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Abstract. Linearizability is the standard notion of correctness for con-
current objects. A number of approaches have been developed for prov-
ing linearizability along with associated tool support. In this paper, we
extend the tool support for an existing simulation-based method. We
complement the current theorem-prover support with model checking to
allow a means of quickly finding problems with an implementation before
attempting a full verification. Our model checking approach is novel in
that it is used to verify the simulation rules, rather than directly trying
to check an object being accessed by a number of threads. As a con-
sequence, verification can be done for an arbitrary number of accessing
threads; something that is not possible with existing approaches based
on model checking.

1 Introduction

Concurrent objects are objects which have been designed to allow simultaneous
access by more than one thread. They include locks and data structures, and
are common in modern software libraries such as java.util.concurrent. They
may employ coarse-grained locking , where one thread locks the object forcing all
others to wait, but for efficiency are more likely to employ fine-grained locking ,
where only parts of the object are locked, e.g., two adjacent nodes in a linked
list, or non-blocking algorithms, where no locking is employed [11]. In the cases
of fine-grained locking and non-blocking algorithms, lines of the object’s code
being executed by different threads are interleaved leading to subtle behaviour
that is difficult to verify.

The main notion of correctness for concurrent objects is linearizability [12].
It compares an abstract specification of a concurrent object, where all operations
are atomic, and a concrete specification (or implementation), where operations
may overlap. It requires that each operation of the concrete specification appears
to take place atomically at some point between its invocation and return – the
operation’s linearization point [12] – and that the resulting sequence of such
points corresponds to a sequence of operations on the abstract specification.
Effectively this means that overlapping concrete operations can occur in any
order in the abstract sequence, but when one concrete operation returns before
another is invoked that order must be preserved in the abstract sequence.



A number of approaches have been developed for proving linearizability along
with associated tool support [1, 4, 24, 9, 7, 8, 18]. In particular, Derrick et al. [7,
8, 18] have developed a simulation-based method for proving linearizability sup-
ported by the interactive theorem prover KIV [17]. This approach has been
proved sound and complete, the soundness and completeness proofs themselves
being done in KIV.

Although not automatic, a strength of Derrick et al.’s approach is the fact
that, being based on theorem proving, the size of the concurrent object’s state
space is not restricted, and verification can be done for an arbitrary number of
accessing threads. This is not possible with existing approaches based on model
checking where both the size of the data structure, and the number of threads
needs to be restricted [26, 25, 2, 14, 28, 22]. In each model checking approach, the
size of stacks and queues is limited to between 2 and 5 items. In all approaches
other than [28], the number of threads is limited to between 2 and 4 (depending
on the complexity of the object). In [28], which uses partial-order reduction
and symmetry reduction to increase the number of threads, that number is still
limited to between 3 and 6 for the objects verified.

In this paper, we provide a model checking approach that, while similarly
limited in terms of state space, allows an arbitrary number of threads. This is
achieved by using the model checker to verify the simulation rules of Derrick et
al.’s approach, rather than trying to directly check an object being accessed by
a number of threads. The approach is intended to complement, rather than act
as a replacement for, the use of KIV. In particular, it is intended to be used as
a means of quickly finding problems with implementations before attempting a
full verification in KIV.

We show how the approach is encoded in TLC [27], the model checker for
TLA+ [13],1 but other state-based model checkers, e.g. SAL [5], could be used.
We do not try to optimise the model checking; this paper is a proof of concept
and we leave the development of an efficient tool to future work.

The paper is structured as follows. In Section 2, we introduce the simula-
tion rules of Derrick et al. and our running example, the Treiber stack [23]. In
Section 3, we show how the simulation rules can be encoded in TLC when the
abstract specification’s operations are deterministic; as argued by Burkhardt et
al. [2] this is nearly always the case. For completeness, we provide an alternative
encoding to handle cases where the abstract specification has one or more non-
deterministic operations in Section 4. We conclude with a discussion of future
work in Section 5.

2 Simulation-based proof method

The work of Derrick et al. [7, 8, 18] identifies different proof rules for use with 3
classes of linearizability proofs of increasing complexity. The first and simplest
class of proofs are those where each operation’s linearization point can be deter-
mined from the current state of the calling thread and object [7]. The next class

1 This choice was partly inspired by the use of TLA+ and TLC at Amazon [15, 16].



involves operations whose linearization points are determined by future states,
possibly resulting from the operations of other threads [8]. The final class in-
cludes objects whose linearization points can only be determined by examining
the whole global history [18].

In the first two cases, the proof rules reduce reasoning about an arbitrary
number of processes to thread-local reasoning about one process and its envi-
ronment which is abstracted to one other process. In the latter case, proving lin-
earizability is reduced to finding a backward simulation relation between simple
extensions of the abstract and concrete specifications of the concurrent object.
This latter approach is complete in itself, but is generally more difficult to apply
than the approaches for the first two cases. In all cases, proofs are step-local
meaning reasoning is performed on one line of code at a time.

In this paper, we focus on the first class of proofs. Extending our work to the
other classes is discussed in Section 5.

2.1 The Treiber stack

To illustrate the proof method and our model checking approach in the rest of
the paper, we introduce as a case study the Treiber stack [23]. The Treiber stack
was the first proposed non-blocking implementation of a concurrent list-based
stack. A typical implementation (taken from [7]) is given below, where Node is a
class with two fields val:T and next:Node, and T empty is the type T augmented
with the additional value empty.

head : Node; \\ global variable

n, ss, ssn : Node; lv:T; \\ thread-local variables

push(v : T) :

1 n = new(Node);

2 n.val = v;

repeat

3 ss = head;

4 n.next = ss;

5 until CAS(head, ss, n)

6 return;

pop() : T_empty

repeat

7 ss = head;

8 if ss = null

9 return empty;

10 ssn = ss.next;

11 lv = ss.val;

12 until CAS(head, ss, ssn);

13 return lv;

A thread doing a push operation assigns the value being pushed onto the
stack to the val variable of a new node stored in local variable n. It then re-
peatedly tries to make n the head of the stack by setting a local variable ss

to the global variable head, setting n’s next variable to ss, and then assigning
head to n provided it is still equal to ss (i.e., provided another thread has not
in the meantime changed the value of head). CAS(a,b,c) is an atomic operation
(supported by most microprocessors) which compares a and b and, if they are
equal, sets a to c and returns true; otherwise it leaves a unchanged and returns
false.



A thread doing a pop operation repeatedly sets ss to head, returning empty

if ss is null, and otherwise setting ssn to ss’s next variable and local variable lv
to ss’s val variable and, finally, assigning ssn to head and returning lv provided
head is still equal to ss.

The Treiber stack is linearizable with respect to the following abstract spec-
ification of a stack (given in Z [21]2). The linearization point of push is the final
CAS which returns true. The linearization point of pop is either line 7 (when ss

is assigned null), or the final CAS which returns true.

[T ]

AS
stack : seq T

ASInit
AS

stack = 〈 〉

Push
∆AS
v? : T

stack ′ = 〈v?〉a stack

Pop
∆AS
v ! : T ∪ {empty}

stack = 〈 〉 ⇒
v ! = empty ∧ stack ′ = stack

stack 6= 〈 〉 ⇒ stack = 〈v !〉a stack ′

We use set union to add the special value empty to the type T in operation Pop
although strictly this should be done using a free type definition in Z [21].

2.2 Simulation-based proof

To apply the approach of [7], we first need to derive a concrete Z specification
from the implementation. This specification has one or two operations for each
line of code. The state is described by two schemas representing the global and
thread-local variables. For the Treiber stack, the global state GS includes a
variable head and the shared memory in which nodes are stored. Let Ref be the
set of all references to nodes, and T be the type of values in a node.

GS
head : Ref ∪ {null}
mem : Ref 7→ (T × (Ref ∪ {null}))

GSInit
GS

head = null
mem = ∅

The local state LS includes the variables n, ss, ssn, lv and v (the input
variable) appearing in the code, as well as a variable pc denoting the program
counter. Let PC == 0..13 where 0 denotes that the thread is idle, i.e., not
executing an operation.

2 Following [7] we adopt the blocking semantics of Z in which operations are guarded ,
i.e., unable to occur when their predicate cannot be satisfied [6].



LS
n, ss, ssn : Ref
lv , v : T
pc : PC

LSInit
LS

pc = 0

For each operation, there is an invocation operation which requires pc to be
0 and sets it to the first line of the operation.3

Push0
ΞGS
∆LS
v? : T

pc = 0 ∧ v ′ = v? ∧ pc′ = 1

Pop0
ΞGS
∆LS

pc = 0 ∧ pc′ = 7

Then for each non-branching line of code there is a single operation. For
example, for lines 2 and 3 we have

Push2
∆GS
∆LS

pc = 2 ∧ pc′ = 3
mem ′(n) = (v , second(mem(n)))

Push3
ΞGS
∆LS

pc = 3 ∧ pc′ = 4
ss ′ = head

For each branching line of code there are 2 operations. For example, for line
5 we have

Push5t
∆GS
∆LS

pc = 5 ∧ head = ss ∧ pc′ = 6
head ′ = n

Push5f
ΞGS
∆LS

pc = 5 ∧ head 6= ss ∧ pc′ = 3

Following the approach of [7], we then have two proof obligations for each
operation of the concrete specification.

Step 1. Firstly, we need to show that the lines of code defining the concrete
operations simulate the abstract operations. To do this, we identify one line
of code as the linearization step. This line of code must simulate the abstract
operation, all others simulating an abstract skip. For example, for the operation
push we require that line 5 simulates the abstract operation when head equals
ss, and all other lines simulate an abstract skip (see Figure 1 for a possible
execution of the operation).

To do this we need to define an abstraction relation relating the global con-
crete state space gs and abstract state space as. The abstraction relation ABS
for the Treiber stack is defined recursively as follows.

3 Following [7], we assume all values of variables and values in the range of functions
that are not explicitly changed by a Z operation, remain unchanged.



Abstract operation

n=new(Node) n.val=v ss=head n.next=ss

Concrete

operation CAS(head,ss,n) return

Push

Fig. 1. Simulation of Push

ABS (as, gs) == ABS0(as.stack , gs.head , gs.mem)
ABS0(s, h,m) == (h = null ⇒ s = 〈 〉) ∧

(h 6= null ⇒ s 6= 〈 〉 ∧ h ∈ dom m ∧ first(m(h)) = head(s)
∧ ABS0(tail(s), second(m(h)),m)

We also need to define an invariant to enable the simulation of each line of
code to be proven independently. In our example, to prove that the line of code
CAS(head,ss,ssn) simulates the effect of the abstract operation when head

equals ss, this invariant needs to ensure that when pc=5 and head = ss we have

n ∈ dom mem ∧ first(mem(n)) = v ∧ second(mem(n)) = ss ∧
(∀ r : dom mem • second(mem(r)) 6= n) ∧ ss 6= n

The second line of this predicate ensures that n is a new node not referenced by
any other.

Such an invariant is stated in terms of the global concrete state space gs and
the local concrete state space ls. Hence, the invariant INV (gs, ls) must imply
the following.

ls.pc = 5 ∧ gs.head = ls.ss ⇒ ls.n ∈ dom gs.mem ∧
first(gs.mem(n)) = ls.v ∧ second(gs.mem(n)) = ls.ss) ∧
(∀ r : dom gs.mem • second(gs.mem(r)) 6= ls.n) ∧ ls.ss 6= ls.n

Each simulation is then proved by one of 5 rules depending on whether the
line of code is an invocation (beginning an operation), return (ending an oper-
ation) or internal step (neither an invocation nor return), and whether it oc-
curs before or after the linearization step. A function status(gs, ls) is defined to
identify the linearization step. Before invocation, status(gs, ls) is IDLE . After
invocation but before the linearization step it is equal to IN (in), where in : In is
the input to the abstract operation, and after the linearization step it is equal to
OUT (out), where out : Out is the output of the abstract operation. The types
In and Out have a special value ⊥ denoting no input or output, respectively. As
well as identifying the linearization point, the status function is used to store the
input of the invocation step until it is needed at the linearization point, and to
store the abstract output of the linearization step until it is need at the return
step.

Let σ and σ′ be status values, and λ be a list of parameters comprising gs,
gs ′, ls and ls ′, and possibly in or out . For a step COP which is not a linearization
step, the proof obligation is always of the following form.



∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In; out : Out •
ABS (as, gs) ∧ INV (gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ)⇒

status(gs ′, ls ′) = σ′ ∧ ABS (as, gs ′) ∧ INV (gs ′, ls ′) (1)

For a linearization step such as the step Push5t which simulates an abstract
operation AOP , the proof obligation is of the following form.

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′ : LS ; in : In •
ABS (as, gs) ∧ INV (gs, ls) ∧ status(gs, ls) = σ ∧ COP(λ)⇒

(∃ as ′ : AS ; out : Out • AOP(in, as, as ′, out) ∧
status(gs ′, ls ′) = σ′ ∧ ABS (as ′, gs ′) ∧ INV (gs ′, ls ′) (2)

Step 2. Secondly, we need to prove non-interference between threads. This
amounts to showing that a thread p (with local state ls) cannot invalidate the in-
variant INV (gs, lsq) or change the status status(gs, lsq) which another thread q
(with local state lsq) relies on. To do this we require a further invariant D(ls, lsq)
relating the local states of two threads. For the Treiber stack, this invariant in-
cludes a predicate that the local variable n of two threads cannot be the same
reference. That is, D includes the conjunct pcq ∈ 2..5 ∧ pc ∈ 2..5⇒ n 6= nq .

The proof obligation then requires we prove

∀ as : AS ; gs, gs ′ : GS ; ls, ls ′, lsq : LS •
ABS (as, gs) ∧ INV (gs, ls) ∧ INV (gs, lsq) ∧ D(ls, lsq) ∧ COP(λ)

⇒ INV (gs ′, lsq) ∧D(ls ′, lsq) ∧ status(gs ′, lsq) = status(gs, lsq) (3)

Additionally, we have a proof obligation related to initialisation.

∀ gs : GSInit • ∃ as : ASInit • ABS (as, gs) ∧
(∀ ls : LSInit • INV (gs, ls)) ∧ (∀ ls, lsq : LSInit • D(ls, lsq)) (4)

Each of these proof obligations is step-local, involving a single line of code,
and involving the states of at most two threads. Together they have been shown
to prove linearizability between the abstract and concrete specifications [7].

3 Encoding the rules for deterministic specifications

To verify the Treiber stack, the theorem proving approach using KIV proposed
in [7] requires 295 proof steps, 85 of which are interactive. If an error is found
in either the implementation or the abstraction relation and invariants, all proof
steps need to be redone once it is corrected. Our model checking approach can be
applied to find such errors automatically before any proof steps are attempted.
It uses the abstraction relation and invariants proposed for the proof steps in
order to do this. KIV can then be applied to ensure no errors have been missed
due to the limited state space used during the model checking.

In this section, we show how to encode each proof obligation as a separate
model checking problem in TLC. We can alternatively encode a model checking



problem that checks several, or even all, of the proof obligations at once. Sepa-
rating the proof obligations, however, improves scalability; each model checking
problem involves only one step of a single, generally deterministic operation.4

Whether this separation needs to be done depends on the size of the state space
of our abstract and concrete specifications.

A TLC model checking problem comprises a TLA+ module (encoding a
specification in terms of variables, constants and definitions, including an initial-
state and next-state definition), and a configuration file assigning finite values
to constants, and listing the properties that need to be checked.

For each concrete step, we need to prove the proof obligations for the one or
two operations derived from the line of code. Part of these obligations is that the
status function is updated correctly. We assume we have already classified the
type of each step, e.g., whether it is a linearization step or not. The remaining
purpose of status is to store the input and output values until they are needed.
To capture this we include in and out as variables, and introduce an invariant
STATUS over them. For the Treiber stack, we have

STATUS =̂ (pc ∈ 1..5⇒ in = v) ∧ (pc ∈ 8..9⇒ out = empty)
∧ (pc = 13⇒ out = lv)

3.1 Non-linearization steps

For each concrete step which is not a linearization step, we need to prove proof
obligation (1) for each operation COP derived from the line of code. As an ex-
ample, consider the operation Push0. We need to show that when this operation
occurs from a state satisfying ABS ∧ INV ∧ STATUS , it results in a state
satisfying these conditions. Hence, we build a model which, from such a state,
can do a single Push0 operation, and prove that ABS , INV and STATUS are
invariants.5

The initial state space of such a model will be large, and hence we employ
some simple strategies to reduce it. Firstly, we can ignore local variables that are
not used in the push operation, i.e., the variables ssn and lv do not have to be
included in the state. Similarly, since the operation has no output, the variable
out can be left out of the state. Since these variables can occur in INV and
STATUS we additionally remove all conjuncts of INV and STATUS that are
not relevant immediately before or after the step, i.e., for Push0 all conjuncts
that are not relevant when pc = 0 or pc = 1. Also, to reduce the size of the initial
state, we can equate all local variables and in to default values (since they have
not yet been assigned values at this step of push).

For Push0, the state is defined in terms of variables stack , head , mem, n, ss,
v , pc and in. We also have constants Ref , T and null , as well as 2 additional

4 An example of a nondeterministic operation is an invocation operation that takes
an input. Such an operation is nondeterministic on the value of that input.

5 The output of the model checker run can be checked to ensure that this model does
not have an empty set of initial states.



constants N and undef . N is the maximum size of the stack, and undef is
required since, unlike Z, TLA+ does not support partial functions; we model a
partial function with a total function f by letting f [e] = undef when e is not in
the domain of the partial function. The initial state is then

Init =̂ stack ∈ FiniteSeq(T ,N )
∧ mem ∈ [Ref → ((T × (Ref ∪ {null})) ∪ undef )]
∧ head ∈ Ref ∪ {null} ∧ ABS ∧ n = null ∧ ss = null ∧ v = 0
∧ pc = 0 ∧ INV ∧ in = 0 ∧ STATUS

where FiniteSeq is defined in terms of the function Seq of TLA+ [13]. Since TLC
evaluates predicates from left to right it is necessary that all variables appearing
in the definitions ABS , INV and STATUS are typed in a conjunct appearing to
the left of them. Furthermore, since these definitions constrain the set of states
under consideration, it is more efficient to have them as early as possible in the
predicate, i.e., immediately following the typing of their variables.

The next-state relation is then defined in terms of the single operation

Push0 =̂ pc = 0 ∧ pc′ = 1 ∧ v ′ ∈ Ref ∧ in ′ = v ′

∧ UNCHANGED〈stack , head ,mem,n, ss〉

where UNCHANGED is a TLA+ operator for stating that particular variables
are not changed by an operation.

The complete TLA+ module is shown below.6

MODULE Push0

EXTENDS FiniteSequences,Naturals

VARIABLES stack , head ,mem,n, ss, v , in, pc

CONSTANTS Ref ,T ,null ,N , undef

ABS0[s ∈ FiniteSeq(T ,N ), h ∈ Ref ∪ {null}] =̂

(h = null ⇒ Lens(s) = 0)

∧ (h 6= null ⇒ Len(s) 6= 0 ∧ mem[h] 6= undef ∧ mem[h][1] = Head(s)

∧ ABS0[Tail(S ),mem[h][2]])

ABS =̂ ABS0[stack , head ]

INV =̂ ... as described in the text

STATUS =̂ pc ∈ 1..5⇒ in = v

Init =̂ ... as given above

Push0 =̂ ... as given above

Spec =̂ Init ∧ 2[Push0]〈stack ,head,mem,n,ss,v ,in,pc〉

6 The notation Init ∧ 2[Op]〈v1,...,vn 〉 describes the module’s behaviours whose initial
states satisfy Init and whose state transitions satisfy Op, and specifies that the
environment of the module is unable to change the values of v1, . . . , vn .



Modules for other non-linearization steps are constructed similarly. For ex-
ample, the module for operation Push2 has the same variables and constants.
However, the initial state cannot assign n to null as it is assigned a value in the
previous line of code. Therefore, we have n ∈ Ref , rather than n = null in Init ;
the other conjuncts of Init being the same as before.

The next-state relation for Push2 is

Push2 =̂ pc = 2 ∧ pc′ = 3 ∧ mem ′ = [mem EXCEPT ![n] = 〈v ,@[2]〉]
∧ UNCHANGED〈stack , head ,n, ss, v , in〉

where the TLA+ notation f ′ = [f EXCEPT ![n] = e] updates the function f
so that f ′[n] = e, where @ in e equals f [n], e.g., 〈v ,@[2]〉 = 〈v ,mem[n][2]〉 in
Push2 above.

3.2 Linearization step

For each linearization step, we need to prove proof obligation (2). This proof
obligation again requires that ABS , INV and STATUS hold after the concrete
step. However, the values for out and the abstract states after the step are values
reached by applying the abstract operation AOP . To simplify the encoding, we
assume two properties of the abstract operation in this section. We return to
more general abstract operations in Section 4.

The first property is that abstract operations are deterministic. The second
is that they are total , i.e., have a true guard and so can be applied at any time.
Both of these properties are true of our specification of the Treiber stack in
Section 2.1.

Proof obligation (2) is of the form

∀ x , y , y ′ • P(x , y , y ′)⇒ (∃ x ′ • Q(x , x ′) ∧ R(x ′, y ′))

where Q(x , x ′) is the abstract operation. If this operation is deterministic, we
have Q(x , x ′) ≡ q(x ) ∧ x ′ = e for some expression e and predicate q(x ). If it
is also total then q(x ) = true and we have Q(x , x ′) ≡ x ′ = e. Therefore, proof
obligation (2) can be written as

∀ x , y , y ′ • P(x , y , y ′)⇒ (∃ x ′ • x ′ = e ∧ R(x ′, y ′))

Applying the one-point rule for existential quantification (∃ x • x = e ∧ P(x ) ≡
P(e)), to ∃ x ′ • x ′ = e ∧ R(x ′, y ′) we get

∀ x , y , y ′ • P(x , y , y ′)⇒ R(e, y ′)

Then, applying the one-point rule for universal quantification (P(e)⇒ R(e) ≡
∀ x • P(x ) ∧ x = e ⇒ R(x )), to P(x , y , y ′)⇒ R(e, y ′) we get

∀ x , x ′, y , y ′ • P(x , y , y ′) ∧ x ′ = e ⇒ R(x ′, y ′)

which is



∀ x , x ′, y , y ′ • P(x , y , y ′) ∧ Q(x , x ′)⇒ R(x ′, y ′)

Hence, we can prove proof obligation (2) in the same way we prove proof obli-
gation (1) after extending the next-state relation to produce the unique values
for the abstract specification. For example, for Push5t we have

Push5t =̂ pc = 5 ∧ head = ss ∧ pc′ = 6 ∧ head ′ = n
∧ stack ′ = 〈in〉 ◦ stack ∧ UNCHANGED〈mem,n, ss, v , in〉

where s ◦ t concatenates sequences s and t . That is, stack is updated according
to the abstract operation Push of Section 2.1.

3.3 Non-interference

For each concrete step, whether a linearization step or not, we need to prove
proof obligation (3). This proof obligation requires that under an invariant D
the actions of one thread p do not break the invariant INV of another thread q .
Again, for scalability, we decide to encode the proof obligation for a single step
of p and for a single state of q . For example, we will have one TLA+ module for
the case when p executes Push5t while q is at line 2.

To encode such a module we need to have local variables for both p and q
and invariants INVq and STATUSq for q , as well as the new invariant D . The
module is as follows.

MODULE Push5tPush2

EXTENDS FiniteSequences,Naturals

VARIABLES stack , head ,mem,n, ss, v , in, pc,nq , ssq , vq , inq , pcq

CONSTANTS Ref ,T ,null ,N , undef

ABS =̂ ... as before

INV =̂ ... as before

INVq =̂ ... like INV but in terms of nq, etc.

D =̂ ... as described in the text

STATUS =̂ ... as before

STATUSq =̂ ... like STATUS but in terms of nq, etc.

Init =̂ stack ∈ FiniteSeq(T ,N )

∧ mem ∈ [Ref → ((T × (Ref ∪ {null})) ∪ undef )]

∧ head ∈ Ref ∪ {null} ∧ ABS ∧ n ∈ Ref ∧ ss ∈ Ref ∪ {null}
∧ v ∈ T ∧ pc = 5 ∧ INV ∧ in ∈ T ∧ STATUS ∧ nq ∈ Ref

∧ ssq = null ∧ vq ∈ T ∧ pcq = 2 ∧ INVq ∧ D ∧ inq ∈ T

∧ STATUSq

Push5t =̂ ... as given above except nq, etc. in the UNCHANGED list

Spec =̂ Init ∧ 2[Push5t ]〈stack ,head,mem,n,ss,v ,in,pc,nq,ssq,vq,inq,pcq〉



Given this module, we then prove INVq , D and STATUSq are invariants to
discharge proof obligation (3).

3.4 Initialisation

The final proof obligation (4) is proved by creating a module with 2 local states
(as above). All variables, global and local, are initialised according to the abstract
and concrete initialisation schemas, or in the case of local variables, given a
default value (since they are not assigned a value initially when the threads are
idle). Then we check that ABS , INV , INVq and D are invariants under the
empty next-state relation. That is, the required module is

MODULE Init

EXTENDS FiniteSequences,Naturals

VARIABLES stack , head ,mem,n, ss, ssn, v , lv , pc,nq , ssq , ssnq , vq , lvq ,

pcq

CONSTANTS Ref ,T ,null ,N , undef

ABS =̂ ... as before

INV =̂ ... as before

INVq =̂ ... like INV but in terms of nq, etc.

D =̂ ... as described in the text

Init =̂ stack = {} ∧ mem ∈ [Ref → {undef }] ∧ head = null

∧ n = null ∧ ss = null ∧ ssn = null ∧ v = 0 ∧ lv = 0 ∧ pc = 0

∧ nq = null ∧ ssq = null ∧ ssnq = null ∧ vq = 0 ∧ lvq = 0

∧ pcq = 0

Stop =̂ FALSE

Spec =̂ Init ∧ 2[Stop]〈stack ,head,mem,n,ss,ssn,v ,lv ,pc,nq,ssq,ssnq,vq,lvq,pcq〉

3.5 Discussion

To make our approach practical we need to address the fact that it requires
many model checking jobs to be run. A batch program is required to handle
these jobs and report any errors that are encountered. While developing our
approach, we ran the jobs manually7 and were able to successfully verify the
Treiber stack, a test-and-test-and-set spinlock implementation taken from [10]
and an implementation of the Linux reader-writer mechanism, seqlock, taken
from [3].

Checking a single proof obligation for the Treiber stack with a maximum
stack size of 4 takes around 16 seconds on an iMac with a 2.7GHz Intel Core

7 To save time, we often ran multiple jobs at once, i.e., using one module, at the
expense of a smaller state space.



i5 processor and 4GB RAM. Since it is intended that the full verification of the
stack is to be carried out using KIV, this stack size is sufficient for our purposes.

In general, however, checking larger state spaces has the potential to uncover
more errors. One area of future work is to look at improving the efficiency of
our approach. Although TLC is capable of running multiple threads, these are
only employed after the initial states have been computed [27]. Hence, reducing
the number of initial states by ignoring unused local variables, and setting local
variables which have not been assigned a value to a default value is important.
Since we can determine when to apply these state space reductions statically, this
process can be automated. Using a different encoding where the initial state is
built up over a number of state transitions would enable us to use TLC’s option
to run a user-defined number of threads. Then efficiency could be improved by
using more and better hardware. For example, Amazon run TLC on a cluster of
10 machines, each with eight cores plus hyperthreads and 23GB of RAM [16].

Another area of future work is to investigate encoding the simulation rules
in other model checkers such as SAL [5] to compare efficiency.

4 Encoding the rules for nondeterministic specifications

Consider a bounded version of the Treiber stack whose specification abstracts
from what happens when a push occurs and the stack is full. The state schema
and operation Push are updated as follows.

AS
stack : seqT

#stack ≤ Max

Push
∆AS
v? : T

#stack < Max ⇒
stack = 〈v?〉a stack

We could implement Push to simply ignore the new value when the stack is
full. Alternatively, we could implement it to delete the oldest value in the stack,
in order to make place for the new value. Whether such implementations are
sensible would depend on the envisaged application.

To prove any such implementation is linearizable with respect to Push, we
cannot use the approach of Section 3.2 which relies on Push being determin-
istic. Instead we encode proof obligation (2) more directly. Instead of proving
that ABS is an invariant for all concrete steps, we instead prove that for the
linearization step of a nondeterministic operation that there exists an execution
of the abstract operation which leads to ABS being true. That is, for the module
corresponding to step Push5t we prove ABS1 is an invariant, where

ABS1 =̂ (pc = 5⇒ ABS )
∧ (pc = 6⇒ (∃ s ∈ FiniteSeq(T ,N ) •

Len(stack) < Max ⇒ s = (〈in〉 ◦ stack) ∧ ABS0[s, head ]))



and Push5t is encoded in the same way as a non-linearization step. The model
checking time for this encoding is comparable to that of Section 4, taking around
16 seconds for a stack of maximum size 4.

A similar approach can be used for an abstract operation which is not total,
ensuring the linearization step occurs only when the operation is enabled.

5 Conclusion

In this paper, we have provided model checking support for a simulation-based
approach to proving linearizability [7]. The approach enables developers of con-
current objects to quickly check their designs for errors before attempting a full
verification using a theorem prover. The approach is the only model checking
approach we are aware of that allows checking linearizability for an arbitrary
number of threads. Other approaches are typically limited to between 2 and 4
threads depending on the concurrent object.

At present, the approach can only be used with concurrent objects whose lin-
earization points can be determined from the current state of the calling thread
and object. As future work, we would like to extend this to other concurrent ob-
jects. As a first step, we will investigate encoding the additional simulation rules
of [8], allowing objects whose linearization points are determined by future states.
These simulation rules are only slightly more complicated than the ones we en-
coded in this paper. Following this, we will investigate handling the complete
approach, for all possible concurrent objects, described in [18]. This approach
requires that the implementation is a backward simulation of the specification.
Earlier work on verifying backward simulations using model checking [19, 20] will
provide a starting point for this investigation.
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