update for β, as
the proof obligation ensures the early execution of β, or its forwarded vari-
ant β〈α〉, cannot adversely increase or decrease variable classifications. Con-
sequently, any reasoning used to ensure valid information flow for α before β
must still hold after. Additionally, it is necessary to ensure secure update holds
for α, in the event it is a control variable assignment. This relies on the notion
that the falling and rising sets must decrease given the early execution of β,
as this constrains reorderings and maintains α’s prior classification reasoning.

Finally, it is necessary to show that the same postcondition can be estab-
lished, regardless of the execution order. This holds for P and Γ , as the re-
ordering relation preserves thread-local reasoning and interference from other
threads remains consistent regardless of reordering. For D , we show that
D [β〈α〉]f [α] is stronger than D ′ and use the Conseq rule to establish the
desired postcondition. 2

We then extend this notion to consider the reordering of β prior to a trace
of earlier instructions, via induction over the trace and repeated application
of Lemma 2.

Lemma 3 (Program Judgement Reordering) Given an instruction β
and a flat program c, such that β′ < c < β, and a logic judgement over c; β,
a logic judgement must exist for β′ over the original precondition strengthened
to capture speculation, and a logic judgement must exist for c over a new in-
termediate state where the effects of β′ are visible. Moreover, c’s postcondition
must match that of the original judgement.

β′ < c < β ∧ flat c ∧ Γ,P ,D {c; β}M Γ ′,P ′,D ′ ⇒
∃Γi ,Pi ,Di ·
Γ,P ∧ guards c det ,D {β′}M Γi ,Pi ,Di

Γi ,Pi ,D [β′]f {c}M Γ ′,P ′,D ′

5.5 Local Bisimulation

Having established the logic’s compatibility with reordering, we now turn to
the proof that the logic guarantees security for each thread. Recall that this
is captured by the existence of a strong bisimulation for each: the soundness
proof for the logic constructs such a bisimulation, which we now describe.

We define the thread-local relation BM , parameterised by the thread’s vari-
ables modes, and prove that it satisfies the necessary properties for composi-
tional security. The relation is defined to require equivalent programs between
its states, as well as a successful logic judgement over this program. The pre-
condition P and the classification context Γ of the judgement must only refer
to stable variables, to prevent interference from concurrent threads. Addition-
ally, the two related memories must satisfy the precondition P and conform to

Information-flow control on ARM and POWER multicore processors 37

the classification context Γ , mapping Low variables to the same value. Finally,
the relation must also enforce low -equivalence.

Definition 4 (Thread-Local Relation BM)

〈c1,mem1〉 BM 〈c2,mem2〉 ≡
∃Γ,P ,D , Γ ′,P ′,D ′·

c1 = c2 ∧ Γ,P ,D {c1}M Γ ′,P ′,D ′ ∧
vars P ∪ domΓ ⊆ stable M ∧
mem1 ∈ P ∧ mem2 ∈ P ∧
∀ x ∈ domΓ · Γ x = Low ⇒ mem1 x = mem2 x ∧
mem1 ≈M mem2

To establish a strong bisimulation, we must show that BM is symmet-
ric. This can be achieved by demonstrating symmetry for each of its sub-
properties, which is only non-trivial for low -equivalence. As mentioned earlier,
the Low classification constraint on control variables guarantees consistent
value-dependent classifications between the two memories, resulting in a sym-
metric low -equivalence relation. Consequently, BM is symmetric.

Next, we demonstrate closed BM , ensuring the relation is closed under
global operations. This is achieved by re-establishing the relation on a new
pair of low -equivalent related memories that agree on the values of all stable
variables. Evidently, this is trivial for all properties that do not specify the
related memories. Moreover, the new memories are already known to be low -
equivalent. Therefore, it is only necessary to establish that they satisfy the
precondition P and conform to the classification context Γ . As these properties
only constrain the unmodified stable variables, they can be re-established on
the new related memories, re-establishing the relation.

As 〈c1,mem1〉 BM 〈c2,mem2〉 ⇒ mem1 ≈M mem2 holds by definition, it
only remains to show that BM is a bisimulation. We phrase this property in
terms of the deterministic weak memory semantics and only consider execution
traces for which speculation is known to succeed. To capture this, we define
spec c det mem, which holds true when any speculation required to execute
the next instruction in c, as determined by det , can eventually be satisfied
from a memory mem, and eval α to represent the deterministic evaluation of
an instruction α.

Lemma 4 (Thread-Local Bisimulation)

∀ det , c1,mem1, c2,mem2·
〈c1,mem1〉 BM 〈c2,mem2〉 ∧
(c1, det)→α (c′1, det ′) ∧ spec c1 det mem1 ∧ (mem1,mem ′1) ∈ eval α⇒
∃ c′2,mem ′2·
〈c′1,mem ′1〉 BM 〈c′2,mem ′2〉 ∧
(c2, det)→α (c′2, det ′) ∧ spec c2 det mem2 ∧ (mem2,mem ′2) ∈ eval α

Proof. We demonstrate this property via structural induction over the
deterministic weak memory semantics, with most cases resolving trivially.

38 Graeme Smith et al.

The base case considers the execution of an instruction without reordering,
(α; c,L#det) →α (c, det) (where x#xs denotes the list whose head is x and
whose tail is xs). We first establish the transition and speculation properties
over c2 and mem2, which are trivial due to c2 = α; c and the lack of specu-
lation. Then we split the judgement over α; c into Γ,P ,D {α}M Γi ,Pi ,Di

and Γi ,Pi ,Di {c}M Γ ′,P ′,D ′ for some new context.
Given the logic judgement over α, we show a successful evaluation of α

on mem1 implies its evaluation must be defined for the low -equivalent mem-
ory mem2, due to various constraints enforced by the logic. Moreover, these
constraints allow us to demonstrate the preservation of low -equivalence across
the evaluation of α. Finally, we prove the strongest postcondition corresponds
to the instruction’s effects on the state and demonstrate the resulting state
only references stable variables. Combined with the judgment over c this is
sufficient to solve the base case.

Next, we consider the case of instruction reordering, given as a transition
of the form (α; c,R#det)→β〈α〉 (α; c′, det ′). Using Lemma 1, we can obtain
subprograms ca and cb , such that refine (α; c) (R#det) = α; ca ; β′; cb and
α; c′ = α; ca ; cb . Given Γ,P ,D {α; c}M Γ ′,P ′,D ′, we use the preservation
of logic judgements across refine to show Γ,P ,D {α; ca ; β′; cb}M Γ ′,P ′,D ′.
It is then possible to split and reorder this judgement using Lemma 3, estab-
lishing Γ,P ∧ guards (α; ca) (R#det),D {β〈α〉}M Γi ,Pi ,Di in addition to
Γi ,Pi ,D [β〈α〉]f {α; c′}M Γ ′,P ′,D ′ for some new intermediate context. Ev-
idently, these judgements parallel that of the base case, where properties of
the executing instruction are known and a successful application of the logic
is known for the remaining program.

Mirroring the structure of the base case, we establish the transition and
speculation properties over c2 and mem2. The transition is again trivial, as
c2 = α; c, however, as speculation may take place, it is necessary to demon-
strate a successful speculation trace exist for mem2, given one exists for mem1.
Such a property must hold as guards are restricted to be based on Low infor-
mation, as seen in rules for if and while. Consequently, any successful guard
evaluation on mem1 must also hold on the low -equivalent mem2. This prop-
erty is demonstrated via an induction over the flat program α; ca , proving the
equivalence between these guard evaluations based on successful application
of the logic’s rules.

Given there exists a trace with successful speculation for both mem1 and
mem2, we can then establish that guards (α; ca) (R#det) holds for both, as
guards encodes a weakest precondition calculation equivalent to spec. As a
result, mem1 and mem2 satisfy the precondition for the reordered logic judge-
ment over β〈α〉, allowing it to be used to define and relate mem ′1 and mem ′2
via BM following the same reasoning illustrated in the base case, consequently
solving the reordering case.

The remaining cases solve trivially. As an illustration, consider the execu-
tion of the left program, c1, in a non-deterministic choice, c1 u c2. Such a case
requires decomposition of the four properties on the left hand side of the im-
plication, defined over c1uc2 and L#det , such that they can be shown to hold

Information-flow control on ARM and POWER multicore processors 39

over c1 and det . For instance, we demonstrate 〈c1,mem1〉 BM 〈c1,mem2〉 given
〈c1 u c2,mem1〉 BM 〈c1 u c2,mem2〉 due to Γ,P ,D {c1 u c2}M Γ ′,P ′,D ′ ⇒
Γ,P ,D {c1}M Γ ′,P ′,D ′. Using these properties over c1, it is then possible to
define and relate mem ′1 and mem ′2 via the inductive hypothesis. 2

With all necessary properties demonstrated for the local bisimulation, the
compositionality theorem (Section 5.2) can be used to establish the global
bisimulation and, consequently, the preservation of low -equivalence as defined
by the security policy L throughout execution, i.e. that the concurrent program
is secure.

6 Completeness

The logic compromises the completeness of its reasoning to simplify its appli-
cation in the presence of weak memory models. This is evident in the use of
W and R, as they are only capable of expressing the absence of a possible re-
ordering rather than enabling a detailed analysis of the potential executions.
For example, the logic is not able to verify programs with control variable
writes that do not alter classifications but can reorder with controlled opera-
tions. Consider the snippet c := 3; fence; c := 2; x := High with a security
policy L(x) = (c ≤ 1). It is evident that x := High will execute in a state
where c > 1, validating the information flow. However, the logic is not able to
verify this case, as the possible reordering of c := 2 and x := High results in
existential quantification of any references to c in the precondition associated
with x := High.

A similar issue can be observed with the secure update proof obligations
for control variable writes, in which the classifications of reorderable reads
and writes must not rise and fall respectively. False positives may arise as
these checks occur even if such changes in classification would not alter the
original information flow outcomes. For instance, consider the snippet c :=
2; fence; High := x ; c := 0 with a security policy L(x) = (c > 1). The
classification of x does not influence the outcome of High := x , as it is always
secure. However, the secure update proof obligation for c := 0 will fail, as the
classification of x rises in the presence of a reorderable read of x .

These cases in general describe situations where a control variable write and
an operation exhibiting related information flow can reorder, however, their
reordering does not change the information flow outcomes. Consequently, they
result in false positives, as the logic does not track sufficient information to
handle such benign cases. We believe such cases are sufficiently rare that they
do not motivate the additional complexity required. Moreover, it is possible
to transform these program by reordering operations and introducing fences
to enable verification. For instance, the prior two snippets can be verified by
reordering the last two instructions.

The logic may also produce false positives in the event of a classification
test after a variable read. For example, consider the following snippet, where

40 Graeme Smith et al.

L(x) = (c > 1) and c is stable.

r := x ; if (c > 1) then Low := r

The example is secure as Low := r will only execute if r := x wrote Low
data to r . However, the logic is not able to establish the classification of x when
considering r := x , due to insufficient information concerning c. Consequently,
Γ (r) is updated to High and the if statement cannot be verified.

Other value-dependent logics [28] handle such cases by preserving value-
dependent classifications in Γ . For example, in this case Γ (r) would be up-
dated to c > 1 for the operation r := x . However, under weak memory models,
enabling state dependencies within Γ significantly increases complexity, as it
is not clear how these value-dependent classifications and the evolving state
P relate, given operations may have reordered. Consequently, the logic only
supports programs that test control variables before accessing controlled vari-
ables. We believe that this captures a significant set of programs, with program
transformations potentially supporting more.

Notably, our logic only supports static variables modes, due to the difficulty
of coordinating these mode changes between threads, even under traditional
memory models. Prior work [23] suggests the use of inline annotations to spec-
ify changes to variable modes, with additional analysis stages to verify their
compatibility. However, in complex situations, extracting the implied synchro-
nisation behaviours that demonstrate such compatibility may not be straight-
forward. Other work [28] has coupled the variable modes with synchronisation
operations, such as locks. However, we are interested in the verification of non-
blocking algorithms where locks are avoided, such as the algorithm described in
Figure 3. We anticipate an approach based on more general rely/guarantee rea-
soning to express such synchronisation behaviours [10]. Consequently, to limit
the complexity of the logic, we only support static variable modes and rely
on additional rules such as NonBlocking, with underlying rely/guarantee
reasoning, to handle intricate cases.

Other constraints, such as not supporting High guards and the Low classifi-
cation constraint for control variables, can be seen in similar work without the
complexity of weak memory models [28]. We focus our efforts on supporting a
similar set of features under the new semantics.

7 Automation

We have implemented a prototype symbolic execution tool to automate the
application of our logic for programs running on the ARMv8 memory model.
The tool was based on that described in [12] utilising Scala, to take advantage
of Scala’s powerful pattern matching and compatibility with Java through the
JVM, and the SMT solver Z3 [26], through the Z3 Java API, in order to
reason about predicates in the program state and determine if the security
properties described in rules of the logic hold. The prototype tool is available
at https://github.com/l-kent/wemelt.

Information-flow control on ARM and POWER multicore processors 41

Using the Conseq rule with the If rule requires user intervention and is
hence not amenable to automation. To enable our logic to be implemented in
our symbolic execution tool, we developed the following specialisation of the
If rule, which is capable of automatically deriving a post-state. This rule is
essentially a combination of the If rule with an application of the Conseq
rule.

Γ,Pb ` b : Low
Γ,P ∧ [b]M ,D [b] {c1}M Γ1,P1,D1

Γ,P ∧ [¬ b]M ,D [b] {c2}M Γ2,P2,D2
IfMerge

Γ,P ,D {if (b) then c1 else c2}M Γ ′,P1 ∨ P2,D
′

where domΓ ′ = domΓ1 = domΓ2 and ∀ x : domΓ ′ · Γ ′(x) = Γ1(x) t Γ2(x)
and D ′ = (λα ·D1W (α) ∩D2W (α), λ α ·D1R(α) ∩D2R(α)).

The rule ensures that the judgement on the if statement is correct no matter
which branch is taken as the final state is weaker than both branch outcomes.
Specifically, Γ ′ maps each variable to its highest value following one of the
branches; P ′ is the disjunction of the predicates resulting from each branch;
and D ′ maps each action to the intersection of the respective dependency
analysis (W or R) for each branch.

For our symbolic execution tool, we also include an additional rule which
combines the While rule with an application of the Conseq rule.

Γ ′,P ′b ` b : Low
Γ,P ,D ≥M Γ ′,P ′,D ′

Γ ′,P ′ ∧ [b]M ,D
′[b] {c}M Γ ′,P ′,D ′

WhileHoare
Γ,P ,D {while (b) do c}M Γ ′,P ′ ∧ [¬ b]M ,D

′[b]

This rule is based on the standard Hoare-logic rule for loops [15]

pre ⇒ inv inv ∧ b {c} inv
While(Hoare-logic)

pre {while (b) do c} inv ∧ ¬ b

with the precondition, pre, represented by Γ,P ,D and the loop invariant, inv ,
represented by Γ ′,P ′,D ′. The rule ensures that the judgement on the first
iteration of the loop is correct by requiring that the pre state is stronger than
the inv state. This also ensures the judgement is correct for the case where
there is no iteration of the loop. The symbolic execution is then only required
to consider one iteration of the loop corresponding to the proof obligation to
show the loop invariant is preserved at the end of the loop body c.

The rule requires the user to provide, in advance of running the tool, suit-
able values for Γ ′ and P ′ in the same way the user must provide the loop
invariant in Hoare logic. The tool is able to compute D ′ based on a data flow
analysis. If the user provides values for Γ ′ and P ′ which are too weak, the tool
may produce false positives but is still sound. The rule is not applicable with
values for Γ ′ and P ′ which are too strong.

In general, the logic has been structured to enable automation via symbolic
execution. This is evident in its restrictions on the logic state. For example,

42 Graeme Smith et al.

P only tracks stable variables and, therefore, does not dramatically increase
in complexity as symbolic execution proceeds over the program. Moreover,
Γ maps variables to classifications, rather than predicates as seen in prior
work [28,29], thereby reducing its complexity significantly.

The only part of the logic that cannot be readily automated is D . Therefore
our tool tracks a safe abstraction of it instead. It is infeasible to track a set
of variables for all possible instructions as is required for W and R. Instead,
D is implemented as a mapping from memory operations (i.e., reads or writes
to global variables) to variable sets. For example, W is implemented as WR

(which maps a variable x to all those variables whose writes must occur before a
read of x) and WW (which maps a variable x to all those variables whose writes
must occur before a write of x). W (α) can be derived from these functions,
e.g., given x and y are global variables, W (x := 0) = WW (x) and W (x :=
y) = WW (x) ∪WR(y). The details of this implementation are derived from
our prior work [37], and the equivalence between the two implementations has
been verified in the Isabelle/HOL encoding.

8 Information flow on POWER

POWER processors allow the same reorderings as ARM, as well as the ad-
ditional optimisations discussed in Section 4.16. This has been validated by
Colvin and Smith [8] using approximately 8,000 litmus tests developed for
POWER by Alglave et al. [1]. Hence, the logic developed so far can also be
used for POWER.

In addition to the fences supported by ARMv8, POWER has the following
fences.

– An eieio fence prevents one memory or I/O operation from starting until
the previous memory or I/O operation completed. Based on the discussion
in [1] we treat this as a barrier on stores only.

– A lightweight fence maintains order between loads, loads then stores, and
stores, but not stores and subsequent loads (i.e., load ; load , load ; store,
store; store, but not store; load).

Following Colvin and Smith [8], we model a lightweight fence in terms of
two invented fences: a loadgate and a storegate.

lwfence; c =̂ storegate; loadgate; c

The storegate allows stores to “move backwards” (away form the start
of the program) and the loadgate allows loads to “move forwards” (towards
the start of the program). For instance, assume the following sequence of
instructions, where li are loads and si are stores.

l1; s1; storegate; loadgate; l2; s2

Information-flow control on ARM and POWER multicore processors 43

Assuming all loads and stores are to different variables and hence there are
no pairwise constraints on reordering, the following reordering is possible.

l1; storegate; l2; s1; loadgate; s2

Note that the order between loads, between stores, and between loads then
stores has been maintained, but load l2 may be reordered before the store s1.

For these fences, the
R⇐ relation is as follows [8].

eieio
R: α if α is a store

α
R: eieio if α is a store

α
R⇐ storegate if α is a store

α
R: storegate otherwise

loadgate
R⇐ α if α is a load

loadgate
R: α otherwise

Based on these definitions, it is then possible to determine suitable appro-
priate updates to D for these fences, as seen in Section 4.11. Moreover, the
rule for these fences is identical to those of ARMv8.

α ∈ {eieio, loadgate, storegate}
FenceP

Γ,P ,D {α}M Γ,P ,D [α]

9 Non-multi-copy atomicity

ARMv8 [31] is multi-copy atomic, meaning updates made by a thread are seen
by all other threads at the same time. This is not the case for POWER [33] and
older versions of ARM [14]. Under these architectures, writes may be prop-
agated to some threads earlier than others, via mechanisms such as shared
buffers and inter-thread communication. Consequently, these architectures ex-
pose new behaviours when two or more threads attempt to synchronise their
executions based on writes from another.

For example, consider the code in Figure 6 in which there are 3 threads:
the first sets z to 1, the second waits for z to become 1 then assigns classified
information to x , and the third uses a non-blocking read operation to read a
non-classified value of x , i.e., a value before z is set to 1. The fences in the third
thread ensure that the value of x is read into r after the first branch condition
and before the second branch condition is checked; and hence while z = 0.
Despite this careful placement of fences, under non-multi-copy atomicity the
following scenario is possible:

1. The first thread sets z to 1. This new value becomes available to the second
thread, but not yet to the third.

2. The second thread updates x to the classified value secret . This new value
becomes available to the third thread.

44 Graeme Smith et al.

Thread 1:

z := 1;

Thread 2:

while(z 6=1){}
x := secret

Thread 3:

if (z=0) then
cfence;
r := x;
fence;

if (z=0) then
y := r

Fig. 6 Non-multi-copy atomicity example.

3. The third thread, based on the original value of z , updates the value of y
to the new (classified) value of x .

This vulnerability illustrates the case where two threads attempt to syn-
chronise their executions based on another’s write to z , with the second thread’s
accesses to x intended to occur after z := 1 and the third thread’s prior. There-
fore, non-multi-copy atomicity can introduce a security leak by breaking this
synchronisation and allowing the third thread to observe the effects of the
second.

Fortunately, our logic prevents such leaks as it is not possible to establish
non-trivial information flow between two or more threads based on the write
of another. This can be attributed to the use of static variable modes, which
prevent the analysis state, P and Γ , from retaining information regarding a
variable that may be written by another thread at any stage of the execution.
Consequently, it is not possible to discharge an instruction’s proof obligations
if they are dependent on this synchronisation behaviour.

To illustrate, consider the verification of the second thread of Figure 6. It
would not be possible for this thread to contain z in its stable set, due to the
first thread’s write to z . As a result, the condition for the loop exit, z = 1,
would not be retained in P . Therefore, the write to x would only be considered
secure if the written expression was classified as Low , preventing any insecure
behaviour when considering interactions with the third thread. As this is not
the case, no logic judgement can be established for the second thread.

Notably, the NonBlocking rule allows for variables to be added to the
stable set for a thread, potentially allowing for the effects of writes from concur-
rent threads to be observed and used for thread-local reasoning. For instance,
such a rule would allow for the verification of a variation of the third thread
in Figure 6. However, the rule disallows Global writes during the period of
gained stability to ensure unsuccessful executions aren’t observed. Therefore,
it would not be possible to influence the execution of another thread based on
this gained information.

As a result, the execution behaviour introduced by non-multi-copy atom-
icity invalidates only synchronisation reasoning our logic currently does not
support. Hence, the logic’s soundness argument is preserved on non-multi-
copy atomic architectures.

Information-flow control on ARM and POWER multicore processors 45

10 Case study: Cross-domain work-stealing deque

To illustrate our logic on a larger example, we apply it to a version of the Chase-
Lev work-stealing deque [7]. Work-stealing deques (double-ended queues) are
often used for load balancing in multicore systems. Each worker process has a
deque, which it uses to record tasks to be performed. Thus, a worker executes
put and take operations that, respectively, add tasks to and remove tasks
from its deque. Load balancing is achieved by allowing other, so-called “thief”
processes, whose own deques are empty to execute steal operations that remove
elements from the deque. To avoid contention between the worker and thief
processes, put and take operate at the opposite end of the deque from steal
operations — a worker adds and removes tasks at the tail, whereas thieves steal
tasks from the head. Contention between the worker and thieves, therefore,
only occurs when the deque has one element.

The Chase-Lev deque is implemented as a circular array of size L with a
head and tail pointer. The pointers are non-wrapping, i.e., if a pointer has the
value i , it points to the array element at position i mod L.

The put operation straightforwardly adds an element to the end of the
deque, incrementing the tail pointer. The interesting behaviour is in the way
that the take and steal operations interact when called concurrently. To take
the task at position t = tail − 1, the worker process decrements tail to equal
t , thereby publishing its intent to take that task. This publication means
subsequent thief processes will not try to steal the task at position t . It then
reads head into a local variable h and if h < t knows that there is more than
one task in the deque and it is safe to take the task at position t , i.e., no thief
process can concurrently steal it.

If t < h the worker knows the deque is empty and sets tail back to its
original value. The final possibility is that h = t . In this case, there is one task
on the deque and conflict with a thief may arise. To deal with this conflict,
both the take and steal operations employ a CAS instruction. If h = t , rather
than decrementing tail to take the task, the worker uses the CAS to increment
head . Therefore, if the worker finds h = t , it also restores tail to its original
value. The steal operation works similarly. The operation reads the deque’s
head and tail into local variables h and t , and if the deque is not empty tries
to increment head from h to h + 1 using a CAS. If it succeeds, the value of
head has not been changed since read into the local variable h and hence the
thief has stolen the task.

A version of the Chase-Lev deque developed specifically for ARM was
presented in [19]. It includes, for example, a full fence in the put operation so
that the increment of the tail pointer does not take effect before the element
is placed in the array, and in the take operation to ensure publication of its
intent to take the task. Errors in the placement of control fences in the steal
operation of this version of the deque were corrected by Colvin and Smith in [9].
We extend their version of the deque to operate in a cross-domain environment
where tasks are given a security level, and processes are only allowed to access
tasks for which they have the appropriate permissions. Specifically, we examine

46 Graeme Smith et al.

put(v, u)
int t;
t := tail;

B levels[t mod L] := u;
tasks[t mod L] := v;
fence;
tail := t+1;
return;

take
int h, t, task;
t := tail-1;
tail := t;
fence;
h := head;
if (h <= t)

task := tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task := empty;

tail := tail+1;
else

task := empty;
tail := tail+1;

return task;

steal
int h, t, task, level, r;
h := head;
fence;
t := tail;
if (h < t)

cfence;
B level := levels[h mod L];
B if (level=Low)

task := tasks[h mod L];
B else
B task := fail;

if (!CAS(head, h, h+1))
task := fail;

else
task := empty;

return task;

Fig. 7 Insecure version of cross-domain work-stealing deque. The code extends that of [9].
Additional lines are marked with B.

the scenario where we have a single worker thread which is allowed to access
high and low tasks, and several thief threads which are allowed only to access
low tasks.

A first attempt at the cross-domain deque is shown in Figure 7. As well
as a circular array of tasks, the deque has a circular array of security levels.
This array is also of size L and records in position i the security level of the
task in position i of the task array. The put operation has two inputs, a task
v and security level u, and updates both arrays. The steal operation reads the
security level of the task it is trying to acquire and returns fail when that task
is high.

We applied our ARMv8 logic to this code using our symbolic execution tool.
The tool reported an error due to the Assign rule failing for the assignment
task := task [h mod L] in steal . This correctly identified an information leak
which arises due to tasks being a finite circular array. Successive put operations
can cause tail to wrap-around to the start of the array and then catch up to
head . In this situation, it is possible that steal reads Low from the levels array,
and then, before it reads from the tasks array, the put operation occurs putting
a high task in tasks.

To avoid this problem, we could prevent put from overwriting values that
have not been read yet. However, in many applications such overwriting is
desirable (to lose old tasks, which may no longer be relevant, rather than new
tasks). Instead, we ensure that the steal operation cannot read tasks which
have been concurrently overwritten. To accomplish this, we use an approach
inspired by seqlock again (as we did in the secure version of the IO-driver in
Figure 3). The resulting code is shown in Figure 8. If z changes at any time
while steal is reading a level and associated task, the read is restarted. We also
applied our ARMv8 logic to this code using our symbolic execution tool and,
in this case, no information leaks were identified.

Information-flow control on ARM and POWER multicore processors 47

put(v, u)
int t;
t := tail;

B z := z+1;
B fence.st;

levels[t mod L] := u;
tasks[t mod L] := v;
fence;

B z := z+1;
tail := t+1;
return;

take
int h, t, task;
t := tail-1;
tail := t;
fence;
h := head;
if (h <= t)

task := tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task := empty;

tail := tail+1;
else

task := empty;
tail := tail+1;

return task;

steal
int h, t, task, level, r;
h := head;
fence;
t := tail;
if (h < t)
B do
B do
B r := z;
B while (r % 2 6= 0)

cfence;
level := levels[h mod L];
if (level=Low)

task := tasks[h mod L];
else

task := fail;
B fence;
B while (z 6= r)

if (!CAS(head, h, h+1))
task := fail;

else
task := empty;

return task;

Fig. 8 Secure version of cross-domain work-stealing deque. The code extends that of Fig-
ure 7. Additional lines are marked with B.

Each of the operations in Figures 7 and 8 were checked by the tool in
isolation (as if they were each being called by a different thread). The code
was annotated with the following specifications:

– For each variable, a value-dependent security classification, i.e., a predicate,
was supplied. For most variables (all local variables and all global variables
apart from tasks and the input v to put), this predicate was simply true
(Low) or false (High).

– For each global variable, a mode was supplied.
– Each operation also required an initial P and Γ constraining what states

the operation could be called from.

These specifications were largely the same for all operations (differing only
on local variables and inputs and outputs). For the shortest operation put of
Figure 7 with an array of length 2, there were 17 lines of specification for
7 lines of code. However, 6 of these lines of specification were simply stating
that the security classification of a variable was True (something that could be
automatically generated as a default), and another 6 were modes (which could
also be automatically generated by syntactically checking which variables are
read and written by each thread). This would reduce the specification to 5
lines for 7 lines of code. For the longest operation steal of Figure 8, there
were 22 lines of specification for 18 lines of code. Defaulting to True security
classifications, and automatically generating modes would reduce this to 5
lines of specification for 18 lines of code. Further reductions in the number of
lines of specification per line of code could be made by sharing the annotations

48 Graeme Smith et al.

for global variables between threads. No such optimisations were employed in
our prototype tool.

In addition to the specifications, the steal operation of Figure 8 required
invariants for each of its loops (and an annotation of z for the outer loop to
enable the use of the NonBlocking rule). The invariants on the program
state, P , simply ensured the array size L remained constant, and that on the
security levels, Γ , that each of the local variables was low. Our experience
with similar non-blocking algorithms, indicates that such simple invariants
are common (in many cases, the invariant True suffices for program state).
Finding ways to generate base invariants which the user could build on is an
interesting area for future work.

No optimisations were made for the performance of the prototype tool.
Each of the operations of Figures 7 and 8 could be checked instantaneously
(within milliseconds) for an array of length 2. However, the execution time
increased exponentially as the size of the array increased. This was due to
the running time of the Z3 solver which had to deal with the tool’s represen-
tation of predicates increasing exponentially. While this lack of optimisation
is acceptable for this prototype tool, implemented as a proof-of-concept, fur-
ther optimisations would be required to allow the logic to be applied to larger
examples.

11 Conclusion

In this paper, we have presented a comprehensive information-flow logic for
ARM and POWER multicore processors. Our logic supports dynamic, value-
dependent security classifications, and is compositional, flow-sensitive, and
enforces a constant-time guarantee. It has been proven sound with respect
to existing, validated operational semantics of ARM and POWER, and im-
plemented in a symbolic execution tool. The latter was enabled by designing
the logic for automation; it is both thread-local (allowing reasoning about one
thread at a time), and step-local (allowing reasoning about one line of code at
at time).

Our immediate future work will focus on two tasks. First, we will extend the
logic with general rely/guarantee conditions allowing assumptions to be used
in thread-local reasoning that include arbitrary constraints between program
variables (see [10] for progress in this direction). This will widen the logic’s ap-
plicability by allowing assumptions which hold only under certain conditions,
and hence can vary as the program executes. Second, we will adapt our logic
to a suitable intermediate representation into which we can lift actual ARM
and POWER assembly code. Such an intermediate representation will need
to be accurate enough to maintain all ordering and dependencies on assembly
instructions.

Longer term we will focus on improving the efficiency and scalability of
tool support for our logic, and its adaptation to other processors such as the
open-source RISC-V architecture.

Information-flow control on ARM and POWER multicore processors 49

Finally, we note that we expect our logic could also be extended to reason
about programs that intentionally reveal secret information, i.e. secure declas-
sification. Specifically, recent work [34] has shown how declassification policies
can be reasoned about from functional correctness annotations on concurrent
programs. These annotations take the form of predicates P that annotate each
program statement. Our program logic already provides a mechanism for com-
puting such annotations in the form of the predicates P in its state Γ,P ,D ,
at each point of the program text. We leave investigation of this intriguing
possibility for future work.

Acknowledgements This work was supported by Australian Research Council Discovery
Grant DP160102457, and a combination of Next Generation Technologies Fund (NGTF)
and Strategic Research Initiative (SRI) funding from the Defence Science and Technology
Group, Australia. Thanks to Liam Kent for implementing the symbolic execution tool.

References

1. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst. 36(2), 7:1–7:74
(2014). DOI 10.1145/2627752

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: T. Holz, S. Savage (eds.) 25th USENIX Se-
curity Symposium, USENIX Security 16, pp. 53–70. USENIX Association (2016).
URL https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/almeida
3. Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D., Trieu, A.: For-

mal verification of a constant-time preserving C compiler. Proceedings of the ACM on
Programming Languages (PACMPL) 4(POPL), 7:1–7:30 (2020). DOI 10.1145/3371075

4. Boehm, H.: Can seqlocks get along with programming language memory models? In:
L. Zhang, O. Mutlu (eds.) Proceedings of the 2012 ACM SIGPLAN workshop on Mem-
ory Systems Performance and Correctness: held in conjunction with PLDI ’12, pp.
12–20. ACM (2012). DOI 10.1145/2247684.2247688

5. Casinghino, C., Paasch, J.T., Roux, C., Altidor, J., Dixon, M., Jamner, D.: Using
binary analysis frameworks: The case for BAP and angr. In: J.M. Badger, K.Y.
Rozier (eds.) NASA Formal Methods - 11th International Symposium, NFM 2019,
Lecture Notes in Computer Science, vol. 11460, pp. 123–129. Springer (2019). DOI
10.1007/978-3-030-20652-9\ 8

6. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of parallel
computations. Commun. ACM 24(4), 198–206 (1981). DOI 10.1145/358598.358613

7. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’05), pp. 21–28. ACM Press (2005).
DOI 10.1145/1073970.1073974

8. Colvin, R.J., Smith, G.: A high-level operational semantics for hardware weak memory
models. CoRR abs/1812.00996 (2018)

9. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on weak
memory models. In: K. Havelund, J. Peleska, B. Roscoe, E.P. de Vink (eds.) Formal
Methods - 22nd International Symposium, FM 2018, Lecture Notes in Computer Sci-
ence, vol. 10951, pp. 240–257. Springer (2018). DOI 10.1007/978-3-319-95582-7\ 14

10. Coughlin, N., Smith, G.: Rely/guarantee reasoning for noninterference in non-blocking
algorithms. In: 33rd IEEE Computer Security Foundations Symposium, CSF 2020, pp.
380–394. IEEE (2020). DOI 10.1109/CSF49147.2020.00034

11. D’Silva, V., Payer, M., Song, D.X.: The correctness-security gap in compiler optimiza-
tion. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW 2015, pp.
73–87. IEEE Computer Society (2015). DOI 10.1109/SPW.2015.33

50 Graeme Smith et al.

12. Ernst, G., Murray, T.: SecCSL: Security concurrent separation logic. In: I. Dillig,
S. Tasiran (eds.) Computer Aided Verification - 31st International Conference, CAV
2019, Proceedings, Part II, Lecture Notes in Computer Science, vol. 11562, pp. 208–
230. Springer (2019). DOI 10.1007/978-3-030-25543-5\ 13

13. Fitzpatrick, J.: An interview with Steve Furber. Commun. ACM 54(5), 34–39 (2011).
DOI 10.1145/1941487.1941501

14. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: Concurrency and ISA.
In: R. Bod́ık, R. Majumdar (eds.) Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp. 608–
621. ACM (2016). DOI 10.1145/2837614.2837615

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969). DOI 10.1145/363235.363259

16. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of IFIP’83,
pp. 321–332. North-Holland (1983)

17. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: G. Castagna, A.D. Gordon (eds.) Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pp. 175–189. ACM (2017). URL http://dl.acm.org/citation.cfm?id=3009850

18. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative execution.
CoRR abs/1801.01203 (2018). URL http://arxiv.org/abs/1801.01203

19. Lê, N., Pop, A., Cohen, A., Zappa Nardelli, F.: Correct and efficient work-stealing for
weak memory models. In: Principles and Practice of Parallel Programming (PPoPP’13),
pp. 69–80. ACM (2013). DOI 10.1145/2442516.2442524

20. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: CompCert
- A Formally Verified Optimizing Compiler. In: ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress. SEE (2016). URL https://hal.inria.

fr/hal-01238879

21. Lourenço, L., Caires, L.: Dependent information flow types. In: S.K. Rajamani,
D. Walker (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2015, pp. 317–328. ACM (2015).
DOI 10.1145/2676726.2676994

22. Mantel, H., Perner, M., Sauer, J.: Noninterference under weak memory models. In:
IEEE 27th Computer Security Foundations Symposium, CSF 2014, pp. 80–94. IEEE
Computer Society (2014). DOI 10.1109/CSF.2014.14

23. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for compositional
noninterference. In: Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, pp. 218–232. IEEE Computer Society (2011). DOI 10.1109/
CSF.2011.22

24. Moir, M., Shavit, N.: Concurrent data structures. In: D.P. Mehta, S. Sahni (eds.)
Handbook of Data Structures and Applications. Chapman and Hall/CRC (2004). DOI
10.1201/9781420035179.ch47

25. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.A.: The program counter secu-
rity model: Automatic detection and removal of control-flow side channel attacks. In:
D. Won, S. Kim (eds.) Information Security and Cryptology - ICISC 2005, 8th Interna-
tional Conference, Lecture Notes in Computer Science, vol. 3935, pp. 156–168. Springer
(2005). DOI 10.1007/11734727\ 14

26. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: C.R. Ramakrish-
nan, J. Rehof (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008. Proceedings,
Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008). DOI
10.1007/978-3-540-78800-3\ 24

27. Murray, T.C.: Short paper: On high-assurance information-flow-secure programming
languages. In: M. Clarkson, L. Jia (eds.) Proceedings of the 10th ACM Workshop on
Programming Languages and Analysis for Security, PLAS@ECOOP 2015, pp. 43–48.
ACM (2015). DOI 10.1145/2786558.2786561

Information-flow control on ARM and POWER multicore processors 51

28. Murray, T.C., Sison, R., Engelhardt, K.: Covern: A logic for compositional verification
of information flow control. In: 2018 IEEE European Symposium on Security and
Privacy, EuroS&P 2018, pp. 16–30. IEEE (2018). DOI 10.1109/EuroSP.2018.00010

29. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification and
refinement of concurrent value-dependent noninterference. In: IEEE 29th Computer
Security Foundations Symposium, CSF 2016, pp. 417–431. IEEE Computer Society
(2016). DOI 10.1109/CSF.2016.36

30. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002). DOI
10.1007/3-540-45949-9

31. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. Pro-
ceedings of the ACM on Programming Languages (PACMPL) 2(POPL), 19:1–19:29
(2018). DOI 10.1145/3158107

32. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on
Selected Areas in Communications 21(1), 5–19 (2003). DOI 10.1109/JSAC.2002.806121

33. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER
multiprocessors. In: M.W. Hall, D.A. Padua (eds.) Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2011, pp. 175–186. ACM (2011). DOI 10.1145/1993498.1993520

34. Schoepe, D., Murray, T., Sabelfeld, A.: Veronica: Expressive and precise concurrent
information flow security. In: IEEE Computer Security Foundations Symposium (CSF),
pp. 79–94 (2020)

35. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97
(2010). DOI 10.1145/1785414.1785443

36. Sison, R., Murray, T.: Verifying that a compiler preserves concurrent value-dependent
information-flow security. In: J. Harrison, J. O’Leary, A. Tolmach (eds.) International
Conference on Interactive Theorem Proving (ITP 2019), Leibniz International Proceed-
ings in Informatics, vol. 141, pp. 27:1–27:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

37. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security on weak
memory models. In: M.H. ter Beek, A. McIver, J.N. Oliveira (eds.) Formal Methods
- The Next 30 Years - Third World Congress, FM 2019, Lecture Notes in Computer
Science, vol. 11800, pp. 539–555. Springer (2019). DOI 10.1007/978-3-030-30942-8\ 32

38. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: The ver-
ified CakeML compiler backend. J. Funct. Program. 29, e2 (2019). DOI 10.1017/
S0956796818000229

39. Vaughan, J.A., Millstein, T.D.: Secure information flow for concurrent programs under
Total Store Order. In: S. Chong (ed.) 25th IEEE Computer Security Foundations
Symposium, CSF 2012, pp. 19–29. IEEE Computer Society (2012). DOI 10.1109/CSF.
2012.20

40. Zheng, L., Myers, A.C.: Dynamic security labels and static information flow control.
Int. J. Inf. Sec. 6(2-3), 67–84 (2007). DOI 10.1007/s10207-007-0019-9

