
Value-Dependent Information-Flow Security on
Weak Memory Models

Graeme Smith1,2, Nicholas Coughlin2 and Toby Murray3

1Defence Science and Technology Group, Australia
2School of Information Technology and Electrical Engineering,

The University of Queensland, Australia
3School of Computing and Information Systems,

The University of Melbourne, Australia

Abstract. Weak memory models implemented on modern multicore
processors are known to affect the correctness of concurrent code. They
can also affect whether or not it is secure. This is particularly the case
in programs where the security levels of variables are value-dependent,
i.e., depend on the values of other variables. In this paper, we illustrate
how instruction reordering allowed by contemporary multicore processors
leads to vulnerabilities in such programs, and present a compositional,
timing-sensitive information-flow logic which can be used to detect such
vulnerabilities. The logic allows step-local reasoning (one instruction at
a time) about a thread’s security by tracking information about depen-
dencies between instructions which guarantee their order of occurrence.
Program security can then be established from individual thread security
using rely/guarantee reasoning.

1 Introduction

Modern multicore processors utilise weak memory models which, for reasons of
efficiency, allow instructions to take effect in an order different to that in the
program text [25]. Such instruction reordering is constrained by basic principles,
the key one being that the sequential semantics of each thread in the original
code should be preserved [6,7]. This ensures the effects of weak memory models
can largely be ignored by programmers whose code is either not concurrent, or
is concurrent but data-race free.1 However, these effects do need to be consid-
ered by programmers writing efficient low-level code for device drivers and data
structures. Such code is generally concurrent and non-blocking, i.e., using no, or
minimal, locking, and hence inherently not data-race free [16]. It is well known
that this affects the correctness of such code on weak memory models [2]. As
shown by Vaughan and Milstein [26] (for the weak memory model TSO) and
Mantel et al. [14] (for TSO, PSO and IBM-370), it also leads to security viola-
tions which are not detectable using the standard approaches to information-flow
security.

1 The recently discovered Meltdown [12], Spectre [11] and Foreshadow [4] vulnerabil-
ities show that this is not strictly the case.

While TSO [24] is widely used (by chip manufacturers Intel and AMD), PSO
and IBM-370 are not supported on recent processors. More relevant weak mem-
ory models are ARM [9, 22] and IBM POWER [23]; the former being widely
used in mobile devices [8]. These memory models are significantly weaker (al-
lowing more kinds of reordering) than those studied by the papers above, yet
have received little attention from the security community.

Additionally, the effects of weak memory models on programs with security
levels that are value-dependent [13, 18, 27] have not been explored to date. In
such programs, the security level of a variable may depend on the values of one
or more other variables. Hence, it may change as the program changes the state.

Building on Mantel et al.’s compositional information-flow logic for concur-
rent programs [15], Murray et al. [19,20] provide two information-flow logics for
concurrent programs which are compositional and also handle dynamic, value-
dependent security levels. The latter of these has been successfully applied to a
non-trivial concurrent program running on an embedded device which facilitates
secure interaction with multiple classified networks.

In this paper, we take this work further by incorporating the effects of weak
memory models. Our logic specifically captures the effects of the revised version
of ARMv8 [22], the latest version of ARM.2 This memory model has much
in common with prior versions of ARM [9], and with IBM POWER [23]. Our
logic has been proven sound with respect to a recent operational semantics of
ARMv8 [6] which has been validated against approximately 10,000 litmus tests
run on actual hardware.

We begin with an overview of weak memory models in Section 2 and demon-
strate how they can lead to security vulnerabilities in value-dependent security
systems in Section 3. In Section 4, we present a formal framework for our logic
which is presented in full in Section 5. We discuss the issue of timing sensitivity
in Section 6 and conclude in Section 7.

2 Weak Memory Models

Hardware weak memory models, as exemplified by TSO [24], ARM [9, 22] and
IBM POWER [23], aim at optimising assembly code by restricting accesses to
global shared memory: a well known cause of inefficiency in multicore systems.
This can be achieved, for example, by buffering writes to memory and letting
the hardware control when those writes actually occur, or by allowing speculative
execution of code occurring in a branch of the program before evaluating whether
that branch should be taken (which may require access to shared memory). It
can also be achieved by propagating writes to other cores rather than the shared
memory (referred to as non-multi-copy atomicity since different cores may receive
a particular write at different times).

The effects of such optimisations can lead to the instructions of one thread
appearing to occur out-of-order from the perspective of threads running on other

2 We will refer to this as simply ARMv8 in the remainder of this paper.

cores. For example, if a thread t buffers the writes to variables x and y while
executing the code x := 1; y := 2 and then the hardware flushes the value assigned
to y first, it appears to threads running on other cores as if t executed the code
y := 2; x := 1.

Colvin and Smith [6, 7] define four constraints related to this perceived re-
ordering of assignments on weak memory models. These constraints, which are
common to all contemporary weak memory models, ensure that the sequential
semantics of the thread on which the reordering occurs is unchanged. An assign-
ment x := e can be reordered with an assignment y := f if, and only if, (i) x and
y are distinct variables; (ii) x is not referred to in f ; (iii) y is not referred to in
e; and (iv) e and f do not reference any common global variables.

Constraint (i) is obviously required as x := 1; x := 2 has a different final
value of x (and hence different behaviour) than x := 2; x := 1. Constraint (ii)
is required since x := 1; y := x will result in a different value for y than y := x;
x := 1 when the initial value of x is not 1. Similarly, constraint (iii) is required
since x := y; y := 1 can result in a different value for x than y := 1; x := y.
Finally, constraint (iv) is required so that the order of updates and accesses of
each global variable, considered individually, is maintained: x := z; y := z will
not behave the same as y := z; x := z in an environment which modifies z since
the former will never result in y having an earlier value of z than x.

In contemporary processors, constraint (ii) is weakened by forwarding which
allows a program such as x := e; y := x to be reordered to y := e; x := e when e
does not refer to global variables, i.e., the effect of the first assignment is taken
into account when determining whether the second can be reordered with it.

Specific memory models may add additional constraints, e.g., TSO does not
allow a write to a global variable to be reordered with a subsequent write to a
global variable. They will also have reordering constraints related to other types
of instructions such as branch instructions and fences (see Section 3.1 for the
branch constraints on ARM). Fences are a means by which the programmer can
enforce ordering where necessary in their program. For example, letting fence
denote a full fence (e.g., the instruction DMB on ARM), the program x := 1;
fence; y := 2 ensures the write to x is seen by other threads before the write to
y. A full set of reordering constraints for TSO, ARM and POWER which have
been validated against existing test suites on hardware is provided in [6, 7].

3 Weak Memory Models and Security

We are interested in evaluating the security of assembly code running on ARMv8
processors [9]. For ease of presentation, we adopt a high-level language to repre-
sent assembly commands (as in [6,7]). The syntax of a command, i.e., a program,
c in this language is as follows:

c ::= skip | c ; c | if (b) then c else c | while (b) do c | x := e | fence

where x is a (global or local) variable, b a Boolean condition, and e an expression.
In our examples, we also allow do c while (b) as a shorthand for c ; while (b) do c.

This simple language has only one kind of fence (a full fence which requires all
updates to be seen by all threads before proceeding). ARM additionally supports
store fences (which maintain an order on stores only) and a control fence (for
restricting speculative execution beyond branch points). Extending our approach
to cater for such additional constructs is beyond the scope of this paper which
focusses on the interplay between value-dependent security levels and instruction
reordering in weak memory models.

To illustrate this interplay we introduce the example of Figure 1. In this
example, the four operations are of an IO-driver object which receives input
data from an IO device, such as a keyboard, and stores it in the variable x. This
variable is intended to be an abstract representation of an input buffer.

write:
x := data

secret write:
z := z+1;
x := secret;
...
x := 0;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 6= 0)
r2 := x;

while (z 6= r1)
y := r2

secret read:
y := x

Fig. 1. An IO-driver object with oper-
ations for accepting input from a key-
board at unclassified (write) and classi-
fied (secret write) levels, and for read-
ing input data at unclassified (read) and
classified (secret read) levels.

As well as a simple write opera-
tion, the object has a secret write op-
eration. This is used when the user in-
dicates (via the keyboard or another
input device) that the information to
be input is classified. The operation
sets a variable z, which is initially 0,
to an odd number by incrementing it
before allowing the input data to be
assigned to x. After the data is read
(how this is detected is elided in the
abstract representation of Figure 1),
the operation enters some unclassified
data in x (the value 0) before setting
z back to an even number by incre-
menting it again. As we will see, the
setting of z ensures that the classified
input is not readable by all applica-
tions running on the computer to which the keyboard is attached.

We call z a control variable because it controls the security level of x; when
it is even x may only contain unclassified data, but when it is odd it may also
contain classified data. The use of such control variables provides us with value-
dependent security [13, 18,27].

Next consider the operations which read from the buffer. We have a secret read
operation which only applications which are allowed access to classified informa-
tion can call, as well as a general read operation which all applications can call. To
avoid leaks of classified data, the latter should not read the variable x when z is
odd; this is the only time when x can contain classified data. A naive approach
would be to use an if statement in read to disallow reading x when z is odd:
if (z% 2 = 0) then y := x else skip where y is a variable which the application
calling the operation can access. Obviously, this will not work in a concurrent
setting since the check of z’s value could be made before z is incremented for the
first time by secret write and subsequently the assignment to y made immediately
after x is assigned the classified data.

To avoid this undesirable behaviour, we could ensure mutual exclusion be-
tween the operations secret write and read using a lock; each of these operations
would acquire the lock as it first step and release it as its last. This, however,
would be highly inefficient. Firstly, there may be many applications running
and wishing to access the keyboard data, and requiring each to acquire the lock
before reading would create an obvious bottleneck. Secondly, the secret write
operation should preferably not be made to acquire a lock as it needs to react
without delay in order to accept (real-time) keyboard input.

A better solution is to use a non-blocking algorithm [16]. Such algorithms
allow threads to run concurrently on the same object with no, or minimal, use
of locking. For example, consider the implementation of read in Figure 1 where
r1 and r2 are local variables. This operation waits in a loop until z is even (and
hence x does not contain classified information) and then reads x into r2. It then
checks that z has not changed (and hence has been even the entire time since
it was checked) before copying the value of r2 to y. Since z can only stay at its
current value or increase, if its value is the same as at some earlier time t , we
can deduce that z has not changed since time t .

This algorithm allows the secret write operation to operate without locking
or delay, and allows multiple threads to call the read operation simultaneously.
It is based on a Linux read-write mechanism called seqlock [3], and is a typical
example of a non-blocking algorithm.

3.1 Value-Dependent Security and Reordering

The implementation in Figure 1 is secure on a sequentially consistent memory
model, i.e., one that does not allow instruction reordering. It is also secure on a
memory model such as TSO where writes are seen by other threads in the order
in which they occur. For weaker memory models such as ARM and POWER,
this is not the case. These memory models allow writes by a thread to be seen
out-of-order by other threads since no additional constraints are added to the
four common constraints presented in Section 2.

For example, consider the operation secret write. If from the perspective of
threads running read, the assignment of the classified data to x occurred before
the first assignment to z then that classified data could be read into the variable
y. To avoid this situation, a fence is required between these two assignments.
Similarly, if the second assignment to z occurred before the assignment of 0 to
x then again the classified data in x could be read into y. The solution again is
to maintain the order by placing a fence between these assignments. A secure
version of secret write is given in Figure 2.

Similar issues arise with the read operation. To understand these, we first
provide the rules for reordering involving branch instructions on ARM processors
[6, 7].

1. An assignment x := e following a branch instruction with branching condition
b can be reordered with the branch instruction if, and only if, x is a local

variable and does not appear free in b, and b and e do not reference common
global variables.

2. An assignment x := e preceding a branch with branching condition b can be
reordered with the branch if, and only if, x does not appear free in b, and b
and e do not reference common global variables.

3. Two branch instructions can be reordered if, and only if, their branching
conditions do not reference common global variables.

secret write:
z := z+1;
fence;
x := secret;
...
x := 0;
fence;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 6= 0)
fence;
r2 := x;
fence;

while (z 6= r1)
y := r2

Fig. 2. Versions of the operations
(secret write) and (read) which are se-
cure when run on the ARMv8 memory
model.

In case 1 the assignment is spec-
ulatively executed (before the branch
condition is evaluated). It is therefore
restricted to assignments to local vari-
ables since if it is later determined
that the branch should not be exe-
cuted, it is necessary to discard the re-
sults of such assignments. This cannot
be done with assignments to global
variables.

In the read operation two problems
arise due to these reorderings. Firstly,
since r2 is a local variable, the assign-
ment to r2 could be reordered with the
first branch instruction (case 1) and
further reordered with the assignment to r1. This results in reading a value of x
into r2 before checking that z is even. If this value is classified and subsequently
z is made even by secret write, the check will pass and the classified information
in r2 will be able to be passed into y. A fence before the assignment to r2 will
prevent this reordering.

Secondly, if the assignment to r2 is reordered with the second branch condi-
tion (case 2) then it is possible that a secret write operation begins after the check
of that branch condition and hence r2 is loaded with classified data. Again, a
fence can prevent the reordering. A secure version of read is included in Figure 2.

4 Formal Framework

In this section, we provide a formal framework on which we build our logic in
Section 5. We let Var be the set of all program variables. Variables are parti-
tioned into global (i.e. shared) variables Global , and local variables Local , i.e.,
Var = Global ∪ Local and Local ∩ Global = ∅. We let var(e) denote the set of
variables which occur free in an expression e.

4.1 Assumptions and Guarantees

An important issue when reasoning about concurrent systems is compositional-
ity. For scalability, we want to reason about individual threads in isolation and

combine this reasoning to deduce properties of the entire program. One way
to do this is to utilise rely/guarantee reasoning [5, 10]. Reasoning done on an
individual thread will be valid in the wider context of its execution if all of its
assumptions are matched by a guarantee from all other threads. For example, if
the thread assumes that no other thread writes to z then all other threads must
guarantee that they do not.

Mantel et al. [15] adopt this approach in their concurrent information-flow
logic by assigning variables referenced by a thread to one or more of the following
modes.

– AssNoRW - the variable is not read or written to by another thread
– AssNoW - the variable is not written to by another thread (but may be read

by another thread)
– GuarNoW - this thread does not write to the variable (but may read it)
– GuarNoRW - this thread does not read or write to the variable

In our logic, such modes are represented by a function M : Mode → PVar
mapping each mode to the set of variables which have that mode. Local vari-
ables are always non-readable and non-writable by other threads, i.e., Local ⊆
M (AssNoRW).

4.2 Value-Dependent Security Levels

Murray et al. [19,20] extend the approach of Mantel et al. [15] to include value-
dependent security levels. As in that work, we adopt a two-point lattice of se-
curity levels with values Low and High such that Low v High and High 6v Low
(meaning that information classified High should not flow to a variable classified
Low).

Also following [19, 20], we let L(x), for a variable x , be a predicate which is
true precisely when x has security level Low . For example, L(x) = (z% 2 = 0) in
the example of Section 3, i.e., the security level of x depends on the parity of z.
L is provided by the user and is independent of the program’s state. In order to
determine the security level of a variable in our logic, we introduce the following.

– A partial function Γ : Var 7→ {Low ,High} whose domain is the set of stable
variables, i.e., variables in M (AssNoRW)∪M (AssNoW), and which returns
the security level of data held by those variables. This data can be at a lower
level than the variable’s security level, i.e., a variable with a High security
level may hold Low data. The data referred to by Γ at any point in the
execution of a program assumes that precisely the instructions up to that
point have been executed, i.e., instruction reordering due to a weak memory
model is not considered.

– A predicate P on the program’s variables (capturing the current state). We
let lowP (x) =̂ P ` L(x) denote that x ’s security level is provably Low
when P holds, and highP (x) =̂ P ` ¬ L(x) denote that x ’s security level
is provably High when P holds. As for Γ , at any point in the execution of
a program, P assumes that precisely the instructions up to that point have
been executed, i.e., instruction reordering is not considered.

Based on these we define the following shorthand for determining the security
level t of an expression e (as the highest level of any free variable in e).

Γ,P ` e : t =̂ t =tx∈var(e) ΓP (x)

where ΓP (x) =̂

Γ (x) if x ∈ domΓ
Low if x 6∈ domΓ and lowP (x)
High otherwise

Note that when the security level of one or more variables in an expression is
unknown (i.e., neither specified in Γ nor derivable from P), ΓP will default to
security level High for those variables. This ensures that an expression which we
are assigning to a variable is given its highest possible security level.

When determining the security level of a variable x to which we assign a
value, on the other hand, we want to default to Low .

evalP (x) =̂

{
High if highP (x)
Low otherwise

Following Murray et al. [19, 20], we assume control variables are always Low ,
i.e., L(z) = true for each control variable z. As a result, it is not necessary to
include them in Γ when they are stable.

4.3 Weak Memory Models

Γ and P ignore the effects of reordering possible under a weak memory model.
This is not a problem for Γ under the defined reordering constraints, as it is
only consulted for the reads of an instruction. If an instruction containing such
an expression e is reordered before a prior write to a variable x then, according
to the constraints in Section 2, either (i) x is not in e, or (ii) x is in e and the
reordering involves forwarding. In case (i), the assignment does not affect the
value of Γ for any of the variables in e and hence does not affect the evaluation
of e’s security level. In case (ii), since forwarding involves taking into account
the prior assignment’s effect, using the updated value for x in Γ is appropriate.

P , on the other hand, cannot be used directly to determine the security level
of a variable or expression. To use P we need to consider guarantees on the
ordering of program instructions. To capture these guarantees in our logic, we
introduce a function knownW where, for a given instruction a, knownW (a) is
the set of variables whose most recent prior write in the program is known to
have occurred. Hence, these variables’ values in P can be used when determining
the security level of x (using evalP (x)) and the expression assigned to x (using
Γ,P ` e : t).

The value of knownW (a) evolves as the program progresses. For example,
given the code z := x; y := x; z := 0; y := x where z, y and x are global variables,
after the first assignment knownW (y := x) contains z since the first assignment
must occur before the second due to constraint (iv) of Section 2. However, af-
ter the third assignment knownW (y := x) does not contain z since the fourth
assignment can be reordered before the third.

We similarly introduce a function knownR(a) to denote the set of variables
whose most recent prior read in the program is known to have occurred. This
set is required in cases where a read of a variable may be reordered with an
instruction which changes the variable’s security level (see Section 5 for details).

We define knownW and knownR in terms of four other functions each of type
Var → PVar capturing the dependencies between writes and reads:

– Ww (x) returns the set of variables whose prior writes, if any, have occurred
when we reach an instruction which writes to x ;

– Wr (x) returns the set of variables whose prior writes, if any, have occurred
when we reach an instruction which reads x ;

– Rw (x) returns the set of variables whose prior reads, if any, have occurred
when we reach an instruction which writes to x ; and

– Rr (x) returns the set of variables whose prior reads, if any, have occurred
when we reach an instruction which reads x .

Given these definitions, we define knownψ(a) where ψ stands for either W
or R as

knownψ(a) =

{
Var if a = fence⋃

y∈wr(a) ψw (y) ∪
⋃

y∈rd(a) ψr (y) otherwise

where wr(a) is the set of variables written to by instruction a and rd(a) the set
of variables read by a.

Initially the functions Ww , Wr , Rw and Rr map all variables to Var . At
other points in the program their values are defined in terms of allowable in-
struction reorderings. We define laterw (a) to return the set of variables whose
writes cannot be reordered before a. Similarly, we define laterr (a) to return
the set of variables whose reads cannot be reordered before a. For example,
y ∈ laterw (x := e) implies writes of y cannot be reordered before the instruction
x := e. This will be the case when y = x (due to constraint (i) of Section 2) or
y ∈ var(e) (due to constraint (iii) of Section 2). Similarly, y ∈ laterr (x := e)
implies reads of y cannot be reordered before x := e. This will be the case when
y = x and e contains global variables (due to the weakened constraint (ii) of
Section 2) or y ∈ var(e) ∩Global (due to constraint (iv) of Section 2). The full
definitions are:

laterw (Fence) = Var

laterw (x := e) = {x} ∪ var(e)

laterw (b) = var(b) ∪Global

laterr (Fence) = Var

laterr (b) = var(b) ∩Global

laterr (x := e) =

{
{x} ∪ (var(e) ∩Global) if var(e) ∩Global 6= ∅
∅ otherwise

where an argument b denotes the guard of an if or while instruction. The ‘oth-
erwise’ case of the definition of laterr (x := e) allows for forwarding.

Let f [a] denote the update of function f (which may be Ww , Wr , Rw or Rr)
when instruction a occurs, and ψ stand for either W or R. Then

ψw [a](x) =

{
ψw (x) ∪ knownψ(a) if x ∈ laterw (a)
ψw (x) \ killψ(a) otherwise

ψr [a](x) =

{
ψr (x) ∪ knownψ(a) if x ∈ laterr (a)
ψr (x) \ killψ(a) otherwise

where killW (a) = wr(a) and killR(a) = rd(a).
For example when an instruction a occurs, for any instruction a1, knownW (a1)

is updated by changes to Ww (y) for any variable y written in a1, and Wr (y)
for any variable y read in a1. These changes reflect the instruction reorderings
captured in laterw (a) and laterr (a). If the instruction a1 cannot be reordered
before a (due to a variable written or read in a1 being in laterw (a) or laterr (a),
respectively) then any writes that are known to have occurred before a will also
be known to have occurred before a subsequent instruction a1. Hence, they are
added into Ww (y) or Wr (y). If, on the other hand, a1 can be reordered before
a then any writes in a are removed from those known to have occurred before
a1 (by removing them from both Ww (y) and Wr (y)).

5 The Logic

In this section, we present our logic in which a thread c is secure when a judge-
ment Γ,P ,D {c}M Γ ′,P ′,D ′ can be derived from the logic’s rules under modes
M where D is the tuple (Ww ,Wr ,Rw ,Rr) capturing the dependencies between
instructions. Initially, Γ (x) is Low for those stable variables x for which L(x) is
true and High otherwise, P is true, and all functions in D map each variable to
Var . In the logic, we let C ⊆ Var represent the set of control variables.

The rules for skip, sequential composition, if statements and while loops (see
Figure 3) are based on those of Murray et al. [19, 20]. The most significant
modification is the introduction of Pa , a version of P restricted to the writes
which are guaranteed to have occurred prior to reaching instruction a. We define
Pa = P |knownW (a), where

P |S =̂ ∃ y1, ...yn · P where {y1, .., yn} = Var \ S

As in Murray et al. [19, 20], rules with branching conditions restrict the
expression to be Low . This is necessary to ensure our logic is timing-sensitive (see
Section 6). Additionally, we introduce an update to D based on an instruction
a, D [a], which updates all of its components as described in Section 4.

These rules also uses the notation [b]M , which is the condition b with all free
occurrences of unstable variables removed.

[b]M =̂ ∃ y1, ...yn · b
where {y1, ..., yn} = Var \ (M (AssNoRW) ∪M (AssNoW))

The removal of free occurrences of unstable variables is required as these
variables may be changed by another thread at any time (invalidating the rela-
tionship between them and stable variables). For example, if variables x and y

Skip
Γ,P ,D {skip}M Γ,P ,D

Γ,P ,D {c1}M Γ ′,P ′,D ′ Γ ′,P ′,D ′ {c2}M Γ ′′,P ′′,D ′′

Seq
Γ,P ,D {c1; c2}M Γ ′′,P ′′,D ′′

Γ,Pb ` b : Low
Γ,P ∧ [b]M ,D [b] {c1}M Γ ′,P ′,D ′

Γ,P ∧ [¬ b]M ,D [b] {c2}M Γ ′,P ′,D ′

If
Γ,P ,D {if (b) then c1 else c2}M Γ ′,P ′,D ′

Γ,Pb ` b : Low Γ,P ∧ [b]M ,D [b] {c}M Γ,P ,D
While

Γ,P ,D {while (b) do c}M Γ,P ∧ [¬ b]M ,D [b]

Γ1,P1,D1 {c}M Γ ′
1,P

′
1,D

′
1

Γ2 ≥ Γ1

P2 ⇒ P1

D2 ⊇ D1

Γ ′
1 ≥ Γ ′

2

P ′
1 ⇒ P ′

2

D ′
1 ⊇ D ′

2
Rewrite

Γ2,P2,D2 {c}M Γ ′
2,P

′
2,D

′
2

x 6∈ C Γ,Px :=e ` e : t x 6∈ M (AssNoRW)⇒ t v evalPx :=e (x)
Assign

Γ,P ,D {x := e}M Γ [x 7→ t],P [x := e]M ,D [x := e]

x ∈ C Γ,Px :=e ` e : Low secure updateΓ,Px :=e ,D,M (x := e)
AssignC

Γ,P ,D {x := e}M Γ,P [x := e]M ,D [x := e]

Fence
Γ,P ,D {fence}M Γ,P ,D [fence]

Fig. 3. Rules of the logic.

are stable but z is not, the guard expression x = y + z should add the predicate
∃ z · x = y + z to P , rather than x = y + z .

The Rewrite rule is typically required when using the If and While rules
to ensure both branches have corresponding analysis states and to establish loop
invariants, respectively. The rule allows for the introduction of stronger Γ , P and
D on the left-hand side, and weaker Γ ′, P ′ and D ′ on the right. To express this,
we introduce a relation ⊇ between values of D .

D ⊇ D ′ =̂ ∀ x : Var · ψw (x) ⊇ ψ′
w (x) ∧ ψr (x) ⊇ ψ′

r (x) where ψ ∈ {W ,R}

Additionally, we introduce a relation ≥ between values of Γ . This relation con-
strains the entries in the weaker Γ to be higher or equal to those in the stronger,
as any expressions that pass the logic’s rules with a High read will also succeed
with a Low read. Such a rewriting property allows for branches that consider
the same variable at different security levels to merge, rewriting to the highest
level.

Γ ≥ Γ ′ =̂ domΓ = domΓ ′ ∧ ∀ x : domΓ · Γ (x) v Γ ′(x)

While the use of the Rewrite rule requires user interaction, its application
can be automated based on the context, e.g., through the introduction of a
specialised If rule as in Murray et al. [19, 20].

There are two rules for assignment. The first rule, Assign, corresponds to
the assignment of an expression e to a non-control variable x . If another thread
can read x , the expression’s security level should not be higher than x ’s security
level when considered under Px :=e .

Γ , P and D are updated to reflect the assignment. The notation Γ [x 7→ t]
denotes reassignment, where the function Γ is updated so that x maps to t
provided x ∈ domΓ . For P we use a shorthand that denotes the strongest
postcondition, sp, of the assignment x := e from a state satisfying P with all
free occurrences of unstable variables removed.

P [x := e]M =̂ sp(x := e,P) |M (AssNoRW)∪M (AssNoW)

The second assignment rule, AssignC, corresponds to an assignment to a
control variable. In this case, the expression must have a Low security level
to conform with the restriction on control variables introduced in Section 4.2.
Moreover, the effect of the assignment on the security level of controlled variables
must be taken into account. If the security level of a readable controlled variable y
falls from High to Low , it is necessary that any earlier writes to y are guaranteed
to have occurred, and that the final such write has set y to Low .

If, on the other hand, the security level of y rises from Low to High, it is
necessary that any earlier reads of y are guaranteed to have occurred. To see
why this is required, consider the code z:=0; x:=y; z:=1 where L(y) = (z = 0)
and L(x) = true. If the assignment z=1 occurs before x=y then another thread
may update y to a High value before x=y occurs. This would result in a High
value being passed to x which has a Low security level.

The required condition for assignment to control variables is captured by the
shorthand secure updateΓ,P,D,M (x := e) defined below.

secure updateΓ,P,D,M (x := e) =̂
(∀ y : falling(x ,P ,P ′) \M (AssNoRW) ·

y ∈ knownW (x := e) ∧ Γ,P ′ ` y : Low) ∧
(∀ y : rising(x ,P ,P ′) · y ∈ knownR(x := e))

where P ′ = P [x := e]M is the predicate after the assignment and

falling(x ,P ,P ′) =̂ {y : Var | x ∈ var(L(y)) ∧ ¬ (lowP (y)) ∧ ¬ (highP ′(y))}
rising(x ,P ,P ′) =̂ {y : Var | x ∈ var(L(y)) ∧ ¬ (highP (y)) ∧ ¬ (lowP ′(y))}

The sets falling and rising identify all variables that could change security
level due to the modification of a control variable x . As not all information may
be available in P or P ′ to determine security levels, for soundness the definitions
default to assume a change has occurred.

The final rule is for fences. After a fence, it is guaranteed that the earlier
reads and writes of all variables have occurred.

5.1 Soundness

The logic has been encoded in Isabelle/HOL [21] and proved sound with respect
to an encoding of the operational semantics of ARMv8 [6]. The soundness proof
follows the structure of prior proofs for sequentially consistent logics [15, 19, 20]
and proves that programs that pass the logic’s rules will satisfy a compositional
non-interference property. That compositional property requires showing that
whenever two copies of the program each perform an execution step from states
that agree on the values of Low variables, then the resulting states also agree
on their Low variables. The main extra complexity of the proof concerns the
case in which one copy performs a step that is out-of-order. In this case we must
prove that the other copy must also perform this out-of-order step. To do so,
we encode into the operational semantics the assumption that the choice about
when to reorder instructions never depends on sensitive information, akin to
prior work that made a similar assumption about the thread schedule [19, 20]
by quantifying over all deterministic interleavings of threads. The theories are
available at https://bitbucket.org/wmmif/wmm-if.

5.2 Example Revisited

writer thread:
1 z := 0;
2 x := 0;
3 while (true)
4 z := z+1;
5 fence;
6 x := secret;

...
7 x := 0;
8 fence;
9 z := z+1

reader thread:
10 while(true)
11 do
12 do
13 r1:= z;
14 while (r1 % 2 6= 0)
15 fence;
16 r2 := x;
17 fence;
18 while (z 6= r1)
19 y := r2

Fig. 4. Writer and reader threads using the op-
eration secret write and read of Figure 2.

The sequential composition
rule allows us to step through
a program one line at a time.
The values of Γ , P and D
following a given line can be
calculated from the applied
rule. If we reach a line of code
that no rule can be applied to,
this indicates a potential se-
curity leak. For example, con-
sider the writer thread in Fig-
ure 4 for which we will assume
M (AssNoW) = {z, x}. This
thread initialises the variables
z and x and then repeatedly
calls the secret write operation of Figure 2. Applying rules AssignC and As-
sign to lines 1 and 2, respectively, shows that the code up to line 2 is secure.
Following line 2, we have Γ = {z 7→ Low , x 7→ Low}, P = (z = 0 ∧ x = 0),
and D comprises Ww = {z 7→ {z}, x 7→ {x}}, Wr = {x 7→ ∅, z 7→ ∅} and
Rw = Rr = {z 7→ {x, z}, x 7→ {x, z}}.

The Rewrite rule can then be applied to weaken P to z%2=0 ∧ x=0 and
leave Γ and D unchanged. These values become the starting point for evaluating
lines 4 to 9. We can show that these lines are also secure by applying rules
AssignC, Fence and Assign. Note that without the fence at line 5, z would
not be a member of knownW (x := secret) and hence not in Px :=secret . Therefore,
Assign would not be applicable (since the value of z is required to be odd for

this assignment to be secure). Hence, no rule would be applicable for line 6. This
demonstrates how the leak of x would be detected by the logic if lines 4 and 6
could be reordered.

Similarly, without the fence at line 8, no rule would be applicable to line 9.
In this case, since z becomes even at line 9, the variable x must hold Low data to
satisfy secure updateΓ,Pz:=z+1,D,M

. This could not be ascertained, however, since
x would not be in knownW (z:=z+1). This demonstrates how the leak of x would
be detected by the logic if lines 7 and 9 could be reordered.

The situation for the reader thread is not as straightforward. Even with the
fences (as suggested in Section 3), the logic cannot be used to show that the
code is secure. This is because z is not stable and hence the assignment at
line 16 cannot guarantee that r2’s value is Low . Although the logic is sound, it
is not precise enough to determine that reader thread’s code is secure.

5.3 A More Precise Logic

The reason that the reader thread of Figure 4 is secure, is that it only reaches
line 19 when z is stable from line 13 (when it is assigned to r1) until line 18 (where
it is checked to be equal to r1). The algorithm works on the principle that there
is a high chance of z being stable while these lines are executed, and hence the
reader thread will reach line 19 without too many iterations of the outer do-loop.
This reliance on stability is common among non-blocking algorithms.

To allow for us to check the security of such algorithms, we allow non-blocking
loops, such as the outer loop in reader thread, to be annotated with a variable
which we expect to be stable (z in this example). The annotation allows local
reasoning to assume that the nominated variable is stable using the following
rule (where c can be a while or do loop).

Γ,P |knownW (z)` z : t
Γ ∪ {z 7→ t},P ,D {c}M z Γ ′ ∪ {z 7→ t ′},P ′,D ′

NonBlocking
Γ,P ,D {cz}M Γ ′,P ′,D ′

where Γ is updated with a value for z (based on what is known to have oc-
curred if the variable were read) and M is extended to Mz = M [AssNoW 7→
M (AssNoW) ∪ {z},GuarNoW 7→ M (GuarNoW) ∪Global].

The extension of GuarNoW in Mz ensures that, while in the loop, no writes
can be made by the thread to any global variables. This is required in such non-
blocking algorithms so that the execution can be discarded and restarted when
z is discovered not to be stable.

For the rule to be sound, we also require that the loop cannot be exited
unless the variable is stable from the time that it is entered. This check requires
reasoning about the functionality of the code and is outside of the scope of the
logic (similar to the obligation that assumptions are matched by guarantees on
other threads). In the case of reader thread, the proof follows from the fact that
the value of z is never decreased (as described in Section 3).

6 Timing Sensitivity

In earlier work on information-flow security on weak memory models [14, 26],
an auxiliary variable is introduced (called wt in [26] and pt in [14]) to record
the lowest security level of a pending write, i.e., one that has occurred locally
but has not necessarily been flushed to global memory. This is argued to be
necessary to prevent Low variables being flushed on a High path (i.e., a path
entered depending on the value of a High variable) and thus revealing that the
program has taken that path. In our logic, we do not allow High paths and hence
do not require such a variable.

Thread 1:
low := 0;
if (high=0)
then while (high < 1000) high++;
else skip;
low := 1;

Thread 2:
output=low;

Fig. 5. Example illustrating the
need for timing-sensitive security.

Our justification for this restriction is
based on the fact that a compositional
information-flow logic must be timing-
sensitive, i.e., information should not be
leaked to an attacker who is able to time the
execution of a program. As argued in [19],
this is not possible in the presence of High
paths. For example, consider the program
in Figure 5 in which high is a High vari-
able and low and output are Low variables.
Both threads are timing-insensitive secure
since low is never dependent on the value
of high. However, when they are composed the value written to output is more
likely to be 0 than 1 when high is 0. Hence, although the threads are timing-
insensitive secure, their composition is not. This does not require a probabilistic
argument: under a round-robin scheduler with time slices less than the time it
takes to execute the loop, the result output = 1 would indicate that high = 1.

The first thread is obviously not timing-sensitive secure (as its execution time
depends directly on high) and hence under timing-sensitive security the issue
with compositionality does not arise. Eliminating High paths from code can be
achieved using program transformations as described, for example, in [1, 17].

7 Conclusion

In this paper, we have presented the first information-flow logic for the ARMv8
weak memory model; a memory model which is significantly weaker than those
such as TSO for which prior information-flow logics have been considered. Our
logic supports dynamic, value-dependent security levels and is compositional
and timing-sensitive. It has been proven sound with respect to an operational
semantics of ARMv8 which has been validated against extensive test suites.

This work, focusing on instruction reordering, is a first step towards a more
extensive logic in terms of its coverage of both ARM instructions and behaviours,
and potential security vulnerabilities. We also anticipate improving the com-
pleteness of the logic, in particular by supporting more general rely/guarantee
conditions, and adapting it for other weak memory models including those of
IBM POWER and prior versions of ARM.

References

1. J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying
constant-time implementations. In T. Holz and S. Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, pages 53–70. USENIX Association,
2016.

2. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification
problem for weak memory models. In M. V. Hermenegildo and J. Palsberg, editors,
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, pages 7–18. ACM, 2010.

3. H. Boehm. Can seqlocks get along with programming language memory models? In
L. Zhang and O. Mutlu, editors, Proceedings of the 2012 ACM SIGPLAN workshop
on Memory Systems Performance and Correctness: held in conjunction with PLDI
’12, pages 12–20. ACM, 2012.

4. J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the keys
to the intel SGX kingdom with transient out-of-order execution. In W. Enck and
A. P. Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018,
pages 991–1008. USENIX Association, 2018.

5. K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence
of parallel computations. Commun. ACM, 24(4):198–206, 1981.

6. R. J. Colvin and G. Smith. A high-level operational semantics for hardware weak
memory models. CoRR, abs/1812.00996, 2018.

7. R. J. Colvin and G. Smith. A wide-spectrum language for verification of programs
on weak memory models. In K. Havelund, J. Peleska, B. Roscoe, and E. P. de Vink,
editors, Formal Methods - 22nd International Symposium, FM 2018, volume 10951
of Lecture Notes in Computer Science, pages 240–257. Springer, 2018.

8. J. Fitzpatrick. An interview with Steve Furber. Commun. ACM, 54(5):34–39,
2011.

9. S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and
P. Sewell. Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In R. Bod́ık and R. Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pages 608–621. ACM, 2016.

10. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

11. P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, abs/1801.01203, 2018.

12. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading
kernel memory from user space. In W. Enck and A. P. Felt, editors, 27th USENIX
Security Symposium, USENIX Security 2018, pages 973–990. USENIX Association,
2018.

13. L. Lourenço and L. Caires. Dependent information flow types. In S. K. Rajamani
and D. Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, pages 317–328.
ACM, 2015.

14. H. Mantel, M. Perner, and J. Sauer. Noninterference under weak memory models.
In IEEE 27th Computer Security Foundations Symposium, CSF 2014, pages 80–94.
IEEE Computer Society, 2014.

15. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for com-
positional noninterference. In Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, pages 218–232. IEEE Computer Society, 2011.

16. M. Moir and N. Shavit. Concurrent data structures. In D. P. Mehta and S. Sahni,
editors, Handbook of Data Structures and Applications. Chapman and Hall/CRC,
2004.

17. D. Molnar, M. Piotrowski, D. Schultz, and D. A. Wagner. The program counter se-
curity model: Automatic detection and removal of control-flow side channel attacks.
In D. Won and S. Kim, editors, Information Security and Cryptology - ICISC 2005,
8th International Conference, volume 3935 of Lecture Notes in Computer Science,
pages 156–168. Springer, 2005.

18. T. C. Murray. Short paper: On high-assurance information-flow-secure program-
ming languages. In M. Clarkson and L. Jia, editors, Proceedings of the 10th ACM
Workshop on Programming Languages and Analysis for Security, PLAS@ECOOP
2015, pages 43–48. ACM, 2015.

19. T. C. Murray, R. Sison, and K. Engelhardt. Covern: A logic for compositional
verification of information flow control. In 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, pages 16–30. IEEE, 2018.

20. T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional veri-
fication and refinement of concurrent value-dependent noninterference. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, pages 417–431. IEEE
Computer Society, 2016.

21. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

22. C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell. Simplify-
ing ARM concurrency: multicopy-atomic axiomatic and operational models for
ARMv8. PACMPL, 2(POPL):19:1–19:29, 2018.

23. S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding
POWER multiprocessors. In M. W. Hall and D. A. Padua, editors, Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, pages 175–186. ACM, 2011.

24. P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-TSO: a
rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7):89–97, 2010.

25. D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency
and Cache Coherence. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2011.

26. J. A. Vaughan and T. D. Millstein. Secure information flow for concurrent pro-
grams under Total Store Order. In S. Chong, editor, 25th IEEE Computer Security
Foundations Symposium, CSF 2012, pages 19–29. IEEE Computer Society, 2012.

27. L. Zheng and A. C. Myers. Dynamic security labels and static information flow
control. Int. J. Inf. Sec., 6(2-3):67–84, 2007.

