
Rely/guarantee reasoning for multicopy atomic
weak memory models

Nicholas Coughlin, Kirsten Winter and Graeme Smith

Defence Science and Technology Group, Australia
School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

Abstract. Rely/guarantee reasoning provides a compositional approach
to reasoning about concurrent programs. However, such reasoning tra-
ditionally assumes a sequentially consistent memory model and hence
is unsound on modern hardware in the presence of data races. In this
paper, we present a rely/guarantee-based approach for multicopy atomic
weak memory models, i.e., where a thread’s stores become observable to
all other threads at the same time. Such memory models include those
of the widely used x86-TSO and ARMv8 processor architectures, as well
as the open-source RISC-V architecture. In this context, an operational
semantics can be based on thread-local instruction reordering. We ex-
ploit this to provide an efficient compositional proof technique in which
weak memory behaviour can be shown to preserve rely/guarantee rea-
soning on a sequentially consistent memory model. To achieve this, we
introduce a side-condition, reordering interference freedom, reducing the
complexity of weak memory to checks over pairs of reorderable instruc-
tions. To enable practical application, we also define a dataflow analysis
capable of identifying a thread’s reorderable instructions. All aspects of
our approach have been encoded and proved sound in Isabelle/HOL.

1 Introduction

Reasoning about concurrent programs with interference over shared resources is
a complex task. The interleaving of all thread behaviours leads to an exponential
explosion in observable behaviour. Rely/guarantee reasoning [11] is one approach
to reduce the complexity of the verification task. It enables reasoning about one
thread at a time by considering an abstraction of the thread’s environment given
as a rely condition on shared resources. This abstraction is justified by proving
that all other threads in the environment guarantee the assumed rely condition.
The approach limits the interference between threads to the effects of the rely
condition (specified as a relation over states) on a thread’s state.

Xu et al. [34] show how rely/guarantee reasoning can be used to allow rea-
soning over individual threads in a concurrent program using Hoare logic [10].
We introduce a similar approach in [33] to allow thread-local reasoning, in the
context of information flow security, using weakest precondition calculation [7].
These approaches work equally well for concurrent programs executed on weak



memory models under the implicit assumption that the code is data-race free.
This is a reasonable assumption given that most programmers avoid data races
due to them leading to unexpected behaviour when the code’s execution is op-
timised under the weak memory model of the compiler [4, 12] or underlying
hardware [27, 3, 6]. However, data races may be introduced inadvertently by
programmers, or programmers may introduce data races for efficiency reasons,
as seen in non-blocking algorithms [19]. These algorithms appear regularly in
the low-level code of operating systems, e.g., seqlock [5] is used routinely in the
Linux kernel, and software libraries, e.g., the Michael-Scott queue [18] is used as
the basis for Java’s ConcurrentLinkedQueue in java.util.concurrent.

There are a number of approaches for verifying concurrent code under weak
memory models [1, 2, 16, 15, 31, 30, 9, 14], which are centred around relations be-
tween instructions in multiple threads, thereby precluding the benefits of thread-
local reasoning. Notable amongst these is the work by Abdulla et al. [1, 2] which
aims at automated tool support via stateless model checking and is based on the
axiomatic semantic model of [3]. Instead of thread-local reasoning the approaches
deal with execution graphs which include not only the interleaving behaviour of
concurrent threads but also “parallelisation” of sequential code resulting from
weak memory behaviour. Techniques to combat the resulting state-space explo-
sion and improve scalability include elaborate solutions to dynamic partial order
reduction, context bounds for a bug-finding technique [1] and (for a sound ap-
proach) coarsening the semantic model of execution graphs through reads-from
equivalences [2].

Closer to our approach is the proof system for concurrent programs under
the C11 memory model developed by Lahav et al. [16]. This proof system is
based on the notion of Owicki-Gries reasoning with interference assertions be-
tween each line of code to capture potential interleavings. However, to achieve
a thread-local approach the authors present their logic in a “rely/guarantee
style” in which interference assertions are collected in “rely sets” whose stability
needs to be guaranteed by the current thread. This leads to a fine-grained con-
sideration of interference between threads whereas in standard rely/guarantee
reasoning the interference is abstracted into a rely condition which summarises
the effects of the environment. Moreover, similarly to [1, 2] the semantic model
is based on (an abstraction of) the axiomatic model in [3] so that the interfer-
ence between threads includes additionally weak memory effects thereby further
complicating the analysis over each instruction. A somewhat-related approach
to capture assertions on thread interference is presented in [15] which computes
the reads-from relation between threads which is then taken into a account by
the thread-local static analyser.

Approaches that propose a purely thread-local analysis for concurrent code
under weak memory models include the work by Ridge [24] and Suzanne et
al. [29]. Both capture the weak memory model of x86-TSO [26] by modelling the
concept of store buffers. This limits their applicability to that of this relatively
simple memory model and prohibits adaption to weaker memory models.
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In contrast, this paper defines a proof system for rely/guarantee reasoning
that is parameterised by the weak memory model under consideration. We re-
strict our focus to those memory models that are multicopy atomic, i.e., where
a thread’s stores become observable to all other threads at the same time. This
includes the memory models of x86-TSO [26], ARMv8 [23] and RISC-V [32] pro-
cessor architectures, but not POWER [25], older ARM [8] processors nor C11
[4]. As shown by Colvin and Smith [6], multicopy atomic memory models can be
captured in terms of instruction reordering. That is, they can be characterised
by a reordering relation over pairs of instructions in a thread’s code, indicat-
ing when two instructions may execute out-of-order1. This has been validated
against the same sets of litmus test used to validate the widely accepted weak
memory semantics of Alglave et al. [3], establishing a high degree of confidence
in the correctness of the reordering semantics.

Consequently, the implications of weak memory can be captured thread-
locally, enabling compositional reasoning. However, thread-local reasoning un-
der such a semantics is non-trivial. Instruction reordering introduces interference
within a single thread, similar to the effects of interference between concurrent
threads and equally hard to reason about. For instance, a thread with n re-
orderable instructions may have n! behaviours due to possible reordering. To
tackle such complexity, we exploit the fact that many of these instructions will
not influence the behaviour of others. We reduce the verification burden to a
standard rely/guarantee judgement [34], over a sequentially consistent memory
model, and a consideration of the pair-wise interference between reorderable in-
struction in a thread, totalling n(n−1)/2 pairs given n reorderable instructions.
The resulting proof technique has been automated and shown to be sound on
both a simple while language and an abstraction of ARMv8 assembly code using
Isabelle/HOL [21] (see https://bitbucket.org/wmmif/wmm-rg).

We begin the paper in Section 2 with a formalisation of a basic proof system
for rely/guarantee reasoning introduced in [34]. In Section 3, we abstractly intro-
duce reordering semantics for weak memory models and our notion of reordering
interference freedom which suffices to account for the effects of the weak mem-
ory model. Moreover, we discuss the practical implications of our approach. In
Section 4 we present the instantiation of the approach with a simple language
and demonstrate reasoning with an example. Our work on a more elaborate
instantiation of ARMv8 assembly and the verification of a work-stealing deque
developed for ARM [17] is available in the Isabelle/HOL theories. We conclude
in Section 5.

1 For non-multicopy atomic processors such as POWER and older versions of ARM,
the semantics of Colvin and Smith additionally requires a storage subsystem to cap-
ture each thread’s view of the global memory, resulting in a more complex semantics
that cannot be fully captured by reordering.
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2 Preliminaries

The language for our framework is purposefully kept abstract so that it can be in-
stantiated for different programming languages. It consists of individual instruc-
tions α, whose executions are atomic, and commands (or programs) c which are
composed of instructions using sequential composition, nondeterministic choice,
iteration, and parallel composition. Commands also include the empty program
ε denoting termination.

c ::= ε | α | c1 ;c2 | c1 u c2 | c∗ | c1 ‖c2

Note that conditional instructions (like if-then-else and loops) and their evalua-
tion are modelled via silent steps making a nondeterministic choice during the
execution of a program (see Section 4).

A configuration of a program is a pair (c, σ), consisting of a command c
to be executed and state σ (a mapping from variables to values) in which it
executes. The behaviour of a component, or thread, in a concurrent program
can be described via steps the program, including its environment, can perform
during execution, each modelled as a relation between the configurations before
and after the step. A program step, denoted as (c, σ)

ps→ (c′, σ′), describes a single
step of the component itself and changes the command (i.e., the remainder of the
program). A program step may be an action step (c, σ)

as→ (c′, σ′) which performs
an instruction that also changes the state, or a silent step, (c, σ) ; (c′, σ)
which does not execute an instruction but makes a choice and thus changes the
command only. Hence

ps→= (
as→ ∪ ;). An environment step, (c, σ)

es→ (c, σ′),
describes a step of the environment (performed by any of the other concurrent
components); it may alter the state but not the remainder of the program (of
the component).

Program execution is defined via a small-step semantics over the command.

α 7→α ε

c1 ;c2 7→α c′1 ;c2 if c1 7→α c′1
c1 ‖c2 7→α c′1 ‖c2 if c1 7→α c′1 or c1 ‖c2 7→α c1 ‖c′2 if c2 7→α c′2

(1)

The semantics of program steps is based on the evaluation of instructions.
Each atomic instruction α has a relation over (pre- and post-) states beh(α),
formalising its execution behaviour. A program step (c, σ)

as→ (c′, σ′) requires
an execution c 7→α c′ to occur such that the state is updated according to the
executed instruction α, i.e.,

(c, σ)
as→ (c′, σ′)⇔ ∃α. c 7→α c′ ∧ (σ, σ′) ∈ beh(α) . (2)

2.1 Rely/guarantee reasoning

A proof system for rely/guarantee reasoning in a Hoare logic style has been
defined in [34]. Our approach largely follows its definitions, but includes a cus-
tomisable verification condition, vc, with each instruction. This verification con-
dition serves to capture the state an instruction must execute under to enforce
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properties such as the component’s guarantee and can be considered part of the
program’s specification. For example, in an information flow security analysis
(cf. [33]), it can be used to check that the value assigned to a publicly accessible
variable is not classified. We define a Hoare triple as follows. For simplicity of
presentation, we treat predicates as sets of states.

P{α}Q =̂ P ⊆ vc(α) ∩ {σ | ∀σ′. (σ, σ′) ∈ beh(α)⇒ σ′ ∈ Q} (3)

The rely and guarantee conditions of a thread, denoted R and G respec-
tively, are relations over (pre- and post-) states. The rely condition captures
allowable environments steps and the guarantee constrains all program steps. A
rely/guarantee pair (R, G) is wellformed when the rely condition is reflexive and
transitive, and the guarantee condition is reflexive.

Given that R is transitive, stability of a predicate P under rely condition R
is defined such that R maintains P.

stableR(P) =̂ P ⊆ {σ | ∀σ′. (σ, σ′) ∈ R ⇒ σ′ ∈ P} (4)

The condition under which an instruction guarantees G is defined as

guar(α,G) =̂ vc(α) ⊆ {σ | ∀σ′. (σ, σ′) ∈ beh(α)⇒ (σ, σ′) ∈ G}. (5)

These ingredients allow us to introduce a rely/guarantee judgement. We do
this on three levels: the instruction level `a, the component level `c, and the
global level `. On the instruction level the judgement requires that the pre- and
post-condition are stable under R. This ensures that these conditions, and hence
the Hoare triple, hold despite any environmental interference. Additionally, the
judgement requires that the instruction satisfies the guarantee G.

R,G `a P{α}Q =̂ stableR(P) ∧ stableR(Q) ∧ guar(α,G) ∧ P{α}Q (6)

A rely/guarantee proof system on the component and global levels follows
straightforwardly and is given in Figure 1. At the component level, note the
necessity for the invariant of the [Iteration] rule to be stable (such that it continues
to hold amid environmental interference). At the global level, the rule for parallel
composition [Par] includes a compatibility check ensuring that the guarantee for
each component implies the rely conditions of the other component. A standard
[Conseq] rule over global satisfiability is supported by the proof system, but
omitted in Figure 1.

Such rules are standard to rely/guarantee reasoning [34]. Our modification
can be seen in can be seen in [Comp], in which global satisfiability is deduced
from component satisfiability `c plus an additional check on reordering inter-
ference freedom, rif (R,G, c), which we introduce in Section 3.2. As a conse-
quence, component-based reasoning in this proof system is based on standard
rely/guarantee reasoning which can be conducted independently from the inter-
ference check.

Moreover, the proof system supports a notion of auxiliary variables, common
to rely/guarantee reasoning [34, 28]. These variables increase the expressiveness
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[Atom]
R,G `a P{α}Q

R,G `c P{α}Q
[Seq]

R,G `c P{c1}M R,G `c M {c2}Q

R,G `c P{c1 ;c2}Q

[Choice]
R,G `c P{c1}Q R,G `c P{c2}Q

R,G `c P{c1 u c2}Q
[Iteration]

stableR(P) R,G `c P{c}P

R,G `c P{c∗}P

[Conseq]
P ′ ⊆ P R′ ⊆ R G ⊆ G′ Q ⊆ Q ′ R,G `c P{c}Q

R′,G′ `c P ′{c}Q ′

[Comp]
R,G `c P{c}Q rif (R,G, c)

R,G ` P{c}Q

[Par]
R1,G1 ` P1{c1}Q1 R2,G2 ` P2{c2}Q2 G2 ⊆ R1 G1 ⊆ R2

R1 ∩R2,G1 ∪ G2 ` P1 ∩ P2{c1 ‖c2}Q1 ∩Q2

Fig. 1. Proof rules for rely/guarantee reasoning

of the specification (R, G, P and Q) by representing properties of intermediate
execution states. Auxiliary variables cannot influence program execution, as they
are abstract, and their modification must be coupled with an instruction such
that they are considered atomic.

3 Weak memory models

Weak memory models are commonly defined to maintain sequentially consistent
behaviour given the absence of data races, thereby greatly simplifying reasoning
for the majority of programs. However, as we are interested in the analysis of
racy concurrent code, it is necessary to reason on a semantics that fully captures
the behaviours these models may introduce.

Colvin and Smith [6] show that weak memory behaviour for multicopy atomic
processors such as x86-TSO, ARMv8 and RISC-V can be captured in terms of
instruction reordering. A memory model, in these cases, is characterised by a
reordering relation over pairs of instructions indicating whether the two instruc-
tions can execute out-of-order when they appear in a component’s code. This
complicates reasoning significantly. For example, one needs to determine whether
an instruction α that is reordered to execute earlier in a program can invalidate
verification conditions that are satisfiable under normal executions (following
the program order without reordering). In that sense, we are facing not only
interference between concurrent components (which can be visualised as hor-
izontal interference) but also interference between the instructions within one
component (which can be pictured as vertical interference).
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3.1 Reordering semantics

The reordering relation, ←↩, of a component is syntactically derivable based
on the rules of the specific memory model (see Section 3.3). In ARMv8, for
example, two instructions which do not access (write or read) a common vari-
able are deemed semantically independent and can change their execution order.
Moreover, weak memory models support various memory barriers that prevent
particular forms of reordering. For example, a full fence prevents all reordering,
while a control fence prevents speculative execution (for a complete definition
refer to [6]).

Matters are complicated by the concept of forwarding, where an instruction
that reads from a variable written in an earlier instruction might replace the
reading access with the written value, hence shedding the dependence to the
variable in common. This allows it to execute earlier, anticipating the write
before it happens. For example x := z; y := x, where z cannot be modified by
another component, can execute as y := z; x := z. We denote the instruction α
with the value written in an earlier instruction β forwarded to it as α〈β〉. Note
that α〈β〉 = α whenever β does not write to a variable that is read by α.

Forwarding can span a series of instructions and can continue arbitrarily, with
later instructions allowed to replace variables introduced by earlier forwarding
modifications. The term γ ≺ c ≺ α denotes reordering of the instruction α prior
to the command c, with the cumulative forwarding effects producing γ. α〈〈c〉〉
denotes the cumulative forwarding effects of the instructions in command c on
α. We define both terms recursively over c.

α〈β〉 ≺ β ≺ α =̂ β ←↩ α〈β〉
α〈〈c1 ;c2〉〉 ≺ c1 ;c2 ≺ α =̂ α〈〈c1 ;c2〉〉 ≺ c1 ≺ α〈〈c2〉〉 ∧ α〈〈c2〉〉 ≺ c2 ≺ α (7)

To capture the effects of reordering, we extend the definition of executions
(1) with an extra rule that captures out-of-order executions: A step can execute
an instruction whose original form occurs later in the program if reordering and
forwarding can bring it (in its new form γ) to the beginning of the program.

c1 ;c2 7→γ c1 ;c′2 if γ ≺ c1 ≺ α ∧ c2 7→α c′2 (8)

3.2 Reordering interference freedom

Our aim is to eliminate the implications of this reordering behaviour and, there-
fore, enable standard rely/guarantee reasoning despite a weak memory context.
To achieve this, we note that a valid reordering transformation will preserve the
thread-local semantics and, hence, will only invalidate reasoning when observed
by the environment. Such interactions are captured either as invalidation of the
component’s guarantee G or new environment behaviours, as allowed by its rely
condition R. Consequently, reorderings may be considered benign if the modified
variables are not related by G or R.

We capture such benign reorderings via reordering interference freedom. Two
instructions are said to be reordering interference free (rif ) if we can show that
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reasoning over the instructions in their original (program) order is sufficiently
strong to also include reasoning over their reordered behaviour. Consider the
program text β ;α, where α can be forwarded and executed before β, resulting
in an execution equivalent to α〈β〉 ;β. Reordering interference freedom between
α and β under given rely/guarantee conditions is then formalised as follows.

rifa(R,G, β, α) =̂ ∀P ,Q ,M . R,G `a P{β}M ∧ R,G `a M {α}Q ⇒
∃M ′. R,G `a P{α〈β〉}M ′ ∧ R,G `a M ′{β}Q

(9)

Importantly, rifa is defined independently of the pre- and post-states of the
given instructions, as can be seen by the universal quantification over P , M
and Q in (9). This independence allows for the establishment of rifa across a
program via consideration of only pairs of reorderable instructions, rather than
that of all execution traces under which they may be reordered. Such an approach
dramatically reduces the complexity of reasoning in the presence of reordering,
from one of n! transformed programs for n reorderable instructions to n(n−1)/2
pairs. This can be seen in the case where all n instruction reorder, producing n!
permutations, whilst pairs need only consider the 2-combinations of n, equivalent
to n(n − 1)/2.

The definition of rifa extends inductively over commands c with which α can
reorder. Command c is reordering interference free from α under R and G, if the
reordering of α over each instructions of c is interference free, including those
variants of α produced by forwarding.

rifc(R,G, β, α) = rifa(R,G, β, α)
rifc(R,G, c1 ;c2, α) = rifc(R,G, c1, α〈〈c2〉〉) ∧ rifc(R,G, c2, α) (10)

From the definition of executions including reordering behaviour given in (8)
we have c 7→α〈〈r〉〉 c′ ⇒ r ;α ∈ prefix (c) ∧ α〈〈r〉〉≺ r ≺α, where prefix (c) refers to
the set of prefixes of c. Program c is reordering interference free if and only if all
possible reorderings of its instructions over the respective prefixes are reordering
interference free.

rif (R,G, c) =̂ ∀α, r , c′. c 7→α〈〈r〉〉 c′ ⇒ rifc(R,G, r , α) ∧ rif (R,G, c′) (11)

As can be seen from the definitions, checking rif (R,G, c) amounts to checking
rifa(R,G, β, α) for all pairs of instructions β and α that can reorder in c, includ-
ing those pairs for which α is a new instruction generated through forwarding.
Therefore one can reason about a component’s code as follows.

1. Compute all pairs of reorderable instructions, i.e., each pair of instructions
(β, α) such that there exists an execution trace where α reorders before β
according to the memory model under consideration.

2. Demonstrate reordering interference freedom for as many of these pairs as
possible (using rifa(R,G, β, α)).

3. If rifa cannot be shown for some pairs, introduce memory barriers to prevent
their reordering or modify the verification problem such that their reordering
can be considered benign.
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4. Verify the component in isolation, using standard rely/guarantee reasoning
with an assumed sequentially consistent memory model.

We detail steps 1-3 in the following sections and assume the use of any
standard rely/guarantee reasoning approach for step 4.

3.3 Computing all reorderable instructions

Pairs of potentially reorderable instructions can be identified via a dataflow
analysis [13], similar to dependence analysis commonly used in compiler optimi-
sation. However, rather than attempting to establish an absence of dependence,
we are interested in demonstrating its presence, such that instruction reordering
is not possible during execution. This notion of dependence is derived from the
language’s reordering relation, such that α is dependent on β iff β 6←↩ α. All
pairs of instructions for which a dependence cannot be established are assumed
reorderable.

The approach is constructed as a backwards analysis over a component’s
program text, incrementally determining the instructions a particular instruction
is dependent on and, inversely, those it can reorder before. Therefore, the analysis
can be viewed as a series of separate analyses, one from the perspective of each
instruction in the program text.

We describe one instance of this analysis for some instruction α. The anal-
ysis records a notion of α’s cumulative dependencies, which simply begins as
all instructions γ for which γ 6←↩ α. The analysis commences at the instruction
immediately prior to α in the program text and progresses backwards. For each
instruction β we first determine if α depends on β by consulting α’s cumulative
dependencies. Given a dependence exists, α’s cumulative dependencies are ex-
tended to include β’s dependencies via a process we refer to as strengthening,
such that the analysis may subsequently identify those instructions α is depen-
dent on due to its dependence on β. If a dependence on β cannot be shown, the
instructions are considered reorderable, subsequently requiring rifa(R,G, β, α)
to be shown. Moreover, a process of weakening is necessary to remove α’s cu-
mulative dependencies that β may resolve due to forwarding.

To illustrate the evolving nature of cumulative dependencies, consider the
sequence β ; γ ; α where γ 6←↩ α and β 6←↩ γ but β ←↩ α. The analysis from
the perspective of α starts at γ and identifies a dependence, due to γ 6←↩ α.
Therefore, α gains γ’s dependencies via strengthening. The analysis progresses
to the next instruction, β, for which a dependence can be established due to
α’s cumulative dependencies including β 6←↩ γ. Consequently, despite no direct
dependency between α and β, the sequence does not produce reordering pairs
for α. Repeating this process for γ and β ultimately finds no reordering pairs
over the entire sequence, resulting in no rifa checks.

A realistic implementation of this analysis is highly dependent on the lan-
guage’s reordering relation. In most examples, this relation only considers the
variables accessed by the instructions and special case behaviours for memory
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barriers, as illustrated by the instantiation in Section 4. Consequently, cumula-
tive dependencies can be efficiently represented as sets of such information, for
example capturing the variables read by α and those instructions it depends on.
This representation lends itself to efficient set-based manipulations for strength-
ening and weakening.

The analysis has been implemented for both a simple while language and
an abstraction of ARMv8 assembly, with optimisations to improve precision in
each context. In particular, precision can be improved through special handling
of the forwarding case as the effects of forwarding typically result in trivial rifa
checks. To illustrate, recall that forwarding will replace a load from a shared
variable with a value written to the variable earlier in the program. As assembly
instructions are typically limited to performing at most a single variable store
or load at a time, forwarding will transform shared-variable loads into purely
thread-local operations by eliminating the load. Consequently, the reordering of
such an instruction with any further instructions is trivially free of interference,
as the environment cannot observe or influence thread-local instructions.

Both the while language and ARMv8 implementations have been encoded
and verified in Isabelle/HOL, along with proofs of termination (following the
approach suggested in [20]).

Address calculations Dependence analysis is considerably more complex in
the presence of address calculations. Under such conditions, it is not possible
to syntactically identify whether two instructions access equivalent addresses,
complicating an essential check to establishing dependence. Without sufficient
aliasing information the analysis must over-approximate and consider the two
addresses distinct, potentially introducing excess reordering pairs.

The precision of the analysis can be improved using an alias analysis to
first identify equivalent address calculations, feeding such information into the
dependency checks. Precision may also be improved by augmenting the interfer-
ence check, rifa, with any calculations that have been assumed to be distinct.
For example, consider [x ] := e; [y ] := f , where [v ] := e represents a write to the
memory address computed by the expression v . If an alias analysis cannot es-
tablish x = y , it is necessary to consider their interference. As they are assumed
to reorder, a proof demonstrating rifa(R,G, [x ] := e, [y ] := f ) can assume x 6= y .
Such a property extends to any other comparisons with cumulative dependencies.

We have implemented such improvements in our analysis for ARMv8, relying
on manual annotations to determine aliasing address calculations. These aliasing
annotations are subsequently added to each instruction’s verification condition
to ensure they are sound.

3.4 Interference checking

Given the set of reordering pairs, it is necessary to demonstrate rifa on each
to demonstrate freedom of reordering interference. Many rifa properties can be
shown trivially. For example, if one instruction does not access shared memory,
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rifa can be immediately shown to hold as no interference via R could take place.
Additionally, if the two instructions access distinct variables and these variables
are not related by R, then no interference would be observed.

If these shortcuts do not hold, then it is necessary to consider rifa directly
via manual verification. The property can be rephrased in terms of weakest
precondition calculation [7], providing some automation.

3.5 Elimination of reordering interference

Step 3 of the process is intended to handle situations where rifa cannot be shown
for a particular pair of instructions. A variety of techniques can be applied in
such conditions, depending on the overall verification goals. In some circum-
stances, a failure to establish rifa indicates a problematic reordering such that
the out-of-order execution of the instruction pair will violate any variation of
the desired rely/guarantee reasoning. In such circumstances, it is necessary to
prevent reordering through the introduction of a memory barrier.

As these barriers incur a performance penalty, this is not a suitable technique
to correct all problematic pairs. Some reordering pairs can instead be resolved
by demonstrating stronger properties during the standard rely/guarantee rea-
soning in step 4. We describe a series of techniques that can be employed to
extract these stronger properties by modifying a program’s verification condi-
tions and/or abstracting over its behaviour. These techniques, while incomplete,
are easily automated and cover the majority of cases.

Strengthening Establishing rifa may fail in cases where an instruction in a re-
ordering pair modifies the other’s verification condition. In such circumstances,
it is possible to strengthen verification conditions such that the interference be-
comes benign by capturing both the in-order and out-of-order execution be-
haviours. Given a reordering pair (β, α), this is achieved by first determining
the weakest P that solves P{α〈β〉; β}(true), representing the implications of each
instruction’s verification conditions when executed out-of-order. β’s verification
condition is then modified by conjoining this P to it, such that the constraints
of the out-of-order execution are established during standard reasoning.

For example, consider the component (y = 0){z := z + 1; x := y}(true)
where, due to a specialised analysis, the assignment to x has the verification
condition z = 1 ∨ y = 0 (and that for the assignment to z is true). Assume that
R is the identity relation, i.e., no variables are changed by environment steps, and
G is true. This component may be trivially verified when ignoring weak memory
effects, as the verification condition for x := y is transformed by z := z + 1 into
z = 0 ∨ y = 0, clearly implied by the specified precondition y = 0.

However, assuming the two assignments may be reordered, it is necessary
to establish rifa(R,G, z := z + 1, x := y). Unfortunately, such a property does
not hold. Recall that rifa requires an out-of-order judgement for all valid in-
order judgements under all possible pre- and postconditions. Therefore, we need
only identify conditions that are valid for an in-order execution but invalid
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for the out-of-order to disprove rifa. This can be seen with the precondition
z = 0 and postcondition true, as we can establish an in-order judgement of
(z = 0){z := z + 1; x := y}(true) via the same reasoning as above. This does
not hold for the out-of-order case of (z = 0){x := y ; z := z + 1}(true), as z = 0
does not imply z = 1 ∨ y = 0.

Applying the strengthening approach, we compute P for the out-of-order ex-
ecution as z = 1 ∨ y = 0. The verification condition for z := z + 1 is then con-
joined with this P to derive its new condition. As it was originally true, this
trivial results in the verification condition becoming z = 1 ∨ y = 0. With this
new verification condition, we establish rifa(R,G, z := z + 1, x := y), by invali-
dating the in-order judgement.

With rif established, the standard rely/guarantee reasoning in step 4 must
demonstrate (y = 0){z := z + 1; x := y}(true), with the strengthened verifica-
tion condition for z := z + 1. This obviously holds given y = 0 initially.

Ignored reads An additional issue when correcting for rifa derives from the
quantification of the pre- and post-states. This quantification reduces the proof
burden, such that only pairs of reorderable instruction must be considered, but
can introduce additional proof effort where the precise pre- and post-states
are well known and limited reordering takes place. For instance, consider the
simple component (true){x := 1; z := y}(x = 1) with a rely specification that
will preserve the values of x and z always and the value of y given x = 1.
The rely/guarantee reasoning to establish this judgement is trivial. However,
the component will fail to demonstrate rifa when considering the reordering of
x := 1 and z := y , as their program order execution may establish the stronger
(true){x := 1; z := y}(x = 1 ∧ z = y), whereas the reordered cannot.

We employ two techniques to amend such situations. The most trivial
is a weakening of the component’s R specification to remove the relation-
ship between y and x , as it is unnecessary for the component’s verifica-
tion. Otherwise, if this is not possible, the component can be abstracted to
(true){x := 1; chaos z}(x = 1), where chaos v encodes a write of any value to the
variable v . Consequently, the read of y is ignored. Both standard rely/guarantee
reasoning and rif can be established for this modified component, subsequently
enabling verification of the original via a refinement argument.

We propose the automatic detection of those reads that do not impact rea-
soning and, therefore, can be ignored when establishing rif . In general, such
situations are rare as the analysis targets assembly code produced via compi-
lation. Consequently, such unnecessary reads are eliminated via optimisation.
Moreover, the R specification infrequently over-specifies constraints on the en-
vironment.

3.6 Soundness

Soundness of the proof system has been proven in Isabelle/HOL and is available
in the accompanying theories at https://bitbucket.org/wmmif/wmm-rg.
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3.7 Completeness

The proof system is incomplete due to the over-approximations required to
reduce reasoning to pairs of reorderable instructions. This is by design, as
the approach benefits significantly from such simplifications and the prob-
lematic cases appear rare, particularly when the techniques suggested in Sec-
tion 3.5 are applied. As an illustration of these problematic cases, consider
(P){x := v1; y := v2}(true), where P is some precondition, the rely condition
preserves the values of x and y , and the guarantee is true. Moreover, assume the
verification condition for y := v2 requires x 6= y and the instructions can reorder.

When considering both possible execution orderings a sufficient precondition
P would be x 6= y ∧ v1 6= y , as this captures the constraints imposed by the single
verification condition. However, the rif approach will introduce an additional,
unnecessary condition to establish rifa(R,G, x := v1, y := v2). First, observe that
x := v1 modifies the verification condition for y := v2. Therefore, the verification
condition for x := v1 must be strengthened to x 6= y , following the same approach
as the example in Section 3.5. However, the resulting instructions are still not
interference free, as y := v2 can now modify the new verification condition for
x := v1. This can be resolved through an additional application of strengthening,
extending the verification condition for x := v1 to x 6= y ∧ x 6= v2. Consequently,
the approach requires a precondition P stronger than x 6= y ∧ v1 6= y ∧ x 6= v2,
over-approximating the true requirements.

This failure can be attributed to the lack of delineation between the original
components of a verification condition and those added due to strengthening,
as interference checks on the latter are not necessary. We leave an appropriate
encoding of such differences to future work.

4 Instantiating the proof system

In this section, we illustrate instantiating the proof system with a simple while
language. The Isabelle/HOL theories accompanying this work also include an
instantiation for ARMv8 assembly which has been used to verify an implemen-
tation of the Chase-Lev work-stealing deque developed for ARM [17].

We distinguish three different types of state variables: global variables Glb
and local variables Loc, which are program variables, and global auxiliary vari-
ables Aux . Local variables are unique to each thread and cannot be accessed by
others.

Atomic instructions in our language comprise skips, assignments, guards,
two kinds of fences, and coupling of an instruction with an auxiliary variable
assignment and/or with a specific verification condition (similar to an assertion)

inst ::= nop | v := e | guard p | fence | cfence | 〈inst , a := ea〉 | {|pa |}inst

where v is a program variable, e an expression over program variables, p a
boolean expression over program variables, a an auxiliary variable, ea an expres-
sion over program and auxiliary variables, pa a boolean expression over program
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and auxiliary variables, and 〈inst , a := ea〉 denotes the atomic execution of inst
followed by a := ea .

Commands are defined over atomic instructions and their combinations

cmd ::= inst | cmd ;cmd | if p then cmd else cmd | do cmd while(p, Inv)

where Inv denotes a loop invariant. Instructions instantiate individual in-
structions (i.e., α) in our abstract language. Sequential composition di-
rectly instantiates its abstract counterpart. Conditionals and loops are defined
via the choice and iteration operator, i.e., if p then c1 else c2 is defined as
(guard p) ;c1 u (guard ¬p) ;c2, and do c while(p, Inv) as (c ; (guard p))∗ ;
c ; (guard ¬p), where the invariant Inv holds at the start of c’s execution.

A reordering relation
inst←↩ (and its inverse 6inst←↩) is defined over atomic instruc-

tions based on syntactic independence of reorderable instruction [6]. For all in-
structions α and β

fence 6inst←↩ α, α 6inst←↩ fence, guard p 6inst←↩ cfence,
cfence 6inst←↩ α if rd(α) 6⊆ Loc,

guard p 6inst←↩ α if wr(α)∈Glb ∨ wr(α)∈rd(guard p) ∨ rd(guard p)∩rd(α) 6⊆ Loc,
and for all other cases,

β
inst←↩ α if wr(β) 6= wr(α) ∧ wr(α) 6∈ rd(β) ∧ rd(β) ∩ rd(α) ⊆ Loc.

where wr(α) is the program variable written by α and rd(α) the program vari-
ables read by α. Note that a cfence is used to prevent speculative reads of global
variables when placed prior to the reading instruction and after a guard [6].

Forwarding a value to an assignment instruction in our language is defined as
(vα := eα[vβ\eβ ]) ≺ (vβ := eβ) ≺ (vα := eα) and to a guard as (guard p[vα\eα]) ≺
(vα := eα) ≺ (guard p) where e[v\e ′] replaces every occurrence of v in e by e ′.
The instruction after forwarding carries the same verification condition as the
original instruction, i.e., vc(α〈β〉) = vc(α).

Note that auxiliary variable updates and verification conditions do not in-
fluence the reordering relation, as they will not constrain execution behaviour.
Both of these annotations remain linked to their respective instructions during
reordering and forwarding.

4.1 Peterson’s mutual exclusion algorithm

We use Peterson’s mutual exclusion algorithm [22] to demonstrate the workings
of the instantiated proof system. The program (shown in Figure 2) consists of
two threads, each of which aims to get exclusive access to the shared variables
when they are modified in the thread’s critical section (which is represented
by a placeholder in the figure). Fences have been added where required for the
instantiated proof system.

In order to demonstrate our rely/guarantee reasoning, we define a rely condi-
tion for each thread that is reflected by the other thread’s guarantee condition.
These conditions refer to an auxiliary variable a : Boolean, which captures which
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{ flag0 := true;
fence;
〈turn := true, a := false〉
fence;
do
〈r0 := flag1, a := a ∨ ¬flag1〉;
r1 := turn;

while(r0 ∧ r1,flag0 ∧ (a ∨ turn));
{|a |} cfence;

critical section;
{|a |} fence;
flag0 := false;
}

||

{ flag1 := true;
fence;
〈turn := false, a := true〉
fence;
do
〈r3 := flag0, a := a ∧ flag0〉;
r4 := ¬turn;

while(r3 ∧ r4,flag1 ∧ (¬turn ∨ ¬a));
{|¬a |} cfence;

critical section;
{|¬a |} fence;
flag1 := false;
}

Fig. 2. Peterson’s algorithm with fences to guarantee correctness under weak memory

thread can be in its critical section: when a is false, the left thread t0 cannot be
in its critical section, and when a is true, the right thread t1 cannot be in its
critical section. The rely/guarantee conditions can then be phrased as follows:

R0 = G1 = flag0 = flag0′ ∧ ((flag0 ∧ a)⇒ a ′) ∧
(turn = turn ′ ∨ (turn ∧ ¬turn ′ ∧ (flag0⇒ a ′)))

R1 = G0 = flag1 = flag1′ ∧ ((flag1 ∧ a ′)⇒ a) ∧
(turn = turn ′ ∨ (¬turn ∧ turn ′ ∧ (flag1⇒ ¬a ′)))

That is, R0 specifies that (i) the right thread t1 does not modify flag0, (ii) if t0
is in the critical section, which is the case when (flag0 ∧ a), t1 cannot change a,
and (iii) either turn remains unchanged or it is set to false in which case a cannot
be falsified if t0 has not exited its critical section, specified by (flag0⇒ a ′). R1

can be explained similarly.
Reasoning over t0’s code c0 requires showing that it is reordering interference

free, rif (R,G, c0), which holds if rifa(R,G, β, α) for all instructions α, β in c0
such that β ←↩ α (see (9)–(11)). As an example we discuss reordering interfer-
ence freedom on the first two instructions of the original code (without fence
instructions) flag0 := true ; 〈turn := true, a := false〉 which are syntactically in-

dependent and, following the definition of
inst←↩, can execute out-of-order. To show

rifa requires proving that ∀P ,Q ,M .
R,G `a P{flag0 := true}M ∧ R,G `a M {〈turn := true, a := false〉}Q ⇒
∃M ′.R,G `a P{〈turn := true, a := false〉}M ′ ∧ R,G `a M ′{flag0 := true}Q .

Recall from (6) that the pre- and post-conditions of a Hoare triple are stable
and that the instruction satisfies the component’s guarantee. The latter holds for
flag0 := true since G0 does not constrain flag0, and for 〈turn := true, a := false〉
since G0 always allows turn to stay true when it is true and change to true from
false when a changes to false (since this makes flag1⇒ ¬ a ′ true).

Let Q be the predicate flag0 ∧ (a ∨ turn) which is stable under R0 (flag0
cannot be changed, a cannot become false when flag0 is true, and given that flag0
is true turn can only become false when a becomes true). Then, via standard
weakest precondition calculation, M could be flag0 and P could be true each of
which are also stable under R0. Hence, the antecedent of the implication holds.
However, weakest precondition calculation for the same Q in the consequent
requires that M ′ ⇒ (a ∨ turn). This can only be made stable by including
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flag0 in M ′. Hence, via weakest precondition calculation again, we require that
P ⇒ flag0. That is, the program would need to be initialised with flag0 which is
not suitable in the context of Peterson’s algorithm (as flag0 should only be set
when t0 wants to enter the critical section [22]). Therefore, the analysis suggests
including a fence instruction to prevent the reordering of the first and second
instruction.

For all other reordering pairs in t0 we follow similar reasoning (and similarly
for the pairs of t1), resulting in additional fence instructions being required,
as shown in Figure 2, to ensure the correct working of the algorithm. Note
that fences are not required between the instructions in the loop bodies. While

these instructions are reorderable under
inst←↩, they can be proven to be reordering

interference free. This is demonstrated in our Isabelle/HOL theories.

5 Conclusion

This paper presents a truly thread-local approach to reasoning about concurrent
code on a range of weak memory models. It employs standard rely/guarantee rea-
soning to handle interference between threads, and a separate check of reordering
interference freedom to handle interference within a thread due to weak memory
behaviour.

Reordering interference freedom provides evidence that the weak memory
model under consideration will not invalidate properties shown via standard
rely/guarantee reasoning. It is a novel concept that hinges on a thread-local re-
ordering semantics which can be defined for any multicopy atomic weak memory
model, i.e., where a thread’s stores become observable to all other threads at the
same time. Such memory models include the widely used x86-TSO and ARMv8
processor architectures, and the open-source RISC-V architecture.

Importantly, our approach reduces the check of reordering interference to only
pairs of instructions, thereby significantly reducing its complexity. Moreover, the
computation of these pairs has been automated along with the validation of triv-
ially benign reordering pairs. Consequently, the only additional manual burden
is the establishment of freedom of reordering interference between instruction
pairs exhibiting intricate interactions via rely/guarantee conditions. In situa-
tions where freedom of reordering interference cannot be shown, our approach
includes methods to amend the program, to prohibit reordering behaviour, or
modify its verification conditions, such that stronger arguments for reordering
interference freedom may be shown.

The paper exemplifies an instantiation of the approach for a simple while
language and memory model, and uses it to verify the mutual exclusion property
of Peterson’s algorithm. The approach is also instantiated to a more realistic
assembly language, verifying a work-stealing deque developed specifically for
ARM processors. These results, along with a soundness proof for our approach,
have been encoded in Isabelle/HOL.

16



References

1. P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo. Context-bounded analysis
for POWER. In A. Legay and T. Margaria, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, volume 10206 of Lecture Notes in Computer Science, pages 56–74, 2017.

2. P. A. Abdulla, M. F. Atig, B. Jonsson, M. L̊ang, T. P. Ngo, and K. Sagonas.
Optimal stateless model checking for reads-from equivalence under sequential con-
sistency. Proc. ACM Program. Lang., 3(OOPSLA):150:1–150:29, 2019.

3. J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.,
36(2):7:1–7:74, 2014.

4. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ con-
currency. In T. Ball and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, pages
55–66. ACM, 2011.

5. H. Boehm. Can seqlocks get along with programming language memory models? In
L. Zhang and O. Mutlu, editors, Proceedings of the 2012 ACM SIGPLAN workshop
on Memory Systems Performance and Correctness: held in conjunction with PLDI
’12, pages 12–20. ACM, 2012.

6. R. J. Colvin and G. Smith. A wide-spectrum language for verification of programs
on weak memory models. In K. Havelund, J. Peleska, B. Roscoe, and E. P. de Vink,
editors, Formal Methods - 22nd International Symposium, FM 2018, volume 10951
of Lecture Notes in Computer Science, pages 240–257. Springer, 2018.

7. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, Heidelberg, 1990.

8. S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and
P. Sewell. Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In R. Bod́ık and R. Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pages 608–621. ACM, 2016.

9. N. Gavrilenko, H. P. de León, F. Furbach, K. Heljanko, and R. Meyer. BMC for
weak memory models: Relation analysis for compact SMT encodings. In I. Dillig
and S. Tasiran, editors, Computer Aided Verification - 31st International Con-
ference, CAV 2019, volume 11561 of Lecture Notes in Computer Science, pages
355–365. Springer, 2019.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

11. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

12. J. Kang, C. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics
for relaxed-memory concurrency. In G. Castagna and A. D. Gordon, editors, Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, pages 175–189. ACM, 2017.

13. G. A. Kildall. A unified approach to global program optimization. In Proc. of
POPL, pages 194–206. ACM, 1973.

14. M. Kokologiannakis, I. Kaysin, A. Raad, and V. Vafeiadis. Persevere: persistency
semantics for verification under ext4. Proc. ACM Program. Lang., 5(POPL):1–29,
2021.

17



15. M. Kusano and C. Wang. Thread-modular static analysis for relaxed memory
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