
A Formal Development Approach for Self-Organising Systems

Qin Li and Graeme Smith
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, Australia

qli@sei.ecnu.edu.cn; smith@itee.uq.edu.au

Abstract—Self-organising systems are distributed systems
which achieve an ordered global state without centralised
control. They include adaptive sensor networks, swarm robotic
systems and mobile ad-hoc networks. Designing such systems
is difficult and often based on a trial-and-error approach. In
this paper, we provide an approach which is both systematic
and formal. Our approach builds on the formalism of Object-Z
and the refinement approach of action systems. It follows an
intuitive approach to development which breaks a refinement
proof into three steps which the designer may iterate through
on the way to the final design.

Keywords-self-organising systems; Object-Z; refinement;
Unifying Theories of Programming; guarded design calculus

I. INTRODUCTION

A self-organising system is a distributed system without
centralised control that exhibits one or more self-∗ be-
haviours [1]: self-configuration, self-adaptivity, self-healing
etc. A characteristic of each of these self-∗ behaviours
is the achievement of a system state with some desired
property. Once the state is reached the system remains in
it until some external, i.e., non-system, action renders it
undesirable. This observation provides the basis for the
formal design approach proposed in [2], applied in [3] and
formalised in this paper. Rather than specifying the ongoing
reactive behaviour of a system, we specify a system which,
starting from an initial state, reaches a desired state and then
terminates. This simpler model of behaviour is sufficient for
verifying that a particular design produces a desired goal
under certain conditions (captured by the initial state).

It allows us to capture the system at the highest level of
abstraction by a single action which achieves the desired
state. This action is then, through a series of refinement
steps, divided into a sequence of actions representing agent
interactions, resulting in a distributed design. This type of
refinement is comparable to action refinement as proposed
by Back for action systems [4], or non-atomic refinement
proposed by Derrick and Boiten for Z and Object-Z [5].
Hence, our first approach for formal development of such
systems involved defining action refinement for Object-
Z [6]. Object-Z was chosen due to its expressivity and
support for structuring [7], but as in this paper, was only
a vehicle to explore ideas. Other notations, perhaps those
better supported by tools, could also be utilised. Action

refinement was chosen over non-atomic refinement due to
its additional support for the strengthening of guards of
individual actions (allowing non-determinism between the
choice of actions to be resolved [6]).

In this paper, we extend this previous work in 3 ways.
(1) We extend Object-Z with explicit guards (and implicit
preconditions) to bring it closer to actions systems and hence
better support the use of action refinement. (2) We take
advantage of the fact that our specifications are terminating
to define a version of action refinement in which there is no
need to distinguish between global (observable) and local
(non-observable) actions: the state is assumed to be observed
initially and at termination only. (3) Most importantly, we
introduce a strategy which allows a designer to iterate
through 3 steps on the way to a final design. These steps
build on our experience with the design process [2], [3], [8],
[6].

II. A FORMAL NOTATION

A specification is captured by a construct based on the
class construct of Object-Z [7]. The syntax for declarations
of types, constants and variables and for predicates is
identical to that in Object-Z. The syntax for actions is similar
to that of operations in Object-Z except that it additionally
has an explicit guard.

As an example, consider the following specification of
a self-configuring robot swarm [9]. The specification has
a constant target which is a finite set of positions in 3-
dimensional space representing the desired configuration of
the robots. A variable atoms represents the positions of the
finite set of robots. An invariant constrains the number of
atoms to be the same as the number of positions in the target
shape.

System1
[Position]

target : FPosition

atoms : FPosition

#atoms = #target



INIT

true

Configure
∆(atoms)

atoms 6= target

atoms′ = target

A. Semantics

The semantics of a specification is given in terms of
the guarded design calculus [10]: an application of Hoare
and He’s Unifying Theories of Programming (UTP) [11]. A
guarded design of the form g & (pre ` post) represents a
reactive program that is enabled iff the guard g is satisfied
and, when enabled, behaves as the design pre ` post. The
predicate is defined in terms of the same variables as the
design and an additional ‘status’ variable wait. The variable
wait denotes whether or not the control flow of the program
allows the action to execute (independently of whether or
not its guard is true). If wait = true the program is unable
to execute; otherwise the program is able to execute.

g & (pre ` post) =̂ (pre ` (post ∧ ¬ wait′))
C g ∧ ¬ wait B (true ` (~v′ = ~v ∧ wait′))

where ~v is the vector of state variables of the program.
If a guarded design starts in a state where the guard

is false, the program will set wait to true which prevents
any subsequent programs executing. We let g(P) denote the
guard of a guarded design, and D(P) denote the design that
describes its behaviour when the guard is true.

Let [[.]] be a function mapping a syntactic entity to its
semantics. Let System be a specification with constants
~c, state variables ~v, state invariant inv(~c,~v), initial state
predicate init(~c,~v) and actions Act1, . . . ,Actn.
• The semantics of an action

Acti
∆(~u)
declarations of local variables ~x

guard(~c,~v,~x)

effect(~c,~v,~x,~v′)

for 1 ≤ i ≤ n, is a guarded design defined as follows.

[[Acti]] =̂ var ~x; (guard & pre ` post); end ~x

where

pre ≡ inv(~c,~v) ∧ ∃~v′ • post(~c,~v,~c′,~v′)

post ≡ effect ∧ ~c′ = ~c ∧ ~w′ = ~w ∧ inv(~c,~v′)

• The semantics of the initial state schema is also a
guarded design:

[[INIT]] =̂ true & true ` (init(~c′,~v′) ∧ inv(~c′,~v′))

• The semantics of System is a tuple of guarded designs.

[[System]] =̂ ([[INIT]], ¬ wait ∗ ([[Act1]] + . . .+ [[Actn]]))

where

b ∗ P =̂ b ∧ (P; b ∗ P) ∨ ¬ b ∧ (~v′ = ~v)

defines a guarded design which keeps executing P while
predicate b is true, and

P + Q =̂ (g(P) ∨ g(Q)) &
(g(P) ∧ D(P) ∨ g(Q) ∧ D(Q))

defines a guarded choice between P and Q.
Note that we are interested only in terminating specifica-

tions (where wait will become true). For a non-terminating
specification, the behaviour of the specification would be
defined by the weakest fixed point of the iteration [11].

B. Refinement
Let P(~v1,~v′1) and Q(~v2,~v′2) be guarded designs, and

R(~v1,~v′2) be a predicate defining the retrieve relation map-
ping between unprimed abstract states and primed concrete
states. Data refinement from P to Q, denoted as P(~v1,~v′1) vR

Q(~v2,~v′2), can be defined as follows.

R(~v1,~v′2); Q(~v2,~v′2)⇒ P(~v1,~v′1); R(~v1,~v′2)

Let S1 and S2 be specifications such that [[S1]] = (I1,P1)
and [[S2]] = (I2,P2), and R be a retrieve relation mapping
between unprimed states of S1 and primed states of S2.
S1 vR S2 when (I1 vR I2) ∧ (P1 vR P2).

As an example, consider the following specification that
refines System1.

System2
[Position]

target : FPosition

atoms : FPosition
placed : FPosition

#atoms = #target
placed ⊆ atoms ∩ target

INIT

true

Place
∆(atoms, placed)

placed ⊂ target

∃ p : target \ placed • placed′ = placed ∪ {p}



The refinement from System1 to System2 can be verified
using the retrieve relation R ≡ target′ = target ∧ atoms′ =
atoms ∧ ok′ = ok ∧ wait′ = wait. In this case the
proof is straightforward. In general, there may be several
actions in both the abstract and concrete specifications and
the complexity of the specifications may make direct proof
of refinement impracticable. To deal with this we detail
an incremental approach to the proof of a refinement in
Section III.

III. A DESIGN STRATEGY

The goal of our design strategy is to iteratively decompose
actions of our abstract system specification to concrete ac-
tions representing agent interactions. These concrete actions
can then be used to inform the implementation of the
agent protocols. To deal with the increase in complexity
as the number of actions in both abstract and concrete
specifications increases, we provide a systematic approach to
deriving a correct refinement. The intuitive approach gleaned
from our earlier work [2], [3], [8], [6] breaks a refinement
proof into 3 steps which the designer may iterate through
on the way to a final design.

A. Simulation

The first step is to decide on a composition of concrete
actions (using the sequential composition (;), guarded choice
(+) and iteration (∗) operators) to simulate each abstract
action. This provides the basis for the concrete design. At
this stage, however, we are not concerned with the enabled-
ness of the overall system, nor the interference between
simulations. Each simulation should be enabled only when
the abstract action is, and should result in a post state
consistent with the abstract action.

Let S1 and S2 be specifications and R(~v1,~v′2) be a retrieve
relation mapping between unprimed states of S1 and primed
states of S2. Let a be an abstract action of S1 and C be a
composition of the concrete actions of S2 using the operators
; , + and ∗. C simulates a iff

(R(~v1,~v2) ∧ g([[C]])⇒ g([[a]])) ∧ (D([[a]]) vR D([[C]]))

where [[C1; C2]] ≡ [[C1]]; [[C2]], [[C1 + C2]] ≡ [[C1]] + [[C2]]
and [[b ∗ C]] ≡ b ∗ [[C]].

For example, the abstract action Place from System2 in
Section II could be simulated by the sequential composition
of two concrete actions Recruit and Move.

Recruit
∆(atoms,waiting)
p, q : Position

(p, q) ∈ nb
p ∈ placed
q ∈ target \ placed

waiting′ = waiting ∪ {p}

Move
∆(atoms, placed)
p, q : Position

(p, q) ∈ nb
p ∈ waiting
q ∈ target \ placed

placed′ = placed ∪ {q}

Let R1 ≡ R ∧ placed′ = placed be a retrieve relation
between the states of System2 and the new specification
described above. The proof that Recruit; Move simulates
Place is straightforward.

B. Interleaving

The simulation step considers each abstract action in
isolation. In our experience [2], [3], this matches the way
a designer decides on the concrete actions in a design. It
is necessary, however, to allow the simulations of different
actions to interleave. In next step we consider the effect
of interleaving on the chosen simulations and modify the
concrete actions and simulations accordingly.

To do this we need to show that any sequence of actions
that the concrete specification can undergo corresponds to a
sequence of simulations of abstract actions. We introduce
a function τ which returns the set of action traces, i.e.,
sequences of actions, defined by a simulation.

Let Σ be the set of simulations of the abstract actions.
For all C ∈ Σ and concrete actions a the following hold.

1) If the guard of a is true initially or following C then
〈a〉 is an action trace of a simulation C′ ∈ Σ.

(∃~v,~v′ • (init(~v′)∨ [[C]](~v,~v′)) ∧ g([[a]])(~v′))⇒
(∃C′ ∈ Σ • 〈a〉 ∈ τ(C′))

2) If the guard of a is true before the final action of an
action trace t a 〈b〉 of C, where t 6= 〈 〉, then t a 〈a〉
is an action trace of a simulation C′ ∈ Σ.

∀〈a1, . . . , an, b〉 ∈ τ(C) •
(∃ v, v′ • ([[a1]]; . . . ; [[an]])(v, v′) ∧ g([[a]])(v′))⇒
(∃C′ ∈ Σ • 〈a1, . . . , an, a〉 ∈ τ(C′))

In our example, the only action enabled initially and after
the simulation Recruit; Move is Recruit. Since it also the
first action of the simulation, condition 1) holds.

During the simulation, i.e., after the Recruit action, both
Recruit and Move are enabled. While the simulation allows
Move as the next action, it does not allow Recruit. Hence,
condition 2) is not satisfied. To remedy this, we could
strengthen the guard of Recruit so that only a single Recruit
action can occur before a Move. This does not match our
intended design, however, where multiple atoms may be
recruiting neighbours at any time. The alternative is to
weaken the simulation, allowing multiple Recruit actions
before a Move.

The new simulation for our example is Recruit U Move
where P U Q repeatedly executes guarded design P + Q,
terminating after the first execution of Q. Whenever U
is used in a simulation, the simulation will be divergent
unless the terminating action can be guaranteed to occur.
In our example this is not the case: Recruit actions could
continue forever. Obviously, this means the simulation does
not simulate the abstract action Place. To guarantee that



Move will occur, we strengthen the guard of Recruit so that
a given atom only recruits once.

Recruit
∆(atoms,waiting)
p, q : Position

(p, q) ∈ nb
p ∈ placed \ waiting ∧ q ∈ target \ placed

waiting′ = waiting ∪ {p}

Since the number of atoms is finite, Recruit can only happen
a finite number of times. It is then straightforward to show
that Recruit U Move simulates Place.

C. Deadlock
Once a suitable simulation is found for each abstract

action, the final step is to ensure that the resulting con-
crete system does not deadlock (i.e., reach a state where
wait = true) more often than the abstract system.

Let S1 be an abstract specification with actions a1, . . . , an

simulated by compositions C1, . . .Cn of actions of a concrete
specification S2 under retrieve relation R(~v1,~v′2). S2 does not
deadlock more than S1 iff the following holds.

R(~v1,~v2) ∧ ¬ (g([[C1]]) ∨ . . . ∨ g([[Cn]]))(~v2)⇒
¬ (g([[a1]]) ∨ . . . ∨ g([[an]]))(~v1)

Returning to our example, the guard of Recruit U Move
is false when both Recruit and Move are not enabled.
Since waiting ⊆ placed is an invariant, the guard of
Recruit U Move is false when either

(a) there is no p ∈ placed or,

(b) there is such a p, and there is no q ∈ target \ placed
such that (p, q) ∈ nb.

In case (b), since target is fully connected and placed ⊆
target we can deduce that placed = target. Hence,
¬ g([[Recruit]] U [[Move]]) is placed = ∅ ∨ placed = target.
However, ¬ g([[Place]]) is placed = target and so, with R1

as the retrieve relation, the deadlock condition does not hold.
This tells the designer that something needs to change in the
concrete specification. One possible solution is to strengthen
the invariant of the concrete specification to exclude states
where placed = ∅. This can be done either explicitly,
or implicitly by strengthening the initial state to include
placed 6= ∅ (since elements are never removed from placed
by any action).

Effectively, we have made a design decision to start with
at least one atom already fixed in a target position. The
strengthened initial condition (and invariant) allows us to
strengthen the retrieve relation to R2 ≡ R1 ∧ placed′ 6=
∅ without invalidating the refinement between abstract and
concrete initial state schemas, nor the proofs of simulation of
abstract actions. The deadlock condition can then be shown
to hold under R2.

IV. CONCLUSION

We have presented a strategy for designing self-organising
systems using refinement-based action decomposition. The
strategy allows us to incrementally develop a collection of
agent interactions which result in a desired global state.
It differs from action refinement in one significant way:
changes to global (i.e., observable) state variables can be
made by introduced actions.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Jeff Sanders for his
input into the ideas presented in this paper. This work was
supported by Australian Research Council (ARC) Discovery
Grant DP110101211.

REFERENCES

[1] G. Smith, J. W. Sanders, and K. Winter, “Reasoning about
adaptivity of agents and multi-agent systems,” in 17th IEEE
International Conference on Engineering of Complex Com-
puter Systems(ICECCS2012), 2012, pp. 341–350.

[2] G. Smith and J. Sanders, “Formal development of self-
organising systems,” in 6th International Conference on Auto-
nomic and Trusted Computing (ATC 2009), 2009, pp. 90–104.

[3] S. Eder and G. Smith, “An approach to formal verification of
free-flight separation,” in Self-Adaptive and Self-Organizing
Systems Workshop (SASOW 2010), 2010, pp. 166–171.

[4] R. Back and J. von Wright, “Trace refinement of action
systems,” in 5th International Conference on Concurrency
Theory (CONCUR ’94), 1994, pp. 367–384.

[5] J. Derrick and E. Boiten, Refinement in Z and Object-Z,
Foundations and Advanced Applications. Springer-Verlag,
2001.

[6] G. Smith and K. Winter, “Incremental development of multi-
agent systems in Object-Z,” in Software Engineering Work-
shop (SEW-35), 2012.

[7] G. Smith, The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.

[8] A. Sampson and G. Smith, “Gravity points in potential-field
approaches to self organisation,” in Self-Adaptive and Self-
Organizing Systems Workshop (SASOW 2010), 2010, pp. 110–
115.

[9] K. Støy, “Using cellular automata and gradients to con-
trol self-reconfiguration,” Robotics and Autonomous Systems,
vol. 54, pp. 135–141, 2006.

[10] J. He, “Service refinement,” Science in China Series F:
Information Sciences, vol. 51, pp. 661–682, 2008.

[11] C. Hoare and J. He, Unifying Theories of Programming.
Prentice Hall, 1998.


