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Abstract

MAZE is an extension of the Object-Z specification language supporting the specifica-
tion and development of multi-agent systems (MAS). Following recommendations from
the agent-oriented software engineering community, it supports three distinct levels of
abstraction: (i) the macro level which focusses on the system’s overall, global behaviour,
independently of how the agents of the system operate and interact, (ii) the meso level
which focusses on agent interactions, and (iii) the micro level which focusses on the
operation of individual agents. Object-Z’s high-level support for component-based speci-
fication, which is well suited to modelling MAS, is complemented in MAZE with support
for action refinement to facilitate the top-down development process from the macro to
micro level, and with a number of syntactic conventions aimed at abstractly specifying
the low-level mechanisms required for dealing with asynchronous communication and
timing constraints at the micro level. The latter are shorthands for existing Object-Z
notation and so require no redefinition of Object-Z’s semantics. In this paper, we provide
an overview of MAZE and illustrate its use on a non-trivial case study: a swarm robotic
algorithm for self-assembly.

1. Introduction

A multi-agent system (MAS ) is a system comprising a number of interacting, au-
tonomous agents, i.e., components which can initiate actions without external control.
Our notion of an agent includes not only “intelligent” agents [1, 2], but also components
which autonomously follow simple protocols such as the sensors in a self-organising sen-
sor network [3], or the nodes of an ad-hoc mobile network which continually adapt their
routing patterns to the current network topology [4].

Zambonelli and Omicini [5] argue that the disciplined engineering of MAS should
proceed at three distinct levels of abstraction.

1. At the macro level, the engineer is concerned with the overall system functionality,
ignoring the operation and interaction of its agents.
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2. At the meso level, the engineer considers potential agent interactions and interac-
tion paradigms that will lead to the desired system functionality.

3. At the micro level, the engineer is concerned with the operation of individual agents,
choosing an implementation that results in the required meso-level interactions.

A correct design of MAS should keep the three levels consistent so that the system
functionality can be achieved by the interactions of the agents.

We have adopted this three-level approach in the formal development of multi-agent
systems [6, 7, 8], leading to the development of an extension to Object-Z [9] called
MAZE [10]. The extension supports action refinement [11] as a means of developing a
specification from the macro level, where operations are coarse-grained, through to the
micro level, where the granularity of operations is usually much finer. Simulation rules
for checking action refinement provide proof obligations that designers should satisfy
at each development step. We show through our case study that they are useful for
detecting design problems as well as selecting solutions. The extension also involves a
number of syntactic conventions, aimed at facilitating the specification of inter-agent
communication mechanisms and associated timing constraints at the micro level. The
syntactic conventions are analogous to those used in Z for modelling sequential systems
[12]. That is, they are merely a shorthand for what could otherwise be expressed using
more basic syntax. For this reason, they do not require an extension to the existing
semantics of Object-Z.

In this paper, we extend the work in [10] by providing a more practical verification
method for action refinement in MAZE and proving it sound with respect to a high-level,
trace-based definition of action refinement. We also apply MAZE to a non-trivial case
study: a swarm robotic self-assembly algorithm based on the work of Støy and Nagpal
[13, 14]. We begin by introducing our case study in Section 2. In Section 3, we introduce
MAZE and our proof method for action refinement in MAZE along with the proof of
its soundness. In Section 4, we illustrate the use of MAZE for incrementally developing
specifications of MAS from the macro to the micro level including the use of syntactic
conventions for modelling individual agents and their interactions at the micro-level.
Related work is discussed in Section 5 before we conclude the paper in Section 6.

2. A gradient-based approach to self-assembly

Self-assembly algorithms allow a swarm of robots to autonomously form a shape or
pattern appropriate for a given task. Many different algorithms have been devised for
the process of morphogenesis, i.e., “growing” the pattern or shape from an unordered
swarm of robots [15, 16, 14, 17, 18]. In this section, we describe the approach of Støy
and Nagpal [13, 14]. Their algorithm utilises virtual gradients created and propagated
by the robots in the swarm to recruit other robots in order for the mass to assemble into
a required 3-dimensional shape. The self-assembly algorithm we verify in the paper is
based loosely on this work; the differences are discussed below.

2.1. Støy and Nagpal’s algorithm

The robots, referred to as modules by Støy and Nagpal, form a connected mass. Each
robot is capable of local communication with immediate neighbours only, i.e., those with

2



Figure 1: Two-dimensional representation of a connected mass of robots forming a desired shape.
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Figure 2: Robots follow a gradient established by the seed robot to reach a position in the target shape.

which they have physical contact. They are also capable of movement over or around
their neighbours to form a required shape (see Figure 1).

Initially, one robot, called the seed , is provided with a representation of the shape to
be formed (which we will refer to as the target). The seed assumes a particular position
in this target, and then recruits other atoms to join the target. This is achieved by
setting up a recruitment gradient to attract other robots to neighbouring positions in the
target. The recruitment gradient is a virtual gradient, or slope, represented by integer
values stored by the robots (see left-hand side of Figure 2). It is set up by the seed robot
storing an integer value, say 0, then incrementing that value by 1 and broadcasting the
result to each of its neighbours. These store the received value, increment it by one and
then broadcast it to each of their neighbours. The result is that each robot stores its
distance from the seed (see left-hand side of Figure 2).

A robot follows a gradient by moving from a position next to a robot with gradient
value n to a position next to another robot with gradient value n − 1. By following
a gradient in this way it eventually reaches the seed (see right-hand side of Figure 2).
The seed passes such a robot the target representation and it takes on one of the vacant
target positions. After this, it acts like a seed to recruit any neighbours it requires.

For the algorithm to work, Støy and Nagpal identify two constraints. The first of these
is that the robots must remain connected. If one or more robots becomes disconnected
from the rest, they can no longer receive messages (see Figure 3). Hence, an additional
virtual gradient, called the connection gradient , is initially established by the seed, and
a robot can only move if its distance from the seed is greater than or equal to those of
its neighbours, i.e., it is not required to connect its neighbours to the mass.

The second constraint is that the desired shape must have enough spaces in it to
allow robots to move to any required position. This is ensured by requiring that target
shapes conform to a particular porous “scaffold” structure. Other than conforming to
such a structure there are no constraints on the target shape except that it must be a
connected mass of robots. Various methods for efficiently representing the target within
a robot have been proposed by Støy and Nagpal; in this paper we abstract from such
details.
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Figure 3: Robots should not become disconnected from the swarm as a consequence of other robots
moving.

2.2. Modifications to the algorithm

The algorithm we verify in this paper differs from that of Støy and Nagpal in two
aspects. Firstly, they do not discuss the issue of multiple, intersecting gradients. This
can occur due to more than one robot creating a gradient, or when a single gradient
returns to a robot due to a loop in the swarm structure. To deal with this, we require a
robot which already has a recruitment gradient value to ignore any values that it receives
which would result in increasing this gradient value. This results in robots storing a value
representing the shortest distance to a robot which is the seed of a recruitment gradient.

To ensure progress under this approach, we require also that, once a robot has all the
neighbours it needs, the gradient leading to it is ‘cancelled’ (thus allowing other gradients
to propagate). This proposal will be specified, and verified to work, when we consider
the meso-level model of the algorithm in Section 4.

The second change to the algorithm of Støy and Nagpal is that we do not have a
connection gradient. Instead, we use the recruitment gradients to determine when an
atom is closer than its neighbours to a seed atom in the target. If it is closer (such as
the leftmost atom with gradient value 2 in Figure 3), than that atom should not move
since its neighbours may rely on it staying in position to remain connected to the mass.
We refer to such neighbouring atoms as being dependent on the atom which is closer to
the seed.

3. MAZE

3.1. Macro-level specification

A macro-level specification in MAZE is captured by the class construct of Object-Z
[9]. It encapsulates a collection of type and constant definitions, a schema describing
the specification’s state space (in terms of variables and an invariant), a schema defining
the initial state, and a set of operations defining possible agent actions. A macro-level
specification has the form:

Each action in MAZE is defined with an Object-Z operation schema of the following
form:

Acti
∆(~u)
declarations of local variables ~x

body(~c, ~v , ~x , ~v ′)

where ~u is the subset of the state variables ~v whose values can be changed by the
operation (all other variable values remain unchanged), and ~v ′ denotes the post-state
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values of the variables ~v . Semantically, Object-Z operations are guarded . When the
predicate body(~c, ~v , ~x , ~v ′) cannot be satisfied then the operation cannot occur. This is
in contrast to Z operations which can occur at any time but have undefined behaviour
when their predicate cannot be satisfied [12].

System

declarations of types ~t and constants ~c

declarations of state variables ~v

inv(~c, ~v)

INIT

init(~c, ~v)

Act1
...
Actn

Often the system is modelled at the
macro level by a single action which
reaches the desired state. Termination in
the desired state is guaranteed by mak-
ing the guard of the action evaluate to
false in the desired state. In general, when
there is more than one action, we need to
prove that the specification reaches a state
where no action is enabled and that the
negation of the disjunction of the actions’
guards implies the desired state.

This approach will not always reflect
the ongoing reactive behaviour of the system we are modelling; however, it is sufficient
for verifying, through the successive refinement of the action to a sequence of finer-
grained actions at the meso and micro level, that a particular MAS design produces a
desired goal under certain conditions (captured by the initial state schema). This will
be demonstrated in Section 4.

3.2. Meso-level specification and action refinement

Macro-level specifications abstract from interactions between agents, focussing in-
stead on the outcomes of those interactions. The goal at the meso level of development
is to decompose the abstract actions of the macro level to actions representing agent
interactions. The latter are still in terms of the global state of the system and act as a
bridge between the macro level and micro level where individual agent behaviours are
specified.

Adding the interactions as we develop the specification to the meso level, and ulti-
mately the micro level, requires the addition of further actions, e.g., to model the sending
and receiving of messages. Derrick and Boiten [19] define notions of weak and non-atomic
refinement for Object-Z which allow an abstract operation to be refined to a sequence
of concrete ones. These are not ideal for our purposes, however, as they do not allow
guards to be strengthened. The complexity of individual agents often arises from their
“intelligent” decision-making procedures. These procedures determine whether an agent
performs a particular action in a given context. At a high-level of abstraction, we would
like to ignore such procedures by leaving the choice of actions nondeterministic. Adding
them at a lower level of abstraction would then require that the occurrence of certain
actions be restricted, i.e., their guards strengthened. We therefore base our approach
on the simulation rules for action refinement in action systems by Back and von Wright
[11]. Here we consider the forward simulation rules only, and adapt them for Object-Z.
The backwards simulation rules could be similarly adapted.

An action system has a state space, an initialisation condition, and a set of actions.
The actions have guards which determine when they are enabled. Action systems behave
by repeatedly executing enabled actions until none are enabled, or an enabled action
aborts (its precondition is violated). For Object-Z, there are no aborting states since the
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guard of an operation guarantees that the operation’s definition can be satisfied. A state
in which no actions are enabled is called a terminating state.

A computation of an action system is a finite or infinite sequence of states generated
by an execution of the action system. The first state of a computation satisfies the initial
condition. Each two adjacent states correspond to a state transition satisfying an action.
A finite computation ends with a terminating state.

Action refinement allows us to develop several concrete actions whose sequential com-
position simulates an abstract action. When action refinement is considered between
two action systems, we only consider their observable behaviours. A pair of mappings
f : ΣA → ΣE / g : ΣC → ΣF map the state of the abstract/concrete system to the state
of observable variables. A relation h : ΣE ↔ ΣF from the observable abstract state space
to the observable concrete state space is defined to indicate which states are considered
equivalent in both systems. In many cases, h is an identity relation and all variables of
the abstract system are observable (i.e., ΣA = ΣE ). A transition is called a stuttering
transition of the abstract/concrete system if its pre-state and post-state are mapped to
the same observable state according to f /g ; otherwise, the transition is called a change
transition.

Given a computation c of the abstract/concrete system, we can obtain an observable
trace by removing any stuttering transitions. Let A be the abstract system and C be the
concrete system. We use the notation tr(A, f ) and tr(C , g) to denote the set of observable
traces in A and C respectively. In general, we can define a retrieve relation R =̂ f ; h; g−1

relating the abstract state space to concrete state space, i.e., R : ΣA ↔ ΣC .

Definition 1. (Action refinement) Let C and A be action systems with mappings f , g
and relation h. R = f ; h; g−1 is a retrieve relation. We say C is a refinement of A with
respect to R, denoted by C wR A, if and only if for any finite trace t in tr(C , g), there
exists a finite trace s in tr(A, f ) such that #s = #t and ∀ i : 1..#t • (s[i ], t [i ]) ∈ h; and
for any infinite trace t in tr(C , g), there exists an infinite trace s in tr(A, f ) such that
∀ i : N • (s[i ], t [i ]) ∈ h. 3

The definition of action refinement implies that

1. for any transitions in the concrete system from and to observable states, there is a
transition in the abstract system from and to observable states that are related by
the retrieve relation R;

2. if an abstract observable trace can be extended to an observable state, the related
concrete trace can be extended to a related observable state.

For a given Object-Z specification, the change and stuttering transitions are particular
occurrences of the specification’s operations, i.e., particular pre-state/post-state pairs
that satisfy an operation’s predicate. A single operation can have some occurrences
which are change transitions, and some which are stuttering transitions, depending on
whether or not the post-state of the operation is related to the same observable state as
the pre-state. An example of this will be given when we return to our case study below.

Proving action refinement using Definition 1 is not practical due to the need to per-
form checks on traces. Hence we introduce a simulation-based approach which simplifies
the refinement checking to checks on actions. Although the conditions (inspired by those
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of Event-B [20]) are slightly stronger than Definition 1, they are much simpler to check.
The rules are for forward simulation; backward simulation could be similarly defined.

Definition 2. (Forward Simulation) Let A be an Object-Z class with state schema
AState, initial state schema AInit , and operation occurrences partitioned into change
transitions AChange0, . . . , AChangen and stuttering transitions AStutt0, . . . ,AStuttm for
some n,m : N. Similarly, let C be an Object-Z class with state schema CState, ini-
tial state schema CInit , and operation occurrences partitioned into change transitions
CChange0, . . . , CChangel and stuttering transitions CStutt0, . . . ,CStuttk for some l , k : N.
A is refined by C when there exists a retrieve relation R : ΣA ↔ ΣC (modelled by a
Z schema as in [19]) which relates the states of A to those of C such that the follow-
ing hold. (Schemas are used below as declarations and predicates as in Z [12]. The Z
notation pre A returns the guard of operation A.)

Initialisation: Initialisation in C simulates initialisation in A.

∀CState • CInit ⇒ (∃AState • AInit ∧ R)

Action Simulation: Any change transition CChangec in C simulates some change
transition AChangea in A; any stuttering transition CStuttc in C simulates the identity
transition in A.

∀AState,CState,CState ′ • R ∧ CChangec ⇒ (∃AState ′ • AChangea ∧ R′)

∀AState,CState,CState ′ • R ∧ CStuttc ⇒ (∃AState ′ • IDA ∧ R′)

where IDA is the identity operation on AState.

Termination: Any terminating state in C is related only to terminating states in A.

∀AState,CState •
R ∧ ¬ pre(CChange0 ∨ . . . ∨ CChangel ∨ CStutt)⇒

¬ pre(AChange0 ∨ . . . ∨ AChangen ∨ AStutt)

where AStutt = (AStutt0 ∨ . . . ∨ AStuttm) and CStutt = (CStutt0 ∨ . . . ∨ CStuttk ).

Stuttering Convergence: Any state in C from which infinite stuttering is possible is
related only to states in A from which infinite stuttering is possible.

∀AState,CState •
R ∧ (∀ i : N • ∃CState ′ • CStutt i ∧ (pre CStutt)′)⇒

(∀ j : N • ∃AState ′ • AStutt j ∧ (pre AStutt)′)

where T i means sequentially performing transition T for i times. 3

To prove the above simulation rules are sound, we need to show that they are suffi-
cient to imply action refinement as defined in Definition 1.

Soundness Proof: For any computation c of a concrete system C and its observable
trace t belonging to tr(C , g), we need to construct a trace s belonging to tr(A, f ) such
that if t is finite, #s = #t and ∀ i : 1..#t • (s[i ], t [i ]) ∈ h, and if t is infinite s is infinite
and ∀ i : N • (s[i ], t [i ]) ∈ h . The constructive proof is as follows.
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(1) According to the Initialisation rule, there exists an abstract initial state σ1 which is
related to c[1] by R, i.e., (f (σ1), t [1]) ∈ h. We let s = 〈f (σ1)〉 for any such σ1.

(2) For each further state c[i ] of c in turn, we proceed as follows. The transition
(c[i − 1], c[i ]) is either a change transition or a stuttering transition.

(2.1) If it is a change transition, according to the Action Simulation rule, there is an
abstract state σi such that the pair (σi−1, σi) belongs to a change transition of A and
(f (σi), t [i ]) ∈ h. We append f (σi) to s.

(2.2) If it is a stuttering transition, we have g(c[i − 1]) = g(c[i ]) and c[i ] is removed in
t . According to the Action Simulation rule, σi−1 is related to c[i ] by R.

We then have #s = #t and for i ∈ 1..#t , (s[i ], t [i ]) ∈ h if t is finite, and s is infinite and
for i ∈ N, (s[i ], t [i ]) ∈ h if t is infinite. Next we need to show that s cannot be extended
beyond the observable transitions of t when t is finite.

(4) According to the Termination rule, if c ends with a terminating state, all abstract
states related by R are terminating states in A.

(5) The Stuttering Convergence rule guarantees that if the concrete computation c di-
verges, i.e., c is infinite while t is finite ending in a divergent state from which infinite
stuttering is possible, the abstract trace s also ends in a divergent state. In the case
where the abstract system has no stuttering transitions, the Stuttering Convergence rule
guarantees that c does not diverge. 2

In the case where all transitions in the abstract system are change transitions, the
stuttering convergence condition can be simplified to require that the execution of stut-
tering transitions in the concrete system converges, i.e., they can be only executed a
finite number of times. It can be expressed as

∀CState • ∃N : N • ∀CState ′ • CStuttN ⇒ ¬ pre CStutt(Cstate ′) (∗)
for a natural number N .

In general cases, it is sufficient to prove the above convergence condition by con-
structing a variant W which is a natural number or a finite set so that every stuttering
transition in concrete system C decreases it, e.g.,

∀CState,CState ′ • CStutt ⇒W ′ ⊂W .

With the variant, the proof can be done by just considering the stuttering transitions
once rather than checking its iterative executions. However, in many complex cases, con-
structing such a variant is complicated. In such cases, we have to analyse the behaviours
of the stuttering transitions and prove condition (∗) is true.

3.3. Micro-level specification

At the micro level of development we produce a specification of the local behaviour
of individual agents. A specification (syntactically and semantically equivalent to a
MAZE macro-level specification) is provided for each type of agent in the system. A
further system specification captures the collection of agents and their effect on their
environment.

To show that such a collection of agents refines the meso-level specification, we need
to be able to reason about the mechanisms by which the agents interact. In MAZE, all
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agents are modelled as interacting via asynchronous message-passing. The justification
for this is as follows. As there is no centralised control, messages may be sent to an agent
at any time, including when it is busy with another message. Hence, messages need
to be buffered (since allowing messages to be lost would greatly complicate the simple
micro-level protocols we are trying to establish). In the implementation of a MAS, the
buffering may be part of the communication medium, e.g., when agents are distributed
over a network, or part of the agent, e.g., when communication is wireless and effectively
synchronous between agents. The robot self-assembly case study of this paper is an
example of the latter, where agent-to-agent communication occurs via direct connections
between atoms which are in physical contact with each other.

The system specification at the micro level differs from those at other levels in that it
refers to the specification(s) of individual agents. The semantics, based on that of object
instantiation in Object-Z [9], enables agent instances to be declared and the state of
such instances to be accessed using the standard notation from object orientation, e.g.,
the notation a.v denotes the state variable v of agent a. We also allow local types and
constants of agent specifications to be accessed via dot notation, e.g., A.T denotes the
local type T of agent specification A. For each agent specification in MAZE, these local
types include a type message defined as a Z free type. It defines the kinds of messages
the agent can send and receive.

Although it is possible to realise the asynchronous message passing in standard
Object-Z, it can lead to specifications which are awkward to read due to the details
of the particular system under development being intermingled with those of the under-
lying communication mechanisms. In MAZE, we separate these details by capturing the
latter implicitly via a number of syntactic conventions.

Special syntax is introduced to specify a collection of interacting agents. TA defines
a topology of agents of type A in terms of a finite function whose domain is the set of
all agents in the topology and maps each such agent to the agents to which it can send
messages, i.e., TA = (A 7 7→ FA). Note that there are no constraints on the function
allowing uni-lateral sending of messages, and agents which are isolated and unable to
send or receive messages. Typically, constraints will be added in the specification to
restrict the function as required.

The notation TA not only introduces a topology of agents of type A, but also implic-
itly introduces their initialisation (according to the initial state schema of A) and system
actions allowing any agent in the topology to perform any enabled action. These actions
send messages to and receive messages from an implicit global buffer. The buffer is un-
ordered allowing messages to be received by the agent in a different order to which they
are sent. This may model the use of different routes through a communication medium
such as the Internet, or the ability of an agent to prioritise messages in its internal buffer.

Finally, the system specification may include explicitly defined system actions that
change the agents’ environment and topology. Such actions may occur either indepen-
dently (when the environment itself can change) or in response to an agent action. In
the latter case we follow the name of the system action with a tag < a : dom t • a.Act >
(where t is an object topology). The tag declares an agent a belonging to the topology
t , and an action of that agent A which must occur for the system action to occur. The
agent a declared by the tag may be referenced throughout the system action’s definition.

Definition 3. (System specification) The following two specifications are semantically
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equivalent where Act1, . . . ,Actn are the actions of agent specification A. ([] is the Object-
Z distributed choice operator which is semantically equivalent to an existential quantifier
[9]).

S

t : TA

SysAct1
details of SysAct1

SysAct2 < a : dom t • a.Act1 >
details of SysAct2

S

t : A 7 7→ FA
buffer : bag(A.message×A×A)

INIT

∀ a : dom t • a.INIT

buffer = [[ ]]

SysAct1
details of SysAct1

SysAct2 =̂ [] a : dom t •
a.Act1 ∧ [details of SysAct2]

Act2 =̂ [] a : dom t • a.Act2
...

Actn =̂ [] a : dom t • a.Act1

where the implicit variable buffer models the unordered, global buffer as a bag (allow-
ing an agent to send a message multiple times). Each element of the buffer is a tuple
(m, a, b) where m is a message, a is the agent which sent m, and b is the agent to which
the message has been sent. 3

For specifying agent actions in MAZE, two message-related predicates are introduced:
send for modelling messages being sent to the global buffer (send(m, a) models a mes-
sage m being sent to agent a, and send(m) models a message being broadcast to all
connected agents) and receive for modelling messages being received from the buffer
(receive(m, a) models the receipt of a message m from agent a). Each action in an
agent specification may have a single receive predicate (as part of its guard) and a
single send predicate (as part of its postcondition).

A predicate progress(s, r) is also introduced for use in agent specifications. It is
true when the system has progressed to a point where all messages in set s that have
been sent by the agent and all messages in set r that have been sent to the agent have
been received. This mechanism provides a way of abstracting from the use of timers and
timing constraints required in an implementation of the MAS [21, 22].

For agents of type A, the formal definitions of send, receive and progress are given
in terms of an implicit variable buffer in the system specification as follows.

Definition 4. (Message passing) When we apply the agent action Act (using the
notation a.Act) in a MAS specification with a topology of agents t , the receive and
send predicates introduce an additional guard G and additional postcondition buffer′ =
(buffer ∪- R) ] S to the system operation where
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• G is (m, b, a) @− buffer when Act includes receive(m, b), and true otherwise.

• R is [[(m, b, a)]] when Act includes receive(m, b), and [[ ]] otherwise.

• S is [[(m, a, b)]] when Act includes send(m, b) and b ∈ t(a), and, given t(a) =
{b1, . . . , bn}, [[(m, a, b1), . . . , (m, a, bn)]] when Act includes send(m), and [[ ]] other-
wise. 3

Definition 5. (Progress) When we apply the agent operation Act (using a.Act), each
predicate of the form progress(s, r) where s and r are of type Pmessage introduces an
additional guard:

∀ b : A • (∀m : s • (m, a, b) 6@− buffer) ∧ (∀m : r • (m, b, a) 6@− buffer) 3

To illustrate the use of these message-related predicates, imagine a system in which
an agent a : Agent broadcasts a request for assistance with a certain task. Those neigh-
bouring agents that are able to assist respond to the broadcast message, and all others
ignore it. Agent a needs to wait for all responses before it can proceed with dividing the
task. Since it doesn’t know how many responses it is waiting on, this would probably be
implemented by waiting for a given time. In MAZE, we would abstract from this timing
constraint using the progress predicate (see below).

The operation for sending a request would be specified with a send predicate with a
single parameter (request : message). The operation for receiving and responding to a
message would be specified with a receive and send predicate. In this case, the send
predicate would have a second parameter to specify that the message is sent only to the
agent which initiated the request. The operation for ignoring a request would have just
a receive predicate. Of course, the operations would have additional predicates (elided
below) relating to when they would send a request, and under what circumstances they
would respond or ignore a request they have received.

SendRequest
send(request)
. . .

Respond
a : Agent

receive(request , a)
. . .
send(response, a)

IgnoreRequest
a : Agent

receive(request , a)
. . .

The agent a which sent the request would also have an operation to receive responses,
and another to divide the task once all responses have been received. The latter should
only occur after all connected agents have received the request, and all subsequent re-
sponses have been received by a. In a real system, this would involve a timing constraint
based on maximum times for message transmission between connected agents, and max-
imum message processing and response times [21, 22]. In MAZE, we abstract from this
using a progress predicate which does not allow the operation to occur while either
request messages from a, or response messages to a, remain in the buffer, i.e., while such
messages have not yet been received.
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ReceiveResponse
b : Agent

receive(response, b)
. . .

DivideTask
progress(request , response)
. . .

4. Case study

In our earlier work [10], we illustrated MAZE on a simple leader-election protocol
employed in the cluster-based routing protocol of Gerla et al. [4]. Here we apply it to a
more significant case study: the development of Støy and Nagpal’s self-configuring robot
swarm.

4.1. Macro level

System1

[Position]

target : FPosition

atoms : FPosition

#atoms = #target

INIT

true

Configure
∆(atoms)

atoms 6= target
atoms ′ = target

The initial macro-level specification
System1 has a constant target which is
a finite set of positions in 3-dimensional
space representing the desired configura-
tion of the robots. A variable atoms rep-
resents the positions of the finite set of
robots, referred to in this paper as ‘atoms’.
An invariant constrains the number of
atoms to be the same as the number of po-
sitions in the target shape. We introduce
the type Position without constraining it
in any way. We could be more precise and
define positions to consist, for example, of
a triple of real numbers. For our purposes,
however, the more abstract definition suf-
fices.

The behaviour is modelled by a single
action which reaches the desired goal. Ini-
tially, the positions of the atoms are not
constrained. The action Configure cap-
tures the desired goal of the system: place-
ment of an atom at each target position.
It is enabled at most once after which the

system’s behaviour terminates.
In the more concrete macro-level specification System2, we distinguish those atoms

that are fixed in a target position from those that are still able to move despite being
in a target position: the former represented by a variable placed . There is no explicit
restriction on placed initially, although it is implicitly restricted via the invariant which
requires it to be a subset of atoms ∩ target .

System2

[Position]

target : FPosition

atoms : FPosition
placed : FPosition

#atoms = #target
placed ⊆ atoms ∩ target

INIT

true

Place
∆(placed)

placed ⊂ target
∃ p : target \ placed •

placed ′ = placed ∪ {p}

The action Place fixes a single atom
in a target position, modelled by increas-
ing the number of atoms in the set placed .
It also allows the set atoms to change in
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any way that satisfies the invariant. The
specification performs Place once for each
atom that is not initially in placed . Af-
ter this, the specification terminates with
placed = target and hence due to the in-
variant the desired state, atoms = target .

The mappings f and h for this refine-
ment step are identity relations. The map-
ping g captures the fact that the atoms
are only regarded as being observed when
the target is achieved. To improve the
readability, we mark the variables in both
specifications with subscripts , i.e., v1 de-
notes variable v from System1, v2 denotes
v from System2, and write the observable
variables using a sans serif font.

f =̂ target1 = target1 ∧ atoms1 = atoms1
h =̂ target1 = target2 ∧ atoms1 = atoms2
g =̂ target2 = target2 ∧ (placed2 = target2 ⇒ atoms2 = atoms2)

The refinement from System1 to System2 can be verified using the retrieve relation
R =̂ f ; h; g−1 relating the states from System1 to states from System2.

R =̂ target1 = target2 ∧ (placed2 = target2 ⇒ atoms1 = atoms2)

For brevity, we directly give the definition of the retrieve relation R for all subsequent
refinement steps in the case study instead of f , g and h.

The division into change and stuttering actions is according to the retrieve relation
R. Every occurrence of Configure is a change action in System1. For System2, only
the occurrence of Place where the post state establishes placed2 = target2 is a change
action. Its other occurrences are stuttering actions. In this case, the proof of the rules
of Definition 2 is straightforward.

Initialisation. Trivially holds since Init of System1 is true.

Action Simulation. Holds since each occurrence of Place where placed2 = target2 sim-
ulates Configure, and each other occurrence of Place simulates the identity transition of
System1.

Termination. Holds since System2 terminates only when placed2 = target2 which is
related to the terminating state atoms1 = target1 of System1.

Stuttering Convergence. The stuttering occurrences of Place in System2 will termi-
nate when all atoms are in target positions. To prove this we use the number of atoms
not in a target position as a variant, i.e., W = #target −#placed .

4.2. Meso-level

The goal at the meso level of development is to decompose the abstract actions of
the macro level to actions representing agent interactions. The latter are still in terms
of the global state of the system and act as a bridge between the macro level and micro
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System3

[Position]

target : FPosition
nb : Position ↔ Position

∀ p, q : target • (p, q) ∈ nb∗

atoms : FPosition
placed : FPosition
recruiters : FPosition

#atoms = #target
placed ⊆ atoms ∩ target
recruiters ⊆ placed

INIT

recruiters = ∅

...

level where individual agent behaviours
are specified.

We begin developing the meso-level
specification of our case study by decom-
posing action Place from System2. The
strategy for placing robots in our target
implementation is to have robots which
are already placed recruit them. Each
Place action could therefore be decom-
posed into a sequence of two concrete ac-
tions: the first corresponding to the re-
cruitment, and the second to the recruited
robot moving. This is specified in the
class System3. To specify that only atoms
with vacant neighbouring positions send
recruitment messages, we introduce a con-
stant nb : Position ↔ Position denoting
the neighbour relation between positions.
We assume that the target is fully con-
nected, i.e., ∀ p, q : target • (p, q) ∈ nb∗.
To ensure an atom moves only when it is recruited, we introduce a variable recruiters :
FPosition to denote those atoms that recruited others.

The action Place is then replaced by two concrete actions Recruit and Move defined
as follows.

Recruit
∆(recruiters)
p, q : Position

(p, q) ∈ nb
p ∈ placed \ recruiters
q ∈ target \ placed
recruiters ′ = recruiters ∪ {p}

Move
∆(atoms, placed)
p, q : Position

(p, q) ∈ nb
p ∈ recruiters
q ∈ target \ placed
placed ′ = placed ∪ {q}

The action Recruit corresponds to an atom at position p recruiting an atom for a
vacant neighbouring position q . The action Move corresponds to an atom moving to
a vacant position neighbouring a ‘recruiter’ atom. Note that the set atoms is changed
implicitly by this action.

In order to ensure that the above design of the system is correct, we need to check that
System3 refines System2. Let R2 be the retrieve relation between the states of System2
and System3. We consider every variable in System2 to be mapped to the variable with
the same name in System3.

R2 =̂ (atoms2 = atoms3) ∧ (target2 = target3) ∧ (placed2 = placed3)

Since R2 equates the variables atoms, target and placed of System2 and System3,
these variables are linked via the mappings f , g and h, and hence are observable. There-
fore, every occurrence of Place (since it changes variable placed) is a change action.
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Similarly, every occurrence of Move (since it changes atoms and placed) is a change ac-
tion. Occurrences of Recruit change only the variable recruiters. We choose this variable
to be non-observable. Hence, all occurrences of Recruit are stuttering actions.

Initialisation. It is trivial to prove System3.INIT ⇒ System2.INIT ∧ R2.

Action Simulation. We can easily prove that Move simulates Place. It is also trivial
to prove that stuttering action Recruit simulates IDSystem2 since it only changes the new
variable recruiters.

Termination. The termination condition of System2 is placed = target . To satisfy this
rule, the termination condition of System3 should not be stronger. In fact, System3 will
terminate when both Recruit and Move are not enabled. According to their definition
and the invariant recruiters ⊆ placed , the termination condition of System3 holds when
either

(a) there is no p ∈ placed or,

(b) there is such a p, and there is no q ∈ target \ placed such that (p, q) ∈ nb.

In case (b), since target is fully connected and placed ⊆ target , we can deduce that
placed = target . Hence, ¬ pre(Recruit∨Move) is placed = ∅ ∨ placed = target . However,
¬ pre(Place) is placed = target and so, with R2 as the retrieve relation, the termination
condition does not hold.

This is a typical example where checking simulation rules can help in detecting design
problems during development. It tells the designer that something needs to change in the
concrete specification. One possible solution is to weaken the guard of Recruit so that it
is enabled even when placed = ∅. However, this does not correspond to the design we are
aiming at where only atoms fixed in target places recruit other atoms. Similarly, it does
not make sense to weaken the guard of Move to allow it to occur when placed = ∅. The
other possibility is to strengthen the invariant of the concrete specification to exclude
states where placed = ∅. This can be done either explicitly, or implicitly by strengthening
the initial state to include placed 6= ∅ (since elements are never removed from placed by
any action). The latter solution corresponds to the algorithm of Støy and Nagpal where
a single (seed) atom is placed initially. This atom is the one that starts the self-assembly
process. We modify the INIT of System3 to capture this approach.

INIT

placed 6= ∅
recruiters = ∅

This modification does not affect the
correctness of the Initialisation or Action
Simulation conditions proved above. It il-
lustrates a process of problem detection

and iterative development which is common at the meso and micro levels and which is
facilitated by the simulation rules.

Stuttering Convergence. Since the number of atoms is finite, the stuttering ac-
tion Recruit can only happen a finite number of times and will be disabled when
recruiters = placed . This can be proved with the variant W 2 = #placed −#recruiters.

The above system specification System3 classifies atoms into recruiters and followers
without mentioning the mechanism facilitating the recruiting and the movement detail
of the followers.
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Next, the development will push the specification more closer to the micro level. At
this abstraction level, we model that atoms can only communicate with their immediate
neighbours and can only move a short distance for each step. The design intuition of
specification System4 is to refine the recruiting process (Recruit) and the moving of the
followers (Move) in System3. The ‘gradients’ mechanism will be introduced to express
the abstract interactions between recruiters and their followers. A gradient is a nature
number indicating the distance from a follower to its recruiter. An atom with gradient
0 means that it is a recruiter waiting a follower to fill a neighbouring target position.
The recruiter publishes its gradient to its neighbours as a recruiting signal. An atom
responding to the recruiting will become a follower by setting its gradient to a number
one more than the gradient it received. The propagation terminates when all atoms have
a gradient value. For a follower, its gradient indicates the distance between itself and
its recruiter. Its neighbours’ gradients tell whether it should move and where it should
move to. For instance, in figure ??, an atom with gradient 3 should move towards an
atom with a less gradient and hence decrease its distance from its recruiter.

System4

[Position]

target : FPosition
nb : Position ↔ Position

∀ p, q : target • (p, q) ∈ nb∗

atoms : FPosition
placed : FPosition
grad : Position 7→ N

#atoms = #target
placed ⊆ atoms ∩ target
dom grad ⊆ atoms

INIT

∀ p, q : atoms • (p, q) ∈ nb∗

placed 6= ∅
grad = ∅

...

The class System4 extends System3
with an additional variable grad :
Position 7→ N mapping a subset of atoms
to gradient values. Initially, no atoms
have gradient values. A seed atom which
is already placed and needs to recruit
generates gradient 0 and propagate it to
its neighbours. A constant relation nb :
Position ↔ Position is introduced to in-
dicate the neighbouring positions, e.g. let
p, q be positions, (p, q) ∈ nb means they
are neighbouring positions. The propa-
gation process continues until all atoms
have a gradient value. In order to en-
sure that gradients can propagate to all
atoms, System4 has an invariant that all
atoms are connected, i.e., ∀ p, q : atoms •
(p, q) ∈ nb∗ where nb∗ is the transition
closure of relation nb.

The retrieve relation R3 between
System3 and System4 relates the abstract
recruiting mechanism with the concrete
gradient mechanism, i.e., an atom in set
recruiters in System3 which has vacant
neighbouring positions is mapped to an atom with gradient 0 in System4.

R3 =̂ target3 = target4 ∧ placed3 = placed4 ∧ nb3 = nb4 ∧
(∀ p : Position • p ∈ recruiters3 ∧ (∃ q : target3 \ placed3 • (p, q) ∈ nb)⇒

(p ∈ dom grad4 ∧ grad4(p) = 0))
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Following the retrieve relation, the abstract action Recruit can be simulated by a
concrete change action CreateGrad in which a placed atom requiring neighbours creates
a gradient by setting its gradient value to 0. The second to last line of the predicate
in CreateGrad ensures that the action can only occur when the atom’s gradient value is
not already 0. This prevents an atom creating a gradient more than once (satisfying the
abstract specification where Recruit can only occur once per atom).

CreateGrad
∆(grad)
p, q : Position

(p, q) ∈ nb
p ∈ placed ∧ p 6∈ dom grad
q ∈ target \ placed
grad ′ = grad ⊕ {p 7→ 0}

Propagate
∆(grad)
p, q : Position

p ∈ dom grad
grad(p) = 0 ∨ ∃ r ∈ dom grad •

(p, r) ∈ nb ∧ grad(r) = grad(p)− 1
q ∈ atoms ∧ (p, q) ∈ nb
q ∈ dom grad ⇒ grad(q) > grad(p) + 1
grad ′ = grad⊕{q 7→grad(p)+1}

The propagation of the gradients is specified by stuttering action Propagate which
do not change the abstract state according to the retrieve relation. Propagate sets the
gradient value of an atom (at position q) to 1 greater than the gradient value of its
neighbour (at position p). This creates a virtual gradient as was illustrated in Figure 2.
If an atom already has a gradient value then the action will be enabled only when its
gradient value will be decreased. This ensures that the gradient value represents the
shortest distance to an atom seeking a neighbour. For any atom, we call its neighbour
atom which has the gradient value 1 less than its own to be its reference atom.

The abstract action Move is simulated by a concrete change action Join which spec-
ifies the final movement of an available atom filling its target position. Join moves an
atom (at position p) from one neighbouring position of a placed atom seeking a neighbour
(at position q) to another neighbouring position of that atom which is part of the target
(at position r). The moving atom becomes placed. The third to last line of the predicate
ensures that the action does not lead to the mass of atoms becoming disconnected; the
actual mechanism by which this would be achieved is left to the micro level.

Follow
∆(atoms, grad)
p, q , r , s : Position

Movable(p, q , r , s)
atoms ′ = (atoms \ {p}) ∪ {s}
grad ′ = {p} −C grad

Join
∆(atoms, placed)
p, q , r : Position

(p, q) ∈ nb ∧ (q , r) ∈ nb ∧ grad(q) = 0
p ∈ atoms \ placed ∧ r ∈ target \ placed
∀ a, b : (atoms \ {p}) ∪ {r} • (a, b) ∈ nb∗

atoms ′ = (atoms \ {p}) ∪ {r}
placed ′ = placed ∪ {r}

Follow moves an unplaced atom (at position p) from a neighbouring position of one
atom with a smaller gradient value (at position q) to that of one of its neighbours (at
position r) with an even smaller gradient value. The moving atom’s gradient value is
removed. The movement of atom at position p subjects to a condition Movable(p, q , r , s)
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which ensures that

(1) p is a follower (not a placed atom).

(2) q is a neighbour of p and r is a neighbour of q . The gradients of p, q and r form a
decreasing trail.

(3) s is a vacant position neighbouring position q and r .

(4) The movement of atom from position p to s does not lead to disconnection of the
atoms.

The Movable condition can be formalised as follows.

Movable(p, q , r , s) =̂ p ∈ atoms \ placed ∧ q , r ∈ dom grad ∧ s 6∈ atoms

∧ (p, q) ∈ nb ∧ (q , r) ∈ nb ∧ (q , s) ∈ nb ∧ (r , s) ∈ nb

∧ grad(q) > grad(r) ∧ (p 6∈ grad ∨ grad(p) > grad(q))

∧ ∀ a, b : (atoms \ {p}) ∪ {s} • (a, b) ∈ nb∗

Finally, as mentioned in Section 2.2, we require a means to cancel gradients when they
are no longer required. When a recruiter realises that all its neighbouring target position
have been filled, it should tell the other unplaced followers that it is not a recruiter any
more. This message is sent out by dissipating its gradient. The followers which received
this message should also dissipate their current gradients and update them towards a new
recruiter if there is any. This process is captured by action DissipateGrad . It occurs when
there is an atom (recruiter) with gradient value 0 which has no vacant target positions
in its neighbourhood, or an atom (follower) with a non-zero gradient value which loses
its reference atom.

DissipateGrad
∆(grad)
p : Position

p ∈ dom grad
grad(p) = 0⇒ (@q : target \ placed • (p, q) ∈ nb)
grad(p) 6= 0⇒ (@q : dom grad • (p, q) ∈ nb ∧ grad(q) = grad(p)− 1)
grad ′ = {p} −C grad

To ensure the correctness of the design, we need to check the action refinement condi-
tions and fix any problems detected. According to the retrieve relation R3, all occurrences
of Recruit and Move are change actions in System3. All occurrences of CreateGrad and
Join are change actions in System4, and all occurrences of Propagate and Follow are
stuttering actions.

Initialisation. The condition is true as the fact that initial state schema of System4 is
related to that of System3 under retrieve relation R3, i.e., ∀Σ4 • grad4 = ∅ ⇒ ∃Σ3 •
recruiter3 = ∅ ∧ R3.

Action Simulation. The guard of CreateGrad (all lines but the last) implies the guard
of Recruit according to R3. Also, the final line grad ′4 = grad4 ⊕ {p 7→ 0} of CreateGrad
corresponds to the line recruiters ′3 = recruiters3∪{p} of Recruit . It is trivial to conclude
that CreateGrad simulates Recruit . The proof for Join simulating Move follows similarly.
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It is trivial to prove that stuttering actions Propagate, Follow and DissipateGrad
refine IDSystem3 since their post-states are related to the exact abstract states related to
their pre-states under R3.

Termination. Checking this condition is to check that

∀Σ3,Σ4 • R3⇒ (¬pre System4.Actions ⇒ ¬pre System3.Actions).

As discussed before, ¬pre System3.Actions = (target3 = placed3). After trivial de-
duction, the conclusion we need to establish is that ∀Σ4 • (¬pre System4.Actions) ⇒
(target4 = placed4). It can be done by check the guard of each single action in System4.
Unfortunately we found a problem when we check ¬pre Follow ⇒ (target4 = placed4).
Referring to the guard Movable of action Follow , this problem occurs when Follow is
blocked not due to all atoms are in target positions but due to an atom at a position
satisfying the constraints of r have no vacant neighbouring positions. This problem, as
discussed by Støy [13], is fixed by assuming the target configuration is in the form of a
‘scaffold’ with vacant positions around any positions in which atoms are to be fixed, i.e.,
Scaffold =̂ ∀ p : atoms • ∃ q : Position \ atoms • (p, q) ∈ nb. The scaffold assumption is
then added as an invariant to the system specification. As in Støy’s solution, it requires
adding a similar invariant on target : ∀ p : target • ∃ q : Position \ target • (p, q) ∈ nb.
With these two invariants, the guard of Follow is always true until target4 = placed4,
which satisfies the termination rules. The modification does not affect the proofs of Ini-
tialisation or Action Simulation.

Stuttering Convergence. According to the retrieve relation, the stuttering actions in
System4 include Propagate, Follow and DissipateGrad . To prove the stuttering conver-
gence, we need to show that these actions cannot be executed infinitely. In formal, let
Stutt1 =̂ Propagate∨Follow∨DissipateGrad , we need to find a finite number N satisfying
that:

∀Σ4,Σ
′
4 • ∃N : N • StuttN1 ⇒ ¬(pre Stutt1)′

In the following discussion, we intend to find the upper bound of N by showing that
the execution number of each stuttering action and their interleaving has a upper bound.1

Let m be the number of recruiters with gradient 0 in the pre-state. According to
the specification, every execution of Follow decreases the following variant WF for any
movable follower.

WF =̂
∑
p∈P

min{d(p, q) | grad(q) = 0}

where P =̂ {p | p ∈ atoms \ placed}, d(p, q) ≥ 0 is the distance between position p and
q , i.e., d(p, q) = i iff (p, q) ∈ nbi .

The variant WF has a lower bound 0 when all atoms are in placed . The execution of
Follow leads the state to enable the change action Join which places a follower to a
neighbouring target position. Therefore, for any atom i : 1..n, let di be the minimum
distance to a recruiting atom in the pre-state. The upper bound for the number of
executing Follow is di − 1 (since the last move is done by Join). For n − m followers,

1It is enough to prove the existence of the upper bound. For simplicity, we assume the worst case in
every step of execution. Hence the actual upper bound of N is smaller than the number we obtained.
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the bound is
n−m∑
i=1

(di − 1). The execution of Propagate does not increase WF since it

does not change the position of any atom. The execution of DissipateGrad may increase
WF when it cancels a recruiter. But this increasing influence can only happen for at
most m times (the number of recruiters and in the case where every time the canceled
recruiter is the nearest one). The increased value of WF is also bounded to n − 1 (the
maximum distance between two atoms). Hence the upper bound of executing Follow is

NF = (
n−m∑
i=1

(di − 1)) + m(n − 1).

The execution of DissipateGrad decreases a variant WD which is a set containing

(1) any recruiter with gradient 0 which no longer has the requirement of recruiting (all
its neighbouring target positions have been filled).

(2) any follower with gradient greater than 0 whose recruiter has dissipated its own
gradient.

WD =̂ {p | grad(p) = 0 ∧ @r : target \ placed • (p, r) ∈ nb}
∪ {p | grad(p) 6= 0 ∧ @q : dom grad • (p, q) ∈ nb ∧ grad(q) = grad(p)− 1}

Note that when a recruiter dissipates its gradient, it implies that all its neighbouring
target position have been filled, hence it will no longer be a recruiter again. Therefore,
the maximum execution number of DissipateGrad for canceling a recruiter is n (assuming
every atom has been a recruiter). After a recruiter being canceled, the followers having
their gradient leading to it also dissipate their gradients through executing DissipateGrad .
The maximum number of executing DissipateGrad for every follower of one recruiter is
n − 1 (assuming every other atom is a follower). In summary, the maximum number of
executing DissipateGrad is ND = n(n − 1). Note that the execution of Propagate does
not increase WD since it does not increase the number of atoms having gradient 0 or not
having a neighbour with a gradient 1 less than itself. And neither does Follow .

The execution of Propagate decrease a variant WP standing for the set of atoms that
does not have a “proper” gradient for the nearest recruiter.

WP =̂ {p | p ∈ atoms ∧
(p 6∈ dom grad ∨ grad(p) > min{d(p, q) | grad(q) = 0}}

The variant WP has a lower bound ∅ when every atom has a gradient leading to the near-
est recruiter. For every atom that is not a recruiter, the number of executing Propogate
to update its gradient is at most m. Hence, without considering the other stuttering
actions, Propagate can be executed for at most m(n −m) times. Note that WP can be
increased by Follow which remove the moving follower from grad . But every execution
of Follow will enable the execution of Propagate at most once so that the increasing
influence has an upper bound NF . The execution of DissipateGrad may also increase
WP whenever it removes the gradient of an atom. For every atom which dissipate its
gradient, Propagate will be executed at most once to reset its gradient leading to another
recruiter. The gradient set by such Propagate will not be removed until this recruiter
is cancelled. Hence, the additional execution number is ND . In summary, the upper
bound of executing Propagate is NP = m(n −m) + NF + ND . The upper bound of N is
N = NF + ND + NP .

20



4.3. Micro level

In our case study we have exactly one type of agent, an atom, whose state can be
specified as follows. We will return to the actions of an atom in Section ??. Position
and nb play the same role as in the meso-level specifications. N∞ is a type to denote
the gradient value of an atom; it is either a natural number or the symbol ∞ denoting
that no numerical gradient value has been established. A relation < is defined to relate
gradient values: n1 < n2 iff n2 =∞ and n1 is a number, or both n1 and n2 are numbers
and n1 is less than n2. This relation is used both in establishing gradient values, and in
determining whether an atom can move, i.e., whether the connectedness of atoms will be
maintained by the move.

The type message of atoms includes gradient values (grad), requests for a position
to move to (request), responses to such requests (response), notifications that an atom is
moving (moving), notifications that a gradient has dissipated (dissipate), specifications
of the target and and the receiving atom’s position within it (target), a notification that
an atom has successfully joined the target (joined), and an acknowledgement of this
notification (ack). Some of the messages (grad , response, target , joined and ack) carry
values.

Following Stoy [13], we assume that the atoms that are placed in a target position
have a copy of the target (target), and know their position within it (pos). All other
atoms will have an empty target, i.e., target = ∅, in which case the value of pos is
meaningless. As in the meso-level specification, the target is in the form of a ‘scaffold’.
Placed atoms also know which of their neighbouring target positions are filled (filled).

To allow atoms to be recruited, each atom also has a gradient value (grad) to indicate
its distance from the recruiting atom. Each atom also has a set next to record its
neighbouring atoms which have a smaller gradient value and a set dependents to record
its neighbouring atoms which have a larger gradient value. The former indicates the
direction the atom needs to move to join the target, and the latter is to ensure it does
not isolate atoms (as in Figure 3) by moving. A boolean state variable joined indicates
that an atom has notified its neighbours that it has joined the target.

Initially, filled is empty, there is no gradient value and no atoms in next and dependents,
and joined is true only for atoms which have a copy of the target.
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Atom

[Position]

nb : Position ↔ Position

N∞ ::= num〈〈N〉〉 | ∞

< : N∞ ↔ N∞

∀n1,n2 : N∞ • n1 < n2 ⇔ (n2 =∞ ∧ n1 6=∞ ∨ n1 6=∞ ∧ n2 6=∞ ∧ n1 < n2)

message ::= grad〈〈N∞〉〉 | request | response〈〈Atom〉〉 | moving | dissipate |
target〈〈FPosition × Position〉〉 | joined〈〈Position〉〉 | ack〈〈Position〉〉

pos : Position
target ,filled : FPosition
grad : N∞
next , dependents : FAtom
joined : B

target 6= ∅⇒ pos ∈ target
∀ p : target • ∃ q : Position \ target • (p, q) ∈ nb

INIT

filled = ∅ ∧ grad =∞ ∧ next = dependents = ∅ ∧ (joined ⇔ target 6= ∅)

...

The use of the agent specification Atom as a type (in the declaration of next and
dependents) is borrowed from Object-Z where classes are similarly used as types. As in
Object-Z, instances of agent specifications in MAZE are references to the agents. Such a
reference is independent of the agent’s state and does not change as the agent performs
actions. In an implementation of our case study, we would not expect an atom to store
such references. Their use is simply an abstraction for another means of referring to
particular neighbouring atoms, such as the port through which they communicate.

In our example, we model a topology where neighbouring atoms can send messages
to each other. To do so, as well as the topology (atoms) we include an injective function
(position) mapping agents to their positions in the system state. An invariant is included
to relate the function position to the topology. When an atom is placed (i.e., its target
variable is non-empty) its position corresponds to the position (pos) it stores as part of
its state. Initially, all atoms are connected and, following Stoy and Nagpal [13, 14], there
is exactly one atom in the target.
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System5

atoms : TAtom
position : Atom 7� Atom.Position

dom position = dom atoms
∀ a, b : dom atoms • (a, b) ∈ atoms ⇔ (position(a), position(b)) ∈ Atom.nb
∀ a : dom atoms • a.target 6= ∅⇒ position(a) = a.pos

INIT

∀ a, b : atoms • (position(a), position(b)) ∈ Atom.nb
∃1 a : dom atoms • a.joined

...

The variable position is required to relate the local constant nb and the local variable
pos of Atom to the topology described by the variable atoms. Future work will look at
extending MAZE actions to specify movement in 2D or 3D space directly, without the
need for such local variables.

To develop the micro-level specification from the meso-level specification, we use the
following retrieve relation between the states of System4 and System5.

R4 =̂ (∀ a : dom atoms5 • a.target 6= ∅⇒ a.target = target4) ∧ Atom.nb = nb4 ∧
atoms4 = {a : dom atoms5 • position5(a)} ∧
placed4 = {a : dom atoms5 | a.joined • position5(a)} ∧
grad4 = {a : dom atoms5 | a.grad 6=∞ • (position5(a), a.grad)}

Since R4 relates each of the abstract variables to the concrete state by R, they are
observable and hence each abstract operation (since it changes at least one of these
abstract variables) is a change operation.

The Initialisation condition holds since initially in both System4 and System5 the
mass of atoms are connected, no atom has a gradient value, and there is at least one
atom placed in a target position (exactly one in System5) .

The micro-level agent actions must simulate the actions of System4. Hence we verify
the action simulation conditions during the design of actions in this section. Below we
focus on agent actions for creating and propagating gradients, and for moving. Actions
for dissipating gradients and joining the target can be defined in a similar fashion (see
Appendix).

4.3.1. Gradients

The meso-level action CreateGrad can be simulated by the application of the following
agent action NewGrad which allows an agent which has joined the target and has unfilled
neighbouring positions and a non-zero gradient value to set its gradient value to zero
and broadcast a grad message. The progress predicate ensures that its joined message
has been received by each of the atom’s neighbours, and the atom has received their
acknowledgments.
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Similarly, the meso-level action Propagate can be simulated by the application of the
following agent action SetGrad which models an agent, on receiving a grad message with
a gradient value g less than its own, setting its own value to g and broadcasting its own
grad message with value g + 1.

NewGrad
∆(grad)

progress({joined(pos)},
{p : Position • ack(p)})

joined
filled 6= {p : target | (pos, p) ∈ nb}
grad 6= 0 ∧ grad ′ = 0
send(grad(1))

SetGrad
∆(grad ,next)
g : N∞
a : Atom

receive(grad(g), a)
g < grad
grad ′ = g ∧ next ′ = next ∪ {a}
send(grad(g + 1))

The proof that the implicit System5 action [] a : dom atoms • a.NewGrad simulates
CreateGrad is straightforward: CreateGrad is enabled when a placed atom with a non-
zero gradient value has an empty target position in its neighbourhood while a.NewGrad
has a stronger guard which also requires the receipt of all acknowledgements of the atom’s
joined message as specified by the progress statement. Both actions result in the atom’s
gradient value being set to 0.

The progress statement in NewGrad is required so that the atom is aware of which
of its neighbouring positions are filled before creating the gradient. More details about
joined messages and acknowledgements are provided in the Appendix.

The proof that [] a : dom atoms • a.SetGrad simulates Propagate is not possible
without an additional assumption. Propagate is enabled only when an atom p has a
neighbouring atom q with a gradient value at least 2 less than its own (since p sends its
gradient value plus 1 and this must be less than that of q). [] a : dom atoms • a.SetGrad
is enabled whenever a message (grad(g), b, a), for some b : dom atoms, is in the global
buffer with g less than a.grad . Since grad messages are only sent by NewGrad and
SetGrad and these actions send values 1 greater than the grad value of their sender,
SetGrad only occurs when the sender’s gradient value is at least 2 less than it own.
Hence, to prove the refinement, we need to ensure that receiving such a grad message
implies b is a neighbour of a, i.e.,

∀ a, b : dom atoms, g : N • (grad(g), b, a) @− buffer⇒ b ∈ atoms(a)

It requires (i) that a grad(g) message can be sent from b to a only when b is a neighbour
of a with gradient value g , and (ii) that after sending such a message b cannot stop being
a neighbour of a before the message is received. The former is ensured in System5 by the
restriction on the agent topology that atoms can only send messages to their neighbours
(see the state schema of System5 in Section ??). The latter requires any action which
changes the neighbourhood of an agent which may have sent a grad message to have a
progress statement stating that all such messages have been received. This requirement
is considered in Section 4.3.2.

First, however, we specify two stuttering actions associated with gradient propaga-
tion. AddDependent models an atom receiving a gradient value greater than its own.
This happens when the sending atom is further from the source than the receiving atom,
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in which case the sender may be relying on the receiver to be connected to the gradient
source and hence becomes a dependent of the receiver. IgnoreGrad models an atom
receiving a gradient value equal to its own. In this case, the sending atom is not relying
on the receiving atom to be connected to the gradient source and the message can be
ignored.

AddDependent
∆(dependent)
g : N∞
a : Atom

receive(grad(g), a)
g > grad
dependent ′ = dependent ∪ {a}

IgnoreGrad
g : N∞
a : Atom

receive(grad(g), a)
grad = g

4.3.2. Moving

The meso-level action Follow requires an atom (e.g., a) to move from being a neigh-
bour of one atom b to being the neighbour of another c which is closer to the source
of a gradient. More specifically, b is a neighbour with a lower gradient value. In the
micro-level specification, such a neighbour b can be chosen from the a’s local variable
next , and its neighbour c from the set b.next . As b.next is not a part of the local state
of the atom wanting to move, we introduce an action Request which enables an atom
to request the reference to an atom in the next set of one of its neighbours. We also
introduce an action Respond modelling the response to such a request.

Request
b : Atom

progress({grad(grad), request},
{grad(grad + 1), response})

target = ∅ ∧ dependent = ∅
b ∈ next
send(request , b)

Respond
a, c : Atom

receive(request , a)
c ∈ next
send(response(c), a)

The Request action is enabled for atoms which have a non-empty target and have
no dependents. The former will be true for atoms which have not yet obtained a target
position. The guard b ∈ next ensures next is not empty and hence the atom has a
neighbour with a smaller gradient (this is an invariant which can be proven once all
concrete actions are defined).

The progress condition ensures two things. Firstly, that all responses to the atom’s
grad message (sent as part of SetGrad) have been received. This will be the case when
there are no grad(grad) messages from the atom in the buffer, nor any grad(grad + 1)
messages to the atom. The latter ensures the atom is aware of any dependents, and is
also sufficient to satisfy the second requirement for proving SetGrad simulates Propagate.

The second thing ensured by the progress condition is that a response has been
received for any previous request message from the agent. This ensures an atom sends
only one request message at a time. As with waiting for responses to its grad message,
this could be implemented by the atom waiting for a worst-case response time dependent
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on the communication medium. The progress condition enables us to abstract from such
an implementation-dependent timing constraint.

When a response is received, the requesting atom can move, setting its gradient value
to ∞ and its next set to include just the atom to whose neighbourhood it moves. It also
broadcasts to its neighbours that it is moving. This is captured by agent action Move.
On receiving a notification that an atom is moving, the receiving atom can remove it
from its dependent set if necessary. This is captured by action RemoveDependent .

Move
∆(grad ,next)
b, c : Atom

receive(response(c), b)
grad ′ =∞ ∧ next ′ = {b}
send(moving)

RemoveDependent
∆(dependent)
a : Atom

receive(moving , a)
dependent ′ = dependent \ {a}

When the agent action Move is performed, a synchronised system action Move <
a : dom atoms • a.Move > changes the topology: an agent a moves to a position p
neighbouring atoms b and c. The actual values of b and c are constrained by those of
a.Move whose common-named declarations are equated with those of Move.

Move < a : dom atoms • a.Move >
∆(position)
b, c : dom atoms
p : Position

p 6∈ ran position ∧ (position(b), p) ∈ Atom.nb ∧ (position(c), p) ∈ Atom.nb
position ′ = position ⊕ {a 7→ p}

The intended simulation of the meso-level action Follow is system action Move. The
proof of the simulation depends on the proposition that the guard condition of Move is
stronger than the guard of Follow . In fact, the guards of Request and Respond along
with the invariant on next ensures that the agent action Move is enabled only when there
exists a neighbour b of atom a with a smaller gradient value than a’s, and a neighbour
c of b with a smaller gradient value than b’s. The additional guard of the system action
Move ensures that there is a vacant position in the neighbourhood of c. The guard of
the abstract action Follow also requires that the atoms remains connected. With the
mechanism of dependent , an atom can only move if it does not have a neighbour with a
greater gradient. Hence, the guard of Move implies the connection of the atoms and the
simulation holds.

Figure 4 shows the gradient setting phase and the movement of the agent with the
highest gradient towards its recruiter. The right hand side is the changes of the system
configuration. The arrows between atoms show the atom’s next set and the suffix of the
atom indicates its gradient. The dashed boxes represent empty target positions.

4.3.3. Checking Termination

Analysis of the guards of the abstract and concrete actions reveals a case where the
concrete specification deadlocks and the abstract does not. The deadlock is caused when
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Figure 4: Sequence diagram for gradient setting

an atom is ready to move, but is unable to move as there is no vacant position adjacent
to the referred atom. To fix this, we add an additional agent action CancelMove and its
associated system action as follows.

CancelMove
b, c : Atom

receive(response(c), b)

CancelMove<a : atoms • a.CancelMove>
b, c : dom atoms

@p : Position •
(position(c), p) ∈ nb ∧ p 6∈ ran position

4.3.4. Checking Stuttering Convergence

The stuttering actions of System5 are agent actions AddDependent , IgnoreGrad ,
Request , Respond , RemoveDependent and CancelMove. To prove the refinement, we
need to check that these actions cannot be executed an infinite number of times. In
fact, the guards of each of these actions apart from Request depend on corresponding
messages in the global buffer. The progress condition in Request ensures that an atom
sends only one request at a time, and must wait for a response before sending another.
Infinite stuttering is avoided, therefore, if we can prove that there can be only a finite
number of messages in the buffer during the execution of the system.

If we check all agent actions which can send a message, we can find that these actions
can only generate a finite number of messages. For example, the number of messages that
action NewGrad generates equals the number of its current neighbours which is finite.
Furthermore, it can be only executed once. These grad messages sent to the buffer would
be received by neighbouring atoms and trigger their SetGrad action. SetGrad can only
be executed when it has received a grad message having a gradient value less than its
own. Since it has a finite number of neighbours n, the gradient would be set at maximum
n times until a movement of a neighbour atom, which is a change action, occurs.
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5. Related Work

The formal specification of agents and MAS has been explored by many researchers.
A formal agent framework using Z is proposed by d’Inverno and Luck in [23]. The frame-
work captures the autonomous local behaviour of an agent and inter-agent interactions.
Hilaire et al. [24] propose a prototyping approach for specifying multi-agent systems. It
employs a composition of Object-Z and statecharts for formalising the interaction pat-
terns based on agent roles. Unlike our approach, these formal specifications of MAS do
not provide a development approach for achieving system-level properties. Aştefănoaei
and de Boer [25] define a notion of refinement for BDI agents (agents which are driven by
their beliefs, desires and intentions) [2, 26]. However, abstract and concrete specifications
are not in the same notation. Therefore, their approach allows only a single refinement
step from an abstract to a concrete representation of an agent, not the incremental
development of an agent.

The Event-B formalism also advocates top-down development of software systems
using refinement techniques [20][27]. The simulation rules for action refinement in this
paper are inspired by the rules in Event-B. Since publication of our first paper on MAZE
[10], a similar approach based on Event-B has been proposed [28]. This paper describes
a formal development approach for achieving desired system-level properties by cooper-
ative behaviour of ‘foraging ants’. The development begins from an abstract macro-level
specification and, for each refinement step, the specification provides finer and more de-
tailed mechanisms of the agents’ local behaviour and introduces cooperation. Unlike our
work, however, this paper does not use the concepts of the macro, meso and micro levels
from agent-based software engineering to provide a generic development approach. We
believe this helps the designer to separate the macro-level concerns of system function-
ality, the meso-level concerns of agent interaction and the micro-level concerns of local
agent behaviour by focussing on one of these sets of concerns at a time. Additionally,
our syntactic conventions at the micro-level allow us to readily abstract from low-level
mechanisms dealing with asynchronous communication and timing constraints. Such
low-level mechanism are central to the operation of asynchronous MAS [21, 22] and is
not clear how such they would be handled in the approach of [28].

6. Conclusion

This paper has presented MAZE, an extension of Object-Z [9] for the specification
and development of multi-agent systems, and its application to a swarm robotic self-
assembly algorithm. MAZE supports the development of multi-agent systems at three
distinct levels of abstraction proposed by researchers in the agent-oriented software engi-
neering community. Macro-level specifications capture global system functionality, meso-
level specifications additionally include agent interactions and interaction paradigms, and
micro-level specifications focus on the local functionality of individual agents. To ensure
the three levels are consistent, MAZE employs a notion of action refinement based on that
of action systems [11], with practical proof rules inspired by those of Event-B [20]. To
facilitate specification at the micro-level, MAZE also includes a number of syntactic con-
structs. These enable the specifier to abstract from the low-level details of asynchronous
communication and timing mechanisms common in such systems [21].
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Future work on MAZE will focus on tool support via translation from the MAZE
notation to Event-B allowing the use of the Rodin toolkit [29], as well as experiments on
other multi-agent systems exhibiting emerging properties. Introducing time and proba-
bilistic notions to MAZE is also an interesting direction to follow.
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Appendix

This appendix gives the definitions of the rest of the actions in the micro-level speci-
fication of the swarm robotic self-assembly system in Section 4. It is only for the review
and to comply with page limits will not be included in the published version.

A concrete agent action Join is defined to simulate the abstract action Join. It models
an atom moving to the position recruited by a placed atom. Its definition is similar with
the action Move except that it is enabled when the atom receives a target message instead
of a response message. A synchronised system action Join < [] a : dom atoms • a.Join >
is also needed to change the topology of the system when the moving succeeds.

Join
∆(grad ,next , target , pos)
t : FPosition
p : Position

receive(target(t , p), b)
grad ′ =∞∧ next ′ = ∅
target ′ = t ∧ pos ′ = p
send(moving)

Join < [] a : dom atoms • a.Join >
∆(position)
p : Position

p = position(a)⇒ position ′ = position
p 6∈ ran position ⇒ position ′ = position ⊕ {a 7→ p}
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The abstract action Join is intended to be simulated by a system action Join together
with additional stuttering agent actions SendPosition, Fill , UpdateFilled , IgnoreJoined
and ReceiveAck .

SendPosition models a placed atom with vacant neighbouring positions sending a
target message with one of these positions in response to a request message.

SendPosition
b : Atom
p : Position

receive(request , b)
joined
p ∈ {p : target | (pos, p) ∈ nb} \ filled
send(target(target , p), b)

Fill models an atom which joined the target position sending out a joined message to
let its new neighbours update their filled set. The variable joined is used to ensure that
the joined messages are sent by the atom to its new neighbours after moving to its target
position. UpdateFilled models the updating when an atom receives a joined message.

Fill
∆(joined)

target 6= ∅ ∧ ¬ joined
joined ′

send(joined(pos))

UpdateFilled
∆(filled)
b : Atom
p : Position

receive(joined(p), b)
joined
filled ′ = filled ∪ {p}
send(ack(pos), b)

IgnoreJoined models an atom which is not placed in a target position ignoring a
joined message. ReceiveAck models an atom receiving an ack message from one of its
neighbours and updating its filled variable with the neighbours position. Note that ack
messages are only sent in response to a joined message and hence will only be received
by atoms which have joined the target.

IgnoreJoined
b : Atom
p : Position

receive(joined(p), b)
¬joined

ReceiveAck
∆(filled)
b : Atom
p : Position

receive(ack(p), b)
filled ′ = filled ∪ {p}

RemoveGrad models an atom with grad = 0 and all its neighbouring target positions
filled setting its gradient value to ∞ and broadcasting a dissipate message. Dissipate
models an atom with a ∈ next receiving a dissipate message from a, setting its gradient
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value to ∞ and broadcasting a dissipate message.

RemoveGrad
∆(grad)

grad = 0
filled = {p : target | (pos, p) ∈ nb}
grad ′ =∞
send(dissipate)

Dissipate
∆(grad ,next)
a : Atom

receive(dissipate, a)
a 6∈ next ⇒ grad ′ = grad ∧ next ′ = next
a ∈ next ⇒ grad ′ =∞∧ next ′ = next \ {a}

∧ send(dissipate)

Both of the two change actions [] a : atoms • a.RemoveGrad and [] a : atoms •
a.Dissipate refine the abstract action Dissipate.

Similar with the Move case, when an atom receives a target message but is unable to
move to the target position (note that a guard requiring that position to be free would be
part of a system action associated with the atom action Join) the atom needs to ignore
the position and send another request. This is modelled by an additional stuttering
agent/system synchronisation action CancelJoin.

CancelJoin
b : Atom
t : FPosition
p : Position

receive(target(t , p), b)

CancelJoin < a : atoms • a.CancelJoin >
p : Position

p ∈ ran position
position(a) 6= p
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