
Under consideration for publication in Formal Aspects of Computing

Relating trace refinement and
linearizability
Graeme Smith and Kirsten Winter
School of Information Technology and Electrical Engineering, The University of Queensland 4072, Australia

Abstract. In the late 1980’s, Back extended the notion of stepwise refinement of sequential systems to
concurrent systems. By doing so he provided a definition of what it means for a concurrent system to be
correct with respect to an abstract (potentially sequential) specification. This notion of refinement, referred
to as trace refinement , was also independently proposed by Abadi and Lamport and has found widespread
acceptance and application within the refinement community. Around the same time as Back’s work, Herlihy
and Wing proposed linearizability as the correctness notion for concurrent objects. Linearizability has also
found widespread acceptance being regarded as the standard notion of correctness for concurrent objects in
the concurrent-algorithms community.

In this paper, we provide a formal link between trace refinement and linearizability. This allows us to
compare the two correctness conditions. Our comparisons show that trace refinement implies linearizability,
but that linearizability does not imply trace refinement in general. However, linearizability does imply trace
refinement under certain conditions. These conditions relate to (i) the fact that trace refinement can be
used to prove both safety and liveness properties, whereas linearizability can only be used to prove safety
properties, and (ii) the fact that trace refinement depends on the identification of when operations in the
implementation are observed to occur. We discuss the consequences of these differences in the context of
verifying concurrent objects.

Keywords: Trace refinement; Linearizability; Correctness; Concurrency

1. Introduction

The notion of correctness of concurrent systems in the refinement community is trace refinement [Bac90,
BvW94, AL91]. In the concurrent-algorithms community, it is linearizability [HW90]. In this paper, we clarify
the relationship between these two correctness conditions. Although aspects of this relationship have been
addressed by a number of authors [FORY10, BEEH15, SWD14, GY11, GR14], this paper is the first, to our
knowledge, to provide a complete comparison of the standard definitions of the conditions, and highlight
their differences. Our main conclusion is that trace refinement is a stronger condition. In this paper, we
discuss the consequences of the differences between the conditions in the context of verifying concurrent
objects.

Correspondence and offprint requests to: Graeme Smith e-mail: smith@itee.uq.edu.au, phone: +61-7-3365 1625



2 G.Smith and K.Winter

Concurrent objects are objects which have been designed to allow simultaneous access by more than one
thread. They include data structures and synchronisation mechanisms such as locks, and are common in
modern software libraries such as java.util.concurrent. They may employ coarse-grained locking , where
one thread locks the object forcing all others to wait, but for efficiency reasons are more likely to employ
fine-grained locking , where only parts of the object are locked, e.g., two adjacent nodes in a linked list, or
non-blocking algorithms, where no locking is employed [HS08]. A typical example of a non-blocking data
structure is the Treiber stack [Tre86] the code of which is given below, where Node is a class with two fields
val:T and next:Node, and T empty is the type T augmented with the additional value empty.

head: Node; // shared variable
n, ss, ssn: Node; lv: T; // thread-local variables

push(v: T):
1 n = new(Node);
2 n.val = v;

repeat
3 ss = head;
4 n.next = ss;
5 until CAS(head, ss, n)
6 return;

pop(): T_empty
repeat

7 ss = head;
8 if ss = null
9 return empty;
10 ssn = ss.next;
11 lv = ss.val;
12 until CAS(head, ss, ssn);
13 return lv;

A thread doing a push operation assigns the value being pushed onto the stack to the val variable of
a new node stored in local variable n. It then repeatedly tries to make n the head of the stack by setting
a local variable ss to the global variable head, setting n’s next variable to ss, and then assigning head to
n provided it is still equal to ss (i.e., provided another thread has not in the meantime changed the value
of head). CAS(a,b,c) is an atomic operation (supported by most microprocessors) which compares a and b
and, if they are equal, sets a to c and returns true; otherwise it leaves a unchanged and returns false.

A thread doing a pop operation repeatedly sets ss to head, returning empty if ss is null, and otherwise
setting ssn to ss’s next variable and local variable lv to ss’s val variable and, finally, assigning ssn to
head and returning lv provided head is still equal to ss.

We would like to be able to show that this implementation satisfies a typical specification of a stack
such as the following in Z [Spi92]. In such a specification, an operation has a predicate describing a relation
between pre- and post-states. Intermediate states are not perceivable at this level of abstraction where
implementation detail is omitted. Hence, operations correspond to atomic state transitions.

Below, S is a Z state schema. It describes the state of the object as a sequence of elements, stack , with
each element being of a given type T . Init is a Z initial state schema. It extends the state schema S with a
predicate describing the object’s initial state, i.e., that stack is the empty sequence.

S
stack : seq T

Init
S

stack = 〈 〉

Push and Pop are Z operation schemas describing atomic state transitions. ∆S is used to introduce the
variables stack and stack ′, the latter denoting the value of stack after the operation. Variables ending in a
? denote inputs to the operation, and those ending in a ! denote operation outputs. Inputs are part of an
operation’s pre-state, and outputs part of its post-state.

Push
∆S
v? : T

stack ′ = 〈v?〉a stack

Pop
∆S
lv ! : T

stack = 〈lv !〉a stack ′

The predicate of Push adds an element to one end of the sequence stack , and the predicate of Pop removes
an element from that same end. Note that the latter predicate requires that stack has at least one element,
the element lv !. In Z, the behaviour of an operation is undefined when its predicate cannot be satisfied



Formal Aspects of Computing: LATEX 2ε Submissions 3

[Spi92]. Hence, the specification above allows any behaviour when Pop is called on an empty stack: it is up
to the implementer of the specification to decide on an appropriate behaviour.

In the refinement community, the correctness of concurrent systems is provided via trace refinement
[Bac90, BvW94, AL91]. A trace is a sequence of observable states of a specification or implementation.1

Trace refinement requires that each trace of the implementation is also a trace of the abstract specification.
For the stack example, the observable state is the input and output at each step. The stack’s representation
is not regarded as being observable, allowing it to be different in the specification and implementation (i.e.,
allowing for a refinement of the data structures between the levels).

To perform trace refinement, we could therefore extend the specification above with auxiliary variables,
i.e., variables that do not affect the sequence of operations allowed by the specification. In the following
specification, the auxiliary variables are in and out of type T⊥, the type T augmented with the value
⊥ denoting no input or output. Each schema is an extension of the similarly named schema of the original
specification with additional variables and/or predicates. For the operations, the new predicates are conjoined
with the original ones to describe the pre-/post-state relation of the new schema.

SIO

S
in, out : T⊥

InitIO
Init

in = out = ⊥

PushIO

Push
in, out : T

in ′ = v? ∧ out ′ = ⊥

PopIO

Pop
in, out : T

in ′ = ⊥ ∧ out ′ = lv !

Then, a possible trace, corresponding to two pushes followed by a pop, is

〈in = ⊥ ∧ out = ⊥, in = a ∧ out = ⊥, in = b ∧ out = ⊥, in = ⊥ ∧ out = b〉

where a, b : T .
The implementation needs also to be extended with auxiliary variables in and out denoting the observable

inputs and outputs. The changes to these variables can be made at any step of a concrete operation but
must agree with the operation’s argument and return value. That is, the value of v must be assigned to in
in one step of the concrete operation push, and for the concrete operation pop, the value empty must be
assigned to out when the operation returns empty and the final value of lv must be assigned to out when
it returns the value of lv.

In practice, such auxiliary variables are not always needed. Trace refinement is performed using simula-
tions, and the observable state captured by the use of an abstraction relation [BvW94] or gluing invariant
[Abr10]. The abstraction relation or gluing invariant relates concrete states to abstract states in such a way
that state changes at the concrete level are reflected at the abstract level when they are observable.

In the concurrent-algorithms community, linearizability [HW90] (rather than trace refinement) is widely
regarded as the notion of correctness. It compares an abstract specification of a concurrent object, where all
operations are atomic and hence execute sequentially, and a concrete specification (or implementation), where
operations may overlap. It requires that each operation of the concrete specification appears to take place
atomically at some point between its invocation and return – the operation’s linearization point [HW90]
– and that the resulting sequence of such points corresponds to a sequence of operations of the abstract
specification. Effectively this means that overlapping concrete operations can occur in any order in the
abstract sequence, but when one concrete operation returns before another is invoked that order must be
preserved in the abstract sequence.

For example, the linearization points of the Treiber stack are at line 5 of push when the CAS returns true,
and at either line 7 of pop when ss is assigned null, or line 12 when the CAS returns true. Hence, if in the
implementation, we begin by invoking pop but do not execute line 7 before invoking push and reaching and
executing line 5, then the matching abstract history invokes Push first, then Pop.

In this paper, we provide a formal comparison of these two notions of correctness of concurrent systems.

1 A related, event-based, notion called action refinement is defined in the process-algebra community [GR01].



4 G.Smith and K.Winter

We show that while trace refinement implies linearizability, the converse does not hold in general. We begin
by providing formal definitions of trace refinement and linearizability in Sections 2 and 3, respectively. In
Section 4 we show how abstract histories of operation invocations and returns can be derived from traces, and
in Section 5 we formalise the relationship between concrete traces and histories. The definitions of Section 4
and 5 are then used to prove our main results in Section 6. We conclude with a discussion of these results
and how they relate to the work of other authors in Section 7.

2. Trace refinement

Back [Bac90] introduced trace refinement as a way of proving the correctness of concurrent systems. A similar
notion was independently proposed by Abadi and Lamport [AL91]. The basis for trace refinement is that a
specification S can be represented by a set of behaviours, each behaviour being a possibly infinite sequence
of states, i.e., S ⊆ seq∞ Σ, where Σ denotes the set of states of S .

A behaviour of S starts from an initial state of the specification and represents a sequence of states which
the system can pass through. These states include a global part ΣG (which is observable) and a local part
ΣL (which is not). That is, Σ = ΣG × ΣL, and we use σ � ΣG to denote the restriction of a state σ to ΣG .

Behaviours can be finite or infinite. Finite behaviours are those that end in a state where no further
state changes are possible, i.e., there are no other behaviours of S which extend them, or behaviours which
have aborted , i.e., are undefined after their final state. For example, a behaviour that starts with the Pop
operation of our stack specification aborts, since its behaviour is undefined when stack = 〈 〉.

To relate behaviours of different specifications, trace refinement focusses on the changes to the global
parts of their states only. An occurrence of two consecutive states in a behaviour with the same global part
is called a stuttering step. From the behaviours of S we can derive a set of traces tr(S ), each trace being
a behaviour with all finite sequences of stuttering steps and the local parts of each state removed. Given
head s returns the first element of a sequence s, tail s returns the sequence s without the first element, and
dom s returns the set of indices of a sequence s, tr(S ) is defined formally as follows.

tr(S ) = {t | ∃ s : S • t = trace(s)}

where

trace(s) =̂


〈 〉 if s = 〈 〉
s if s is infinite and ∀ i : dom s • s(i) � ΣG = s(i + 1) � ΣG

trace(tail s) otherwise, if head(s) � ΣG = head(tail(s)) � ΣG

〈head(s) � ΣG〉a trace(tail s) otherwise

The second option in the definition of trace(s) ensures infinite stuttering is not removed from behaviours,
whereas the third option ensures the removal of finite stuttering.

Removing stuttering steps is the key to relating behaviours of specifications with different levels of
granularity, i.e., where one specification requires several steps to achieve what the other achieves in one step.
The basic idea of trace refinement is that the traces of the concrete specification are a subset of the traces
of the abstract specification. Additionally, however, aborting behaviours need to be considered. In Back’s
original definition (see Lemma 11 of [Bac90]), if the abstract specification can abort during a behaviour
which starts from a given initial state σ then the concrete specification is allowed to undergo any behaviour
when starting from σ. This definition was strengthened in later work by Back and von Wright [BvW94]
so that the trace of the concrete behaviour starting from σ must be identical to the trace of the abstract
behaviour up to the aborting state, after which the concrete specification can undergo any behaviour. In
both definitions, a concrete behaviour can only abort if the trace of that behaviour is equal to the trace of
an abstract behaviour which aborts.

Our definition is equivalent to that of [BvW94]. To simplify our presentation, however, we assume an
aborting behaviour s is represented in the set of behaviours S by all behaviours which extend s, including
a behaviour which extends s with a special “abort” state ⊥ ∈ Σ. That is, if s ∈ S is an aborting behaviour

then for all s1 ∈ seq∞Σ, s a s1 ∈ S . This assumption allows any concrete behaviours extending s to be

matched to an abstract behaviour, and the behaviour s a 〈⊥〉 ensures that an aborting concrete behaviour
must be matched to an aborting abstract behaviour.



Formal Aspects of Computing: LATEX 2ε Submissions 5

Definition 1.[Trace refinement] A concrete specification C is a trace refinement of a specification A (written
A v C ), when each trace of C is also a trace of A.

A v C =̂ ∀ t : tr(C ) • ∃ s : tr(A) • s = t 2

3. Linearizability

Linearizability is a correctness criterion for concurrent objects proposed by Herlihy and Wing [HW90]. It
has been formalised by Derrick et al. [DSW11] among others. We base our formalisation in this section on
that of Derrick and Smith [DS15] which is closer to the original definitions and terminology of Herlihy and
Wing.

Linearizability is defined in terms of histories which are finite sequences of events which are invocations
or responses of operations. An operation comprises the process invoking the operation from a set P , and the
name of the operation from a set Op.2

Operation =̂ P ×Op

An occurrence of an operation also has an input from the domain In and an output from the domain Out .
Both In and Out contain the value ⊥ indicating no input or output. Such an occurrence is specified by two
events: an invocation and a response, each of type Event . Given op : Operation, we let inv(op, in) denote the
event corresponding to op being invoked with input in : In, and resp(op, out) denote the event corresponding
to op responding with output out : Out . A history is a finite sequence of events, i.e., History =̂ seq Event .
For example, the following is a possible history of the Treiber stack, where p and q are processes.

h = 〈inv((p, push), 1), inv((q , pop),⊥), resp((p, push),⊥), resp((q , pop), 1)〉

Following [HW90], we assume each event in a history can be uniquely identified by its operation. In
practice, we could annotate operation names with additional information to distinguish different occurrences
of the same operation. For example, the above history h, could be extended with a second push operation
as follows (where the subscript on each operation name indicates its position in the sequence of invocations,
e.g., push3 is the third operation invoked in the history).

h ′ = 〈inv((p, push1), 1), inv((q , pop2),⊥), resp((p, push1),⊥), resp((q , pop2), 1),
inv((p, push3), 1), resp((p, push3),⊥)〉

A history h then defines a partial order <h on its operations denoting whether an operation precedes
another. An operation op1 precedes an operation op2 iff op1’s response event occurs before the invocation
event of op2.

op1 <h op2 =̂ ∃m,n : dom h; in : In; out : Out • m < n ∧ h(m) = resp(op1, out) ∧ h(n) = inv(op2, in)

In history h ′ above, (p, push1) <h′ (p, push3) and (q , pop2) <h′ (p, push3), but (p, push1) and (q , pop2, )
are not related by <h′ since they overlap.

Since operations are atomic in an abstract specification, its histories are sequential , i.e., each operation
invocation will be followed immediately by its response. In this case, <h will be a total order. The histories
of a concurrent implementation, however, may have overlapping operations and hence have the invocations
and reponses of operations separated. However to be legal , a history should not have responses of operations
for which there has not been an invocation.

legal(h) =̂ ∀n : dom h; op : Operation; out : Out •
h(n) = resp(op, out)⇒ (∃m : 1 . . n − 1; in : In • h(m) = inv(op, in))

The abstract histories are also complete, i.e., they have a response for each invocation. This is not neces-
sarily the case for concrete histories. For example, the subhistory of h ′, 〈inv((p, push1), 1), inv((q , pop2),⊥)〉,
is also a history. Given #s is the length of sequence s, we define a function complete to remove the invocations
of a history without matching responses.

2 Herlihy and Wing also associate an object name with an operation. Here we assume this is part of the operation name.



6 G.Smith and K.Winter

complete(h) =̂


〈 〉, if h = 〈 〉
complete(tail h), if NoResp(h)

〈head h〉a complete(tail h), otherwise

where

NoResp(h) =̂ ∃ op : Operation; in : In •
head(h) = inv(op, in) ∧ (@n : 2 . .#h; out : Out • h(n) = resp(op, out))

In general, to make an implementation history h into a complete history hc, we can add additional
responses for those operations which have been invoked and are deemed to have occurred before removing
the remaining invocations without matching responses.

Comp(h, hc) =̂ ∃ hr : History •
(∀n : dom hr • ∃ op : Operation; out : Out • hr(n) = resp(op, out)) ∧
hc = complete(h a hr)

Such a complete history hc is said to match an abstract history hs when it has the same events as hs.

Match(hc, hs) =̂ ∀ ev : Event • (∃n : dom hc • hc(n) = ev)⇔ (∃m : dom hs • hs(m) = ev)

Definition 2.[Linearizability] An implementation of a concurrent object C is linearizable with respect to a
specification of the object A (written lin(C ,A)) when for each history h of C , there is a (sequential) history
hs of A such that the following two conditions hold.

1. The events of a legal completion of h are identical to those of hs.
2. The precedence ordering of h is preserved by that of hs, i.e., only overlapping operations of h may be
reordered with respect to each other in hs.

lin(C ,A) =̂ ∀ h : hist(C ) •
∃ hs : hist(A) • (∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) ∧<h ⊆<hs

2

4. Deriving abstract histories

We let a specification be defined by its set of traces. Hence, we regard two specifications written using
different syntax or a different specification style, but having the same traces, as being equivalent. The states
in a trace of a specification are the states that can be observed before and after the operations of one of the
specification’s histories. Hence, a specification has one operation for every step in the abstract trace.

This means for an abstract trace s there will be #s − 1 operations in the corresponding history. As we
cannot derive the details of the operations, i.e., the operation name and process which invoked it, from the
trace, we use the following notation to provide unique identifiers for operations: ops

i denotes the operation
responsible for the ith step in trace s, where #s > i . That is, ops

i is a label for the unknown operation
responsible for the state change.

Consider the following trace of the stack corresponding to a push of a : T followed by a pop.

s = 〈in = ⊥ ∧ out = ⊥, in = a ∧ out = ⊥, in = ⊥ ∧ out = a〉 (*)

The corresponding abstract history will have two operations; one for each state change, s(1) to s(2) and s(2)
to s(3). Given that abstract histories are sequential and complete, it will be of the form

〈inv(ops
1 , a), resp(ops

1 ,⊥), inv(ops
2 ,⊥), resp(ops

2 , a)〉 .

The histories of such a specification must be finite and, unlike traces, prefix-closed (where prefixes are
restricted to complete histories) [HW90]. To derive histories from the set of traces of a specification, we first
define the prefix-closure of the traces of a specification as follows.

tr closure(S ) = {t | ∃ s : tr(S ) • dom t ⊆ dom s ∧ (∀ i : dom t • t(i) = s(i))}

Next we restrict this set to finite traces as follows.



Formal Aspects of Computing: LATEX 2ε Submissions 7

tr finite(S ) = {t | t ∈ tr closure(S ) ∧ (∃ i : N • dom t = 1 . . i)}
We assume that the inputs and outputs of operations are always part of the observable state. Therefore,

they can be derived from a trace. Given ins
i and outsi denote the input and output to the ith step in trace

s, respectively, the set of histories of a specification A are defined as follows.

Definition 3.[Abstract histories]

hist(A) = {hs | ∃ s : tr finite(A) •
#hs = (#s − 1) ∗ 2 ∧
(∀ i : 1 . .#s − 1 • hs(i ∗ 2− 1) = inv(ops

i , in
s
i ) ∧ hs(i ∗ 2) = resp(ops

i , outsi ))}
2

5. Relating concrete histories and traces

We let an implementation be represented by its set of traces and its set of histories. The traces determine
the observable part of the state. For our purposes, however, the traces alone are not enough to characterise
an implementation. For example, we cannot determine from the set of traces whether a state is reachable
with operations occurring sequentially, or only when two or more operations overlap. Similarly, the histories
alone do not allow us to distinguish implementations which only differ in their infinite behaviour.

The trace (*) above corresponds to a concrete history in which the operations which cause the two state
changes have been invoked. They may have been invoked in either order, e.g., a pop operation may have been
invoked first, but not executed line 7 before a push operation has been invoked and reached and executed
line 5. The operations need not have returned, e.g., they only need to have reached and executed lines 5
and 12 respectively. Furthermore, other operations may also have been invoked but not reached a point
where they have changed the state (and hence not returned).

Additionally, we require two constraints on the history.

1. it must be a legal history (i.e., responses cannot occur without an earlier invocation);

2. the invocation of the operation responsible for the first state change must occur before the response of
the operation responsible for the second.

The second constraint is necessary since the invocation of the operation responsible for the first state
change must occur before the first state change, and the response of the operation responsible for the second
state change must occur at the second state change (when the return causes the state change) or any time
after the second state change (when the state change is caused by an earlier step of the operation).

The above can be generalised to the following requirements on a history h corresponding to a trace t :

• the history must be legal;

• the history must include an invocation for each operation associated with a state change in the trace;

Inv(h, t) =̂ ∀ i : 1 . .#t − 1 • ∃n : dom h • h(n) = inv(opt
i , in

t
i )

• the response of an operation associated with a state change in the trace must not occur before the
invocation of an operation associated with an earlier state change;

Order(h, t) =̂ ∀ i : 2 . .#t − 1; n : dom h •
h(n) = inv(opt

i−1, in
t
i−1)⇒ (@m : 1 . . n − 1 • h(m) = resp(opt

i , out ti ))

• if the history includes a response, it must be for an operation associated with a state change in the trace.

Resp(h, t) =̂ ∀n : dom h; op : Operation; out : Out •
h(n) = resp(op, out)⇒ (∃ i : 1 . .#t − 1 • op = opt

i ∧ out = out ti )

The traces and histories of an implementation C are constrained by the following two conditions.

Definition 4.[Concrete traces and histories]

(a) There is a finite trace related to each history.

∀ h : hist(C ) • legal(h) ∧ (∃ t : tr finite(C ) • Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t))



8 G.Smith and K.Winter

(b) There is a history related to each finite trace.

∀ t : tr finite(C ) • ∃ h : hist(C ) • legal(h) ∧ Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t)
2

6. Trace refinement and linearizability

Using the definitions of the previous sections, we now show the relationship between trace refinement and
linearizability. We begin by showing that trace refinement implies linearizability.

Theorem 1. A v C ⇒ lin(C ,A)

Proof. From Definition 4(a) we know that each history h in hist(C ) is legal, and there is a trace t in
tr finite(C ) such that h (i) has an invocation event inv(opt

i ) for each state change in t , and (ii) has no
response events other than for the invocation events of (i). That is,

∀ h : hist(C ) • legal(h) ∧ (∃ t : tr finite(C ) • Inv(h, t) ∧ Resp(h, t)) .

Let hr be a sequence of response events for invocation events of (ii) where those response events are not

in h. Let hc = complete(h a hr), i.e., h a hr with all invocations other than those of (ii) removed. hc will be
legal, since h is legal and we have only added responses to the end of h for invocation events in h which did
not already have a response. Hence, we have

∀ h : hist(C ) • legal(h) ∧
(∃ t : tr finite(C ) • Inv(h, t) ∧ Resp(h, t)) ∧
(∃ hc : History • legal(hc) ∧ Comp(h, hc)) .

hc will have one invocation and corresponding response event for each state change in t , and no other
events. Hence, Inv(hc, t). Since A v C (following Definition 1) there exists s ∈ tr finite(A) such that s = t .
Hence, Inv(hc, s). Therefore, from Definition 3 we can deduce ∃ hs : hist(A) • Match(hc, hs), i.e.,

∀ h : hist(C ) • legal(h) ∧
(∃ t : tr finite(C ) • Inv(h, t) ∧ Resp(h, t)) ∧
(∃ hs : hist(A) • ∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) .

Definition 4(a) also ensures that resp(opt
i , out ti ) in h does not occur before inv(opt

i−1, in
t
i−1), for i > 1,

i.e.,

∀ h : hist(C ) • legal(h) ∧
(∃ t : tr finite(C ) • Inv(h, t) ∧ Resp(h, t) ∧ Order(h, t)) ∧
(∃ hs : hist(A) • ∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) .

Hence, the operation opt
i−1 in h returns before the operation opt

i or overlaps with it. Therefore, we do
not have opt

i <h opt
i−1, and by transitivity, we do not have opt

i <h opt
j for any j < i , and it follows that

<h ⊆<hs . We can conclude that

∀ h : hist(C ) • ∃ hs : hist(A) • (∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) ∧<h ⊆<hs

which is the definition of lin(C ,A). 2

If we try to prove the converse of Theorem 1, i.e., lin(C ,A)⇒ A v C , the proof fails. We illustrate this
through five examples where lin(C ,A) holds, but A v C does not.

Example 1. Let A be the stack specification from Section 1. Let push and pop both be implemented in C
with the following code.

while (true) {}

Any concrete history h will have a single invocation without a corresponding response. Letting hr = 〈 〉 and

hc = complete(h a hr) = 〈 〉, we have legal(hc) and we can choose the abstract history hs = 〈 〉 satisfying
Match(h, hs) and <h ⊆<hs . Hence, we have lin(C ,A).



Formal Aspects of Computing: LATEX 2ε Submissions 9

However, the traces of C include infinite stuttering (recall that only finite stuttering is removed when
traces are derived from behaviours), while those of A do not. Hence, we do not have A v C . 2

Example 2. Let A be the specification from Section 1, and let push and pop both be implemented in C
with the following code.

await(head != null);

where await suspends the execution of the operation until its condition becomes true.
Assuming head=null initially, any concrete history will have a single invocation without a corresponding

response. Again, this linearizes to the abstract history hs = 〈 〉.
However, the traces of C include the finite trace with just an initial state, while those of A do not. So

again we do not have A v C . 2

In the first example, the implementation livelocks, and in the second it deadlocks. These examples il-
lustrate how such pathological implementations can be shown to linearize with any specification. In each
example, if the specification deadlocks or livelocks, respectively, in the initial state then trace refinement
would hold. However, even in this situation a problem arises when an operation in the implementation
changes the state before deadlocking or livelocking. The problem is illustrated by Example 3.

Example 3. Let A be a specification which deadlocks from its intial state. Let C have a single operation
with the following code (where out:T is a variable of the global state which is initially equal to ⊥, and a is
a value of T that is not ⊥).

out = a;
await(false);

Any concrete history h will have a single invocation without a corresponding response, linearizing with the
abstract history hs = 〈 〉. Hence, we have lin(C ,A).

However, the traces of C include the finite trace with an initial state followed by the state where out = a.
This trace is not possible in the specification. So we do not have A v C . 2

Our next example uncovers a less obvious difference between trace refinement and linearizability. It occurs
when observable behaviour results from operations overlapping, but does not occur otherwise.

Example 4. Let A be the specification from Section 1, and C be the implementation from Section 1. It
is well known that this implementation is linearizable with respect to the specification (see [DSW11], for
example). Choose the auxiliary variable out to be updated in operation pop of C when the operation returns.

Consider the scenario where pop is invoked and assigns ss to null at line 7 (since the stack is empty),
and then before it proceeds to line 9, push is invoked with argument a and returns. The concrete trace will
be

〈in = ⊥ ∧ out = ⊥, in = a ∧ out = ⊥, in = ⊥ ∧ out = empty〉

which is not a possible trace of the specification. Hence, we do not have A v C . 2

This example seems to suggest that we cannot prove the correctness of the Treiber stack using trace
refinement. This is not the case. It is possible to prove its correctness using trace refinement, but only under
a judicious choice of where the auxiliary variables are updated in the concrete system. This is discussed
further in Section 7.

Our final example involving infinite traces is taken from Guerraoui and Ruppert [GR14].

Example 5. Let A be a countdown object with a single operation op which returns true or false. On its
first occurrence, op nondeterministically chooses a positive integer k . The first k occurrences of op output
true, and all subsequent occurrences of op output false.

In C , we have an atomic implementation of op which nondeterministically outputs true or false, but once
it has output false all subsequent occurrences of op will also output false.



10 G.Smith and K.Winter

Each finite history of C will linearize with a history of A. Hence, lin(C ,A) holds. However, the infinite
trace of C where op outputs true on every step, is not a trace of A. Hence, we do not have A v C . 2

We therefore show that linearizability implies trace refinement under conditions which do not allow the
above examples. Specifically, given specification A and implementation C and global state ΣG , we require
that the following four constraints hold.

Constraint 1 The implementation does not introduce deadlock.

∀ t : seq ΣG • t ∈ tr(C )⇒ (@t ′ : seq∞ ΣG • t a t ′ ∈ tr(A))

That is, if the implementation has a finite trace t then the specification should not have a trace which
extends t .

The constraint that the implementation does not introduce livelock is covered by the more general constraint
on infinite traces (Constraint 4) below.

Constraint 2 The implementation does not have operations which change the observable state and then
deadlock or livelock.

∀ h : hist(C ); t : tr finite(C ) •
legal(h) ∧ Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t)⇒

(h(#h) = inv(opt
#t−1, in

t
#t−1)⇒ h a 〈resp(opt

#t−1, out t#t−1)〉 ∈ hist(C ))

That is, any implementation history h corresponding to a trace t and ending with the invocation of the
operation responsible for t ’s last state change can be extended with the response to that operation.

Constraint 3 The implementation does not introduce behaviour due to overlapping operations.

∀ h, h ′ : History ; op : Operation; in : In •
h a 〈inv(op, in)〉a h ′ ∈ hist(C ) ∧ (@j : dom h ′; out : Out • h ′(j ) = resp(op, out))⇒

h a h ′ ∈ hist(C )

That is, an operation op executing, but not returning, within a history h should not affect the outputs
or order of occurrence of other operations within h.

Constraint 4 Both the specification and implementation are finitely branching , i.e., for any prefix t of a
trace the number of trace prefixes which extend t by one state is finite.

∀ t : seq ΣG ; t ′ : seq∞ ΣG •
(t a t ′ ∈ tr(A)⇒ {σ | ∃ t ′′ : seq∞ ΣG • t a 〈σ〉a t ′′ ∈ tr(A)} is finite) ∧
(t a t ′ ∈ tr(C )⇒ {σ | ∃ t ′′ : seq∞ ΣG • t a 〈σ〉a t ′′ ∈ tr(C )} is finite)

Finite branching ensures the existence of an infinite behaviour whenever a trace can be progressively
extended an infinite number of times (König’s lemma [Kön90]).

Theorem 2. lin(C ,A) ⇒ A v C when C does not introduce deadlock (Constraint 1), C does not have
operations which change the global state before deadlocking or livelocking (Constraint 2), C does not in-
troduce behaviour due to overlapping operations (Constraint 3), and both A and C are finitely branching
(Constraint 4).

Proof. Let t be a trace in tr finite(C ). By Definition 4(b), we have

∀ t : tr finite(C ) • ∃ h ′′ : hist(C ) • legal(h ′′) ∧ Inv(h ′′, t) ∧ Order(h ′′, t) ∧ Resp(h ′′, t)

From Inv(h ′′, t), we know that there is an invocation in h ′′ for each operation opt
i for i ∈ 1 . . #t − 1.

From Resp(h ′′, t), we know that all responses in h ′′ are for operations opt
i for some i ∈ 1 . .#t − 1.

Given that no operation opt
i , for i ∈ 1 . .#t−1, can deadlock or livelock (Constraint 2), there is a history

h ′ of C which extends h ′′ with a response for each such operation for which h ′′ does not already include a
response.



Formal Aspects of Computing: LATEX 2ε Submissions 11

∀ t : tr finite(C ) • ∃ h ′ : hist(C ) •
legal(h ′) ∧ Inv(h ′, t) ∧ Order(h ′, t) ∧ Resp(h ′, t) ∧
#{n | ∃ i : 1 . .#t − 1 • h ′(n) = resp(opt

i , out ti )} = #t − 1

Let n be the number of invocation events in h ′. Since h ′ is legal, n ≥ #t−1. That is, there are n−(#t−1)
invocation events for operations other than those in {opt

i | i ∈ 1 . .#t − 1}.
Since the order of invocation of events is not constrained in an implementation, there will be another

history h which does not include these n− (#t − 1) invocations. Furthermore, the responses of operations in
h will be identical to those in h ′ since overlapping operations do not introduce new behaviour (Constraint 3).

∀ t : tr finite(C ) • ∃ h : hist(C ) •
legal(h) ∧ Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t) ∧
#{n | ∃ i : 1 . .#t − 1 • h(n) = resp(opt

i , out ti )} = #t − 1 ∧
#{n | ∃ i : 1 . .#t − 1 • h(n) = inv(opt

i , in
t
i )} = #t − 1

If lin(C ,A) holds, we know from Definition 2 that there exists a history hr comprising only response

events such that complete(h a hr) is legal and has the same events as a history hs of A:

∀ t : tr finite(C ) • ∃ h : hist(C ) •
legal(h) ∧ Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t) ∧
#{n | ∃ i : 1 . .#t − 1 • h(n) = resp(opt

i , out ti )} = #t − 1 ∧
#{n | ∃ i : 1 . .#t − 1 • h(n) = inv(opt

i , in
t
i )} = #t − 1 ∧

(∃ hs : hist(A) • ∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) .

Since h already has a response for each of its #t − 1 invocations, hr = 〈 〉 and #hs = (#t − 1) ∗ 2, i.e., there
is one invocation/response pair for each state change. Hence, there exists a trace s from which hs can be
derived via Definition 3 with #t − 1 state changes. That is,

∀ t : tr finite(C ) • ∃ s : tr finite(A) • #s = #t .

To prove the stronger condition required by Definition 1

∀ t : tr finite(C ) • ∃ s : tr finite(A) • s = t (†)
we need to show that the operation which causes each state change in h is the same as that which causes the
corresponding state change in hs. Note that we already know the histories h and hs have the same operations
since Match(hc, hs) holds and Comp(h, hc) holds with hr = 〈 〉. We just need to show they occur in the same
order.

If a response of an operation op1 in h occurs before the invocation of another op2, then the state change
associated with op1 in t , must occur before that associated with op2 (since Order(h, t) holds). Therefore, t ’s
state changes are ordered according to <h , i.e., state changes are unordered only when the corresponding
operations overlap.

Similarly, if a response of an operation op1 in h occurs before the invocation of another op2, then
the invocation/response pair of the operation op1 in hs, must occur before that associated with op2 (by
Definition 2). That is,

∀ t : tr finite(C ) • ∃ h : hist(C ) •
legal(h) ∧ Inv(h, t) ∧ Order(h, t) ∧ Resp(h, t) ∧
(∃ hs : hist(A) • (∃ hc : History • legal(hc) ∧ Comp(h, hc) ∧ Match(hc, hs)) ∧<h ⊆<hs)

and so hs’s operations are ordered according to <h . By Definition 3, the state changes in s occur in the same
order as the operations in hs. Therefore, the order of state changes in t and s can differ only for operations
which overlap in h.

Hence, if there are no overlapping operations in h the condition (†) follows immediately. If there are
overlapping operations which can occur in any order in the abstract specification, it similarly follows, i.e.,
we choose the hs with the same order of operations as h.

The remaining case is when there is an order ω in which the overlapping operations can linearize in the
implementation which is not allowed in the specification. In this case, there are two possibilities.

1. The operations can occur in the order ω in the implementation without overlapping. In this case, since
the operation which occurs first according to ω can complete before that which occurs second, and so



12 G.Smith and K.Winter

on, proving linearizability will fail since there is no matching abstract history with that order. Hence, we
have a contradiction (since we know lin(C ,A) holds), and so can ignore this case.

2. The operations cannot occur in the order ω in the implementation without overlapping. Since C does
not introduce additional behaviour due to overlapping operations (Constraint 3), again we have a con-
tradiction and can ignore this case.

Hence condition (†) holds. To prove that every trace in tr(C ) is in tr(A) we need to consider the possible
infinite histories. There are two cases:

1. A finite trace t of tr finite(C ) is extended by only a finite number of (progressively longer) traces in
tr finite(C ). The longest of these finite traces will be in tr(C ). Since C does not introduce deadlock
(Constraint 1), t will similarly be extended by only a finite number of (progressively longer) traces in
tr finite(A), the longest of these being in tr(A).

2. A finite trace t of tr finite(C ) is extended by an infinite number of (progressively longer) traces in
tr finite(C ). According to König’s lemma [Kön90], since C is finitely branching (Constraint 4), tr(C )
will include the infinite path corresponding to the set of (progressively longer) traces. Similarly (by
Constraint 4), tr(A) will include the infinite path corresponding to the set of (progressively longer)
traces.

Hence, we have

∀ t : tr(C ) • ∃ s : tr(A) • s = t

which is the definition of A v C . 2

7. Discussion

7.1. Results

In this paper we have shown two main results. Firstly, that trace refinement implies linearizability (Theo-
rem 1). The consequence of this is that trace refinement provides a sound method for proving linearizability.
However, it does not provide a complete method, since secondly we have shown that linearizability does not
always imply trace refinement (Theorem 2). Below we discuss the consequences of this difference when using
one or the other of the correctness conditions.

7.1.1. Livelock or deadlock introduction

The most obvious cases where linearizability holds, and trace refinement does not, are when the implemen-
tation introduces deadlock or livelock. In these cases, an invoked operation in the implementation may not
terminate despite always terminating in the specification. Hence, linearizability cannot be used to prove that
an implementation has liveness properties; an issue which has been raised by Gotsman and Yang [GY11]. It
needs to be supplemented with additional techniques to prove liveness properties. Such techniques can be
found in specification notations supporting trace refinement such as action systems [BvW94] and Event-B
[Abr10].

It should be noted, however, that non-blocking algorithms are not necessarily livelock-free (but are used
under the assumption that livelock is probabilistically very unlikely). For example, the Linux reader-writer
mechanism seqlock [BC05] facilitates fast write access by making readers loop while there is a concurrent
write in progress. A typical implementation is given below.



Formal Aspects of Computing: LATEX 2ε Submissions 13

int x1 = 0, x2 = 0;
int c = 0;

write(int d1,d2):
1 acquire;
2 c++;
3 x1 = d1;
4 x2 = d2;
5 c++;
6 release;

read(): int []
int c0, d1, d2;
do {
do {

7 c0 = c;
8 } while(c0%2 != 0);
9 d1 = x1;
10 d2 = x2;
11 } while(c != c0);
12 return {d1,d2};

A process wishing to write to the shared variables x1 and x2 acquires a software lock and increments a
counter c. It then proceeds to write to the variables, and finally increments c again before releasing the lock.
The lock ensures synchronisation between writers, and the counter c ensures the consistency of values read
by other processes. The two increments of c ensure that it is odd when a process is writing to the variables,
and even otherwise. Hence, when a process wishes to read the shared variables, it waits in a loop until c is
even before reading them. Also, before returning it checks that the value of c has not changed (i.e., another
write has not begun). If it has changed, the process starts over.

One possible behaviour of this is that a thread starts a write reaching and executing line 2, but does not
reach and execute line 5, while one or more readers loop indefinitely (at lines 7 and 8) waiting for the write
to complete. Therefore, while seqlock is linearizable with respect to a simple reader-writer specification, it
cannot be verified using trace refinement unless the implementation behaviour is constrained with fairness
conditions on the scheduling of threads.

7.1.2. Livelock or deadlock after a state change

Even when the specification can deadlock or livelock, an implementation which changes the state before
deadlocking or livelocking, may be linearizable although not a trace refinement. This situation arises when
the changed state is never observed. In proving linearizability, the invocation of the concrete operation can
be removed from the implementation history in order for it to linearize with a history of the specification.
However, the state cannot be similarly removed from the implementation trace; hence trace refinement does
not hold.

From a practical persepective, it could be argued that since the changed state is never observed, the
implementation is never seen to behave incorrectly. Hence, linearizability, rather than trace refinement, is
the more appropriate correctness notion.

7.1.3. Overlapping operations

Our Example 4, where we have behaviour which only occurs when operations overlap, shows that trace
refinement can sometimes be too strong to prove correctness. There is, in fact, no program calling the
stack methods that could observe the “erroneous” behaviour where the empty value is returned by the pop
operation after the completion of the push operation. The completion of the operations called by different
threads would need to be recorded via assignments to program variables, and these assignments could be
interleaved in either order.

In general, to verify non-blocking algorithms using trace refinement, the verifier needs to choose the points
in the implementation where the state change becomes observable to coincide with the linearization points.
For example, the Treiber stack can be verified using trace refinement when the observable variable out is
updated at line 7 (when ss is assigned null at that line) and at line 12 (when head is assigned ssn at that
line), and in is updated at line 5 (when head is assigned n at that line). Under this choice of observations,
the trace of Example 4 is not possible (and trace refinement holds).

Hence, the notion of linearization points is important whichever correctness approach (trace refinement
or linearizability) is adopted. In this particular example, linearizations points of different operations occur
at different steps of the implementation. For more complex concurrent objects, two or more linearization
points may coincide (see [HSY04] for a typical example). Since the linearization point of an operation occurs
between its invocation and return, a situation with two or more coinciding linearization points corresponds to
a behaviour which only occurs when operations overlap. In these cases, it is not possible to find an abstraction



14 G.Smith and K.Winter

relation (or gluing invariant) to prove trace refinement: a single non-stuttering step of the implementation
would need to map to two or more non-stuttering steps in the specification (something which trace refinement
does not allow). Hence, trace refinement cannot be used to prove the correctness of such concurrent objects.

7.1.4. Infinite behaviour

The other case where linearizability holds, but trace refinement does not, is when the specification and
implementation have different infinite behaviours (and so the implementation has either a finite or infinite
trace that the specification does not have). This difference arises because linearizability is defined in terms of
finite histories, and hence ignores infinite behaviour. As we have discussed in Section 6, this difference only
manifests itself when either one or both of the specification and implementation are not finitely branching.

From a practical perspective, an implementation cannot have infinite branching. Therefore differences
between trace refinement and linearizability only arise when the specification has infinite branching. This
means that the specification may have an infinite number of progressively longer traces, but not an infinite
trace. If the implementation did include the infinite trace, it would not be possible to observe that trace in
a finite time. Therefore, the implementation could be argued to be correct and, hence, again linearizability
could be considered the most appropriate correctness notion.

7.2. Related work

The closest work to ours is a paper by Filipović et al. [FORY10] which claims that linearizability is equivalent
to a notion of observational refinement defined in that paper. That is, observational refinement is claimed
to be both a sound and complete method for proving linearizability.

However, observational refinement differs from trace refinement in that it excludes infinite traces and
behaviour which only occurs when there are overlapping operations (as in our Example 4). Instead of using
input and output variables (or an abstraction relation), the authors introduce the notion of a client, i.e., a
program that calls the methods of the concurrent object. Observational refinement compares the behaviour
of an arbitrary client program accessing the implementation (via invocation and response events) and the
same client program accessing the specification.

The notion of a client program can be compared to the function tr of trace refinement providing the
same observable state space (that of the program) for the two levels of abstraction. Additionally, like tr , it
abstracts from the concrete sub-operations which would be stuttering steps.

The comparisons between the levels is done for all possible client programs (including those comprising
a single operation) starting from an arbitrary state. Hence, it ensures each state change of a client program
at the concrete level (from any state) is a possible state change at the abstract level. Putting these steps
together implies that any sequence of states at the concrete level is a sequence of states at the abstract level.
This is like trace refinement except that (a) infinite traces are not considered, and (b) when behaviour can
only occur due to overlapping operations, the order the operations occur cannot be observed (as we now
explain).

The traces, which form the semantics of programs in [FORY10], are finite (Definition 9 of [FORY10])
and each response in a trace is followed by an assignment of the returned value to a variable of the client
program (Figure 5 of [FORY10]). Even at the abstract level, this assignment is not performed atomically
with the invocation/response pair.

This is what makes observational refinement different to standard notions of refinement in the literature.
The fact that an operation’s effect is not visible immediately, but only after an additional step which
changes the observable state accordingly, means that it is not possible to distinguish which of two concurrent
operations returns first. Consider the following example.

Example 6. Let A be a specification which allows an operation op1 to output value 0 when it occurs before
the first occurrence of an operation op2 (which outputs 1), and outputs 2 after the first occurrence of op2.
In C , op1 and op2 are defined as follows.



Formal Aspects of Computing: LATEX 2ε Submissions 15

a: int; // shared variable

op1(): int
1 if (a == 0) return 0;
2 return 2;

op2(): int
3 a = 1;
4 return 1;

In this implementation, it is possible for op2 to be invoked and execute line 3 (setting a to 1) and then for
op1 to be invoked and complete before op2 executes line 4. This results in an output of 2 occurring before
an output of 1. Hence, if the observable state is updated when the operations return, we do not have A v C .

However, if the value from the operation is not observed until after a further assignment (in both the
specification and implementation), observing that a 2 has been output before observing that a 1 has been
output is allowed by the specification when the following sequence of events occurs: op2 occurs, op1 occurs,
op1’s output of 2 is observed by assignment of this value to a variable, op2’s output of 1 is observed by
assignment of this value to a variable. Hence, observational refinement holds. 2

The main results of [FORY10] are proved for specifications with only quiescent histories, i.e., histories in
which there are no pending invocations. In other words, the proofs only hold when all operations terminate
(and hence potential deadlock and livelock are ignored). A later result in the paper extends the results to
specifications with non-quiescent histories, but does so by “ignoring the non-quiescent histories in the object
systems.” Hence, in all cases deadlock and livelock are not considered and (since infinite traces are not
considered) the results of [FORY10] agree with Theorems 1 and 2.

Overall, the claim that observational refinement is equivalent to linearizability does not contradict our
results as the restrictions posed in our theorems capture the differences between trace refinement and ob-
servational refinement. In contrast to [FORY10], the aim of our work is to highlight the differences between
an established notion of refinement and linearizability, instead of defining a new notion of refinement that
coincides with linearizability.

Bouajjani et al. [BEEH15] prove that Filipović et al.’s notion of observational refinement does not imply
linearizability when operations in specifications are non-atomic. Their counter-example has an abstract
history with overlapping operations, one of which never terminates.

We, however, derive the abstract histories from the traces of the specification in such a way that operations
are atomic. Our claim is that the histories we derive are those of a specification that is semantically equivalent
to any other exhibiting the same traces. In doing so, we treat linearizability as a semantic relationship between
specifications, and not one based on a particular syntactic representation of a system.

Also related to our work is the result of Schellhorn et al. [SWD14]. They show that a form of weak
data refinement (proved using a combination of forwards and backwards simulation) is both sound and
complete for proving linearizability. Their definitions of forward and backward simulations are similar to
those defined by Back and von Wright to prove trace refinement [BvW94] but without the rule for aborting
traces (which they do not allow) and the rules for handling deadlock and livelock. Furthermore, they add
a history variable to both the abstract and concrete states denoting the finite history that has occurred to
reach that state. Hence, they are restricted to finite traces. Importantly, they require that the observable
state changes in the implementation occur at the linearization points. To handle concurrent objects where
two or more linearization points coincide, they allow a non-stuttering step in the implementation to refine
a sequential composition of abstract non-stuttering steps (rather than just a single abstract non-stuttering
step as in trace refinement).

Acknowledgements

Thanks to Ian Hayes and Robert Colvin for their comments on an earlier draft of this paper, and to John
Derrick, Brijesh Dongol and Lindsay Groves for general discussion on the topic. Special thanks to the
anonymous reviewers of this paper for their detailed and insightful comments. This work was supported by
Australian Research Council Discovery Grants DP160102457 and DP130102901.



16 G.Smith and K.Winter

References

[Abr10] J.-R. Abrial. Modeling in Event-B: system and software engineering. Cambridge University Press, 2010.
[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer Science, 82(2):253–284,

1991.
[Bac90] R.-J.R. Back. Refinement calculus, part II: Parallel and reactive programs. In Stepwise Refinement of Distributed

Systems Models, Formalisms, Correctness, pages 67–93. Springer, 1990.
[BC05] D. Bovet and M. Cesati. Understanding The Linux Kernel. O’Reilly & Associates, 3rd edition, 2005.
[BEEH15] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Tractable refinement checking for concurrent objects. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015), pages 651–662. ACM,
2015.

[BvW94] R.-J.R. Back and J. von Wright. Trace refinement of action systems. In Concurrency Theory (CONCUR ’94),
volume 836 of LNCS, pages 367–384. Springer, 1994.

[DS15] J. Derrick and G. Smith. A framework for correctness criteria on weak memory models. In Intenational Symposium
on Formal Methods (FM 2015), pages 178–194. Springer, 2015.

[DSW11] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for linearizability. ACM Trans.
Program. Lang. Syst., 33(1):4, 2011.

[FORY10] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects. Theoretical Computer
Science, 411(51):4379–4398, 2010.

[GR01] R. Gorrieri and A. Rensink. Action refinement. In Handbook of Process Algebra, chapter 16, pages 1047–1147.
Elsevier, 2001.

[GR14] R. Guerraoui and E. Ruppert. Linearizability is not always a safety property. In Networked Systems, pages 57–69.
Springer, 2014.

[GY11] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In International Colloquium on Automata,
Languages and Programming (ICALP 2011), volume 6756 of LNCS, pages 453–465. Springer, 2011.

[HS08] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.
[HSY04] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA ’04), pages 206–215. ACM Press, 2004.
[HW90] M. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans. Program.

Lang. Syst., 12(3):463–492, 1990.
[Kön90] D. König. Theory of finite and infinite graphs. Springer, 1990.
[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
[SWD14] G. Schellhorn, H. Wehrheim, and J. Derrick. A sound and complete proof technique for linearizability of concurrent

data structures. ACM Trans. on Computational Logic, 2014.
[Tre86] R.K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden Res.

Ctr., 1986.


