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Abstract. Although adaptivity is a central feature of agents and multi-
agent systems (MAS), there is no precise definition of it in the literature.
What does it mean for an agent or for a MAS to be adaptive? How can
we reason about and measure the ability of agents and MAS to adapt?
How can we systematically design adaptive systems? In this paper, we
provide a formal definition of adaptivity, and a framework for designing
adaptive systems aimed at addressing these issues.
The definition of adaptivity, based on Dijkstra’s notion of self stabilisa-
tion, is independent of any particular mechanism for ensuring adaptivity,
and any particular specification notation. The framework for designing
adaptive systems is similarly independent of both implementation mech-
anisms and specification notation. It is based on the paradigm of teleo-
reactive agents proposed by Nilsson: a paradigm in which agents move
towards their goal in the presence of a continually changing environment.

1 Introduction

Adaptivity is central to the functionality of many multi-agents systems (MAS)
[36]. Agents adapt gradually to their environment using, for example, machine
learning techniques [20], and the distributed nature of MAS is exploited to make
them robust against both external disturbances and agent failures. The inherent
complexity of such systems has led to much interest in systematic approaches
to their development in the area of agent-oriented software engineering (AOSE)
[37], and growing interest in the use of formal methods to complement assurance
approaches based primarily on simulation [6, 17].

These development and assurance approaches rely on precise behavioural
specifications of the agents or MAS being engineered. Such specifications can
be developed in an ad-hoc, system-by-system fashion, but a more systematic
approach is hindered by the lack of a precise definition of adaptivity and a
general framework for specifying adaptive behaviour. As Mohyeldin et al. [21]
state

“Still open is a semantically well defined process to design adaptive sys-
tems, while concentrating on the adaptive behaviour rather than dis-
cussing implementation details.”



In this paper, we address this issue by

1. providing a formal definition of adaptivity which is independent of any par-
ticular adaptivity mechanism and general enough to use with any specifica-
tion notation, and

2. based on this definition, a framework for specifying the behavioural require-
ments of adaptive agents and MAS in a systematic way.

We begin in Section 2 by motivating our definition of adaptivity (which
is based on our previous work [26, 29]) with respect to representative informal
notions of adaptivity arising in the literature. We then provide a formal model of
MAS in Section 3 as a basis for formalising our adaptivity definition in Section 4.
In Section 5, we introduce a specification framework for modelling adaptive
systems based on Nilsson’s teleo-reactive agents paradigm [23, 24]. The approach
is applied to a case study in Section 6 before we conclude in Section 7.

2 What is adaptivity?

Various informal notions of adaptivity can be found in the literature. Below are
some representative examples.

– Adaptivity should allow change in system functionality [13]. The view is that,
by adapting to environmental change, a system or agent may offer new op-
erations on new states.

– Adaptivity should include self-organisation [16, 12]. Systems should be able
to reconfigure to adjust for changes in the environment or agent capabilities.

– Adaptivity should include self-optimisation [3]. In response to a change in
externally-set parameters (i.e., global variables) the agents are able spon-
taneously and autonomously to perform calculations (viewed as optimising
certain local variables) which result in the system returning to a desired
state.

– Adaptivity should include (machine) learning [20, 33]. It should, for exam-
ple, enable improved response to change so that when confronted with the
same situation in the future, the system or agent adapts more quickly and
efficiently.

Our goal is to find a general definition which covers each of the notions above.
The most fundamental feature of an adaptive system is its ability to change

behaviour (i.e., functionality) in response to environmental change. The prospect
of changing behaviour at first conjures up visions of systems which are somehow
more advanced than standard computer programs. However, changing behaviour
is illusory since a system, when viewed at a certain level of abstraction as a sim-
ple state machine, does not actually change what it is capable of doing. As shown
in [13], it simply moves to a new state in which different actions and environ-
mental interactions are possible. This is true even of approaches to evolutionary



computing [10] and machine learning [20]: underlying such systems is just a com-
puter program. Given this observation, what distinguishes an adaptive system
from a merely reactive one? Indeed, a number of approaches for adaptive sys-
tems seem to support designs which respond to environmental change without
further consideration for what makes those designs adaptive [4, 5].

To answer this question, we appeal to the notion of legitimate states of a
system introduced by Dijkstra [8]. In this work, ‘legitimacy’ is defined by a
state invariant capturing those states in which the system behaves as intended.
A typical reactive system would operate only in such legitimate states chang-
ing its behaviour to reflect environmental interactions and, importantly, always
operating as intended.

Dijkstra’s paper is concerned however with self-stabilisation of distributed
systems. His examples consist of token ring networks in which a legitimate state
is one in which there is exactly one token present. He presents several algorithms
which, given an arbitrary number of tokens initially, end up in a legitimate state.

An important feature of Dijkstra’s self-stabilising networks is that even if
they start in states which are not legitimate states, they are guaranteed to reach
legitimate states after a finite number of system actions. A typical reactive sys-
tem may not operate at all when not in a legitimate state. Also, it is not designed
to perform actions which allow it to reach a legitimate state. An adaptive sys-
tem, on the other hand, is required to be a reactive system which, like Dijkstra’s
self-stabilising token rings, can reach legitimate states from illegitimate ones.

In other words, an adaptive system is one which, when placed in a particular
environment, has a defined set of legitimate states and when in an illegitimate
state reaches a legitimate state again. Indeed, the period before the system
reaches the legitimate state is the time when the system is adapting.

Following Dijkstra’s definition, we do not allow a system in a legitimate state
to enter an illegitimate state of its own accord. That is, defined transitions of
the system from legitimate states enter only other legitimate states. A system
is placed in an illegitimate state by an external action, i.e., an action that is
not regarded as part of the system’s specification. This action may represent
a change in the environment due to an unforeseen disturbance, or the passing
of a threshold point in an environment that is gradually changing over time.
Alternatively, an external action may represent a change to the system itself. In
the case where the system is an agent, this may be caused, for example, by the
action of a software virus changing internal data. In the case where the system
is a MAS, it may be caused by the failure of a component agent.

In each case we can reason about adaptivity as the ability to ‘recover’ from
the external event, i.e., the ability of the system to reach a legitimate state.
Since systems will, in general, be adaptive to only a subset of all possible ex-
ternal actions, we qualify our definition of adaptivity with respect to a specific
external action. Furthermore, we quantify adaptivity with respect to the number
of actions required for the system to adapt. At a given level of abstraction, this
provides us with a metric for comparing different adaptivity mechanisms.



Dijkstra’s systems are closed in the sense that they do not interact with an
external environment. The notion of legitimate states must for our purposes be
extended to open systems by considering the state to include both that of the
system and its environment. Then our definition of adaptivity covers each of the
informal definitions above.

– Adaptivity should allow change in system functionality. Since the environ-
ment state is part of each legitimate state, a change in the environment will
result in a change in the system states which constitute a legitimate state.
Moving to such a system state will result in a different behaviour (and hence
functionality).

– Adaptivity should include self-organisation. Self-organisation of a system can
be seen as moving towards a legitimate state. Indeed, the approaches of both
Güdemann et al. [16] and Georgiadis et al. [12] are based on satisfying cer-
tain system constraints, or invariants. Using the terminology of complex
systems, self-organisation may be viewed as autonomous convergence to at-
tracting states [25]. Under our definition the attracting states are the legiti-
mate states.

– Adaptivity should include self-optimisation. With respect to self-optimisation,
our definition would identify optimal states with legitimate states. While this
shows the applicability of our definition in theory, it may not always be pos-
sible to specify the optimal states in practice.

– Adaptivity should include (machine) learning. In supervised machine learn-
ing (positive and negative) examples of a concept Q are provided to enable
subsequent approximate classification of specimens into those satisfying Q
and those not satisfying Q . The set of legitimate states expresses approxi-
mate classification of Q (for example as formalised by Valiant in probably
approximately correct (PAC) learnability [35]). Initialisation of the learning
protocol is regarded as an external action, and the agent ‘learns Q ’ if, and
only if, it reaches a legitimate state after such initialisation.
Our quantification of adaptivity with respect to the number of actions re-
quired for the system to adapt enables us to specify improved response to
external actions.

3 A formal model of multi-agent systems

In order to formalise our definition of adaptivity, we begin by providing formal
representations of agents and MAS. Since we consider agents as being artifacts
that are realised by software, they can – on a low level of abstraction – be rep-
resented as labelled transition systems (LTS). An LTS comprises a (possibly
infinite) set of states, a (possibly infinite) set of initial states, and a collection of
actions which cause (possibly nondeterministic) state transitions. Similar con-
cepts have been used in the agent literature before. For example, formalisms with
an underlying transition systems semantics such as Z and Object-Z have been
suggested for modelling agents and MAS [9, 14]. Also, Hunter and Delgrande



[18] use transition systems which they extend with a metric function to capture
“plausibility” amongst belief states. Without loss of generality, we assume such
a metric can be encoded in the transition system.

Definition 1. An LTS is a 4-tuple S = (Q , I , Σ, δ) where

– Q is the (possibly infinite) set of states.

– I ⊆ Q is the non-empty set of initial states.

– Σ is the set of actions (or labels).

– δ ⊆ Q ×Σ ×Q is the set of labelled transitions.

A behaviour of an LTS, S , is a possibly infinite sequence alternating between
states and actions q0 a1 q1 a2 q2 . . . where for all i > 0, ai ∈ Σ such that
(qi−1, ai , qi) ∈ δ.

Let B(S ) denote the behaviours of S starting from an initial state of S , i.e.,
where q0 ∈ I , and B(S ,Q ′) denote behaviour of S starting in a state q0 ∈ Q ′

where Q ′ ⊆ Q . Let st(b, i) denote the ith state of a behaviour b, and let act(b, i)
denote the ith action.

To facilitate reasoning about environmental interaction, we use a simple ex-
tension of LTS in which actions are partitioned into three sets: internal actions,
input actions (externally observable actions controlled by the environment), and
output actions (externally observable actions controlled by the component).

Such a partitioning of actions has been proposed for modelling reactive sys-
tems. It is central to the I/O automata approach of Lynch and Tuttle [19], and
interface automata of de Alfaro and Henzinger [7]. In each of these approaches,
combined automata interact by synchronising on common-named input and out-
put actions. All automata with a given action are involved in each synchronisa-
tion on that action.

The main difference between I/O automata and interface automata is that
the former are input-enabled meaning that input actions can never be refused.
This is not the case with interface automata where the restrictions on the type
of input actions and when they can occur is used to model assumptions on the
system’s environment.

An approach similar to interface automata has also been proposed for mod-
elling groupware systems by Ellis [11]. This approach, inspired by Smith’s work
on collective intelligence in computer-based collaboration [31], has been for-
malised and further developed by ter Beek et al. [34]. The automata are re-
ferred to as component automata, and component automata which are formed
as the composition of other component automata as team automata. The major
difference with the aforementioned approaches to reactive systems is that in a
team automaton not all of the composed automata with a given action need
to synchronise on that action. This flexibility has been shown to be well suited
to formalising notions of coordination, cooperation and collaboration in a dis-
tributed setting [34]. In the remainder of this section, we show how agents and
MAS can be modelled using component and team automata.
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Fig. 1. Component automaton of the client agent

3.1 Agents as Component Automata

Agents are modelled as component automata [34].

Definition 2. An agent is an LTS, A = (Q , I , Σ = Σint ∪Σinp∪Σout , δ), where
Σint , Σinp and Σout are pairwise disjoint, and

– Σint is the set of internal actions. Such actions are controlled by the agent
and are not externally observable.

– Σinp is the set of input actions. Such actions are externally observable and
are controlled by the agent’s environment.

– Σout is the set of output actions. Such actions are externally observable and
are controlled by the agent.

Example 1. Consider an agent Client which is aware of a number of servers in
its environment with which it can interact. The state of the client includes the
set of server identifiers and the identifier of the server with which it is currently
interacting. It has a set of internal actions cs.id which allows it to change the
server with which it is interacting to that with identifier id (initially the client is
interacting with any server of which the agent is aware), a set of output actions
request .id representing a request to the server with identifier id , and a set of
input actions reply .id representing a reply from the server with identifier id .

Assume there are two available servers with identifiers 1 and 2. An LTS that
models the client can be depicted as in Figure 1, where incoming arrows mark
initial states. In this model, the client changes server only when it is not awaiting
a reply.

To represent this system as a component automaton, we simply partition its
actions as follows.

Σint = {cs.i | i ∈ 1 . . 2}
Σinp = {reply .i | i ∈ 1 . . 2}
Σout = {request .i | i ∈ 1 . . 2} 3

Given this partitioning, the fact that the input action reply .id occurs only after
request .id , for id ∈ 1 . .2, is an assumption that has been made about the client’s
environment. It is not something the client could itself enforce.



3.2 Multi-agent systems as Team Automata

When component automata are composed, they potentially synchronise on
common-named actions. Hence to prevent unwanted synchronisations, a pre-
condition for composing a group of agents is that no internal action of one agent
is present as an action (internal or external) of another agent.

Let Ai denote the agent (Qi , Ii , Σi = Σi,int ∪Σi,inp∪Σi,out , δi), for i ∈ 0 . .n.
A composition of the agents A0, . . . ,An is possible if

∀ i ∈ 0 . . n • (Σi,int ∩
⋃

j :0..n\{i}
Σj ) = ∅. (1)

Given such a composable set of agents, a multi-agent system (MAS) is mod-
elled as a special kind of component automaton called a team automaton [34].
A state q of the team automaton is a tuple of the possible states of the agents,

q ∈
∏

i:0..n
Qi . We let qj , for j ∈ 0 . . n, denote the j th element of the tuple q .

Definition 3. A MAS comprising agents A0, . . . ,An is an LTS, M =
(Q , I , Σ = Σint∪Σinp∪Σout , δ), where Σint , Σinp and Σout are pairwise disjoint,
and

– Q =
∏

i:0..n
Qi .

– I =
∏

i:0..n
Ii .

– Σint =
⋃

i:0..n
Σi,int .

– Σout =
⋃

i:0..n
Σi,out .

– Σinp = (
⋃

i:0..n
Σi,inp) \Σout .

– δ ⊆ Q ×Σ ×Q such that
• for all (q , a, q ′) ∈ δ, there exists a j ∈ 0 . .n such that (qj , a, q

′
j ) ∈ δj and

for all i ∈ 0 . . n with i 6= j , (qi , a, q
′
i) ∈ δi or qi = q ′i

• for all q , q ′ ∈ Q and a ∈ Σint , if there exists a j ∈ 0 . . n such that
(qj , a, q

′
j ) ∈ δj , then (q , a, q ′) ∈ δ.

The internal and output actions of M are those of the agents. The input ac-
tions are those of the agents which are not also output actions. In the case where
an input action of one agent is the same as an output action of another agent,
the input is assumed to be caused by the output action and hence is not an input
action for the MAS. The fact that the output action is not also removed from
the system allows team automata to be further composed with other component
or team automata, e.g., to act as the environment of a component in a further
composition.

The transitions of M are such that the following hold.

(i) Each transition involves a non-empty subset of agents engaging in the action
a. The state of each agent not involved in the action remains unchanged.

(ii) There is a MAS transition for each agent transition corresponding to an
internal action.



Not all agents with action a need to be involved in a system transition cor-
responding to a. This allows different interaction strategies to be captured [34].
However for consistency, we require that any output action of the system in-
volves at least one agent output action, i.e., there should not be a system action
a involving only an agent which has a as an input action when there are other
agents which have a as an output action. More formally

∀(q , a, q ′) ∈ δ • a ∈ Σout ⇒ ∃ j ∈ 0 . . n • a ∈ Σj ,out ∧ (qj , a, q
′
j ) ∈ δj . (2)

Furthermore, given a transition (q , a, q ′) of a MAS such that qj = q ′j for some
j ∈ 0. .n, if the j th agent has a transition (qj , a, qj ) then the agent undergoes this
action, otherwise (i.e., if (qj , a, qj ) 6∈ δj ) it undergoes no action. This maximal
interpretation suggested by ter Beek et al. [34] removes any ambiguity concerning
which agents participate in a particular MAS transition.

Example 2. To continue Example 1 above we assume that each server is defined
as Serveri = (Qi , Ii , Σi,int∪Σi,inp∪Σi,out , δi) withΣi,int = ∅,Σi,out = {reply .i |
i ∈ 1 . . 2} and Σi,inp = {request .i | i ∈ 1 . . 2}. The behaviour of the two servers
is modelled abstractly in Figure 2. (For simplicity, we assume that a server deals
with only one client at a time).

request.1

reply.1

request.2

reply.2

Fig. 2. Component automata of the server agents

The agents Client , Server1 and Server2 can be composed since (1) holds.
Given Client = (QClient , IClient , ΣClient , δClient), one team automaton that

can be composed from Client and the servers Server1 and Server2 is M =
(Q , I , Σint ∪Σinp ∪Σout , δ) with

– Q = QClient ×
∏

i:1..2
Qi .

– I = IClient ×
∏

i:1..2
Ii .

– Σint = {cs.i | i ∈ 1 . . 2}.
– Σinp = ∅.
– Σout = {reply .i , request .i | i ∈ 1 . . 2}.
– δ = {(q , a, q ′) ∈ Q ×Σ ×Q | (q0, a, q

′
0) ∈ δClient ∧

a 6∈ Σint ⇒ (∃ i ∈ 1 . . 2 • (qi , a, q
′
i) ∈ δi ∧ (∀ j 6= i • qj = q ′j )) ∧

a ∈ Σint ⇒ (∀ i ∈ 1 . . 2 • qi = q ′i)) }.

Since all common-named actions synchronise, and all actions which are en-
abled in a component can occur, the definition satisfies (2).



It is possible, by restricting δ in such compositions, to limit when operations
are enabled, or to limit the agents which synchronise on an action. For example, if
we had included two client agents, then we would expect only one to be involved
in each request, reply and change-server action.

3

4 Adaptivity defined

In this section we provide formal definitions of adaptivity for agents and MAS
based on their team automata representations as defined in Section 3. We base
our definitions on Dijkstra’s notion of legitimate states [8] which we extend to
include both the state of the system under consideration (agent or MAS) and
its environment. The definitions qualify adaptivity with respect to the external
action to which the system adapts, and quantify it with respect to the number
of actions required to adapt.

Since agents and MAS are represented by automata, the definition of adap-
tivity for each of them is identical. We begin by defining adaptivity in the special
case of closed systems, i.e., where the system does not interact with its environ-
ment, in Section 4.1. This definition is applicable to MAS which do not rely
on environmental interaction for their operation. We then extend the definition
to open systems, i.e., where interaction with the environment is central to the
system’s operation, in Section 4.2. This definition is applicable to agents as well
as MAS that interact with their environment.

4.1 Adaptivity of closed systems

A closed MAS M can be modelled by a team automaton with no input actions.
The team automaton of Example 2 is an example of such a closed system. Let
Q(M ) denote the set of legitimate states of M . By definition, all transitions from
legitimate states lead to legitimate states. That is, given M = (Q , I , Σ, δ)

(q , a, q ′) ∈ δ ∧ q ∈ Q(M )⇒ q ′ ∈ Q(M ). (3)

A MAS is well-formed if the initial states of M are legitimate states, or if M
is guaranteed to reach a legitimate state in a finite number of actions. That is,

I ⊆ Q(M ) ∨ (∀ b ∈ B(M ) • ∃ i ≥ 0 • st(b, i) ∈ Q(M )). (4)

In the case where a finite number of actions are required to reach a legitimate
state, the MAS undergoes an initial self-configuration process.4

Let Q be the set of states of M and Z be an external action defining the
set of transitions ζ ⊆ Q × Z × Q on M . Such an external action can move the
MAS from a legitimate state to an illegitimate one. M can adapt to the external
action, if it can return to a legitimate state.

4 Self-configuration can itself be viewed as a type of adaptivity in which the external
action is the system initialisation.



Definition 4. A closed MAS M is Z -adaptive if, after an occurrence of Z which
places the MAS in an illegitimate state, the MAS is guaranteed to reach a legiti-
mate state in a finite number of transitions under the assumption of no further
occurrences of Z .

That is, for all b ∈ B(M ) such that there exists an i ≥ 0 such that st(b, i) = q
and for all illegitimate states q ′ such that (q ,Z , q ′) ∈ ζ the following holds.

∀ b′ ∈ B(M , {q ′}) • ∃ j > 0 • st(b′, j ) ∈ Q(M ) (5)

Note that we are concerned only with cases where Z places the MAS in an
illegitimate state. If Z places the MAS in a legitimate state, the MAS is robust
against Z , but we do not regard this as adapting (since there is no deflection
from its normal behaviour).

A closed MAS M is n-Z -adaptive for some n > 0, if it can adapt within at
most n transitions. That is, for all b ∈ B(M ) such that there exists an i ≥ 0
with st(b, i) = q and for all illegitimate states q ′ such that (q ,Z , q ′) ∈ ζ the
following holds.

∀ b′ ∈ B(M , {q ′}) • ∃ j ∈ 1 . . n • st(b′, j ) ∈ Q(M ) (6)

The following theorems follow directly from these definitions.

Theorem 1. If M is n-Z -adaptive, it is also m-Z -adaptive for any m ≥ n.

Theorem 2. If M is n-Z -adaptive for some n > 0, then it is also Z -adaptive.

Note that the inverse of Theorem 2 does not hold. It is possible, due to nondeter-
minism in a MAS, that there is no minimum number of transitions required to
reach a legitimate state. For example, consider a MAS that after Z is repeatedly
able to choose between two actions a and b, and reaches a legitimate state after
choosing b. If we assume fairness (so that b must eventually be chosen) the MAS
is Z -adaptive. However, there is no n for which it is n-Z -adaptive.

4.2 Adaptivity of open systems

An agent provides an example of an open system since its behaviour typically
depends on its environment. The environment controls the agent’s input actions,
and may restrict the occurrence of its output actions when synchronisation is
required. Similarly, a MAS can be an open system. In this section we will discuss
adaptivity of agents, although the results are also directly applicable to open
MAS.

To reason about an agent, we need to model the interactions with its envi-
ronment. In interface automata, this is taken care of by the restrictions placed
on the types of observable (input and output) actions and when they can occur
[7]. The same is true for component and team automata.

With open systems, there are two kinds of external actions. The first change
the state of the agent. They are identical to the external actions of closed systems
and adaptivity to these actions can be reasoned about in the same way.



The second kind of external actions change the state of the system’s en-
vironment, and possibly also the system’s state. In the setting of component
automata, this would manifest itself as (possibly) different restrictions on the
observable actions.5

To facilitate modelling such an external action, we need to extend the agent’s
state with one or more auxiliary variables which the external action changes.
These auxiliary variables, representing some facet of the environment, can be
used to restrict when particular actions can occur. They are also used in defining
the legitimate states.

Example 3. Consider the client agent of Section 3. A possible external action
that could occur in its environment is a server going down. Let Z1 be the external
action that causes a server with which the client is interacting to go down when
the client is in the state where it has not performed a request. Let Z2 be an
external action similar to Z1 which occurs when the client has performed a
request and is waiting for a reply.

To reason about the adaptivity of the client, we extend it with an auxiliary
variable down which is the set of servers which are currently down. This set is
initially empty. The transitions are restricted such that if the extended client is
in a state where server i is down, transitions corresponding to cs.i , request .i and
reply .i cannot occur. If it is in a state where server i is not down, the transitions
can occur. The transitions do not change whether a given server is up or down.

Figure 3 shows part of the restricted client automaton. We show the states
in which both servers are up, and also the states in which server 1 is down. We
choose the legitimate states to be those where the client can perform request or
reply actions, i.e., id 6∈ down. These states are shaded in the figure. The external
actions are shown using dotted arrows between states.

After a single occurrence of Z1, the client is able to perform the change-server
action restoring it to a legitimate state. Hence, the client is Z1-adaptive. In fact,
since it requires only one action to reach a legitimate state, it is 1-Z1-adaptive. In
a more detailed specification where, for example, the client was required to log in
to the new server, the client would be n-Z1-adaptive for some n > 1. Hence, the
quantification of adaptivity with respect to number of actions is dependent on
the level of abstraction. It should, therefore, be used only for comparing adaptive
responses at the same level of abstraction.

In the case of Z2, there is no possibility of performing the change-server
action. The client is therefore not Z2-adaptive. This may correspond to a de-
sign flaw which our reasoning allows us to detect and rectify if desired, e.g., by
introducing a timeout when waiting for a response. 3

As can be seen from Example 3, the specifier must, based on an understanding
of the system and its environment, determine the available transitions from states
corresponding to different values of the auxiliary variables. It is possible that

5 We assume all input actions possible in the environment are included in the agent
automaton, as are all of the agent’s possible output actions. Hence, no observable
actions will be introduced or removed by such an external action.
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Fig. 3. Team automaton of the restricted client

these transitions change the values of the auxiliary variables. Although the agent
cannot change these variables directly, it can interact with its environment to
instigate their change. For example, if the agent of the above example was able
to call a maintenance agent to fix the server, then as a consequence of this call
it would return to a state where the server was no longer down. Whether the
agent can do this and how the environment responds is up to the specifier.

To be adaptive to an external action Z , an agent must (i) be guaranteed to
reach a legitimate state in a finite number of transitions, and (ii) have at least
one behaviour which reaches a legitimate state without the auxiliary variables
being changed. The second condition precludes agents which rely on the auxiliary
variables changing to reach a legitimate state. For example, an agent may call a
maintenance agent but have no other strategy for dealing with a server that is
down. We would not regard such an agent as adaptive.

The approach is formalised as follows. We enhance the agent A = (Q , I , Σ =
Σint ∪Σinp ∪Σout , δ) with a set of auxiliary variables describing a set of states
E . The cross product Q × E captures the state space of A extended with these
auxiliary variables. Thus, the enhanced version of the agent is defined as A′ =
(Q×E , I × IE , Σ, δ

′) where IE ⊆ E and δ′ ⊆ (Q×E )×Σ× (Q×E ). We require
that the behaviours of A′ when restricted to Q correspond to behaviours of the
original agent A. That is,

∀ b ∈ B(A′) • b |Q∈ B(A) (7)

where b |Q denotes the behaviour b restricted to the state Q of the original agent
A. Hence, A′ behaves identically to A in the absence of external actions. This is
true in Example 3 since initially no servers are down.

Let Z be an external action defining the set of transitions ζ ⊆ (Q×E )×Z ×
(Q × E ) on A′.



Definition 5. An agent (or open MAS) A is Z -adaptive, if its enhancement A′

on which Z is defined is, after an occurrence of Z which places it in an illegiti-
mate state, able to reach a legitimate state in a finite number of transitions, and
at least one behaviour reaches a legitimate state without changing the extension
to the state of A.

That is, for all b ∈ B(A′) such that there exists an i ≥ 0 such that st(b, i) = q
and (q ,Z , q ′) ∈ ζ the following holds.

∀ b′ ∈ B(A′, {q ′}) • ∃ j > 0 • st(b′, j ) ∈ Q(A′) (8)

and

∃ b′ ∈ B(A′, {q ′}) •
∃ j > 0 • st(b′, j ) ∈ Q(A′) ∧ (∀ k ≤ j • st(b′, k) |E= q ′ |E ) (9)

where s |E restricts a state s of A′ to the variables of E.

An agent (or open MAS) A which is Z -adaptive is n-Z -adaptive for some
n > 0, if it can adapt within at most n transitions. That is, for all b ∈ B(A′)
such that there exists an i ≥ 0 such that st(b, i) = q and (q ,Z , q ′) ∈ ζ, the
following holds along with condition (9) above.

∀ b′ ∈ B(A′, {q ′}) • ∃ j ∈ 1 . . n • st(b, j ) ∈ Q(A′) (10)

Theorems 1 and 2 of Section 4.1 remain true and follow directly from these
definitions.

5 A teleo-reactive development framework

The notions of component and team automata introduced in Section 3 have
provided a convenient setting for the definition of adaptivity in Section 4. We now
turn to the question of designing adaptive systems: specifically, to the generation
of high-level (behavioural) specifications of such systems which can be developed
to suitable implementations using any of the range of techniques discussed in
Section 2.

Our approach is to make the adaptive behaviour of the system explicit in
the specification, and thereby simplify its validation. This is achieved using a
specification framework based on the teleo-reactive agent paradigm of Nilsson
[23, 24]. This paradigm, which was developed to facilitate

“robustly [directing] an agent toward a goal in a manner that continu-
ously takes into account the agent’s changing perceptions of a dynamic
environment” [24],

is well suited to our task.
A teleo-reactive agent is represented by an ordered list of production rules

of the form



C −→ P

where C is a condition evaluated with respect to the agent’s world model (com-
prising its perception of its own state and that of the environment), and P is
a non-terminating program (referred to as a durative action). The behaviour of
such an agent is to continuously evaluate the conditions in the list and, at any
time, perform the durative action associated with the first production rule in
the list whose condition is true. If no conditions are true, the behaviour of the
teleo-reactive agent is undefined.

Definition 6. A teleo-reactive agent is a 6-tuple T = (Q , I , Σ, δ,C , ρ) where

– (Q , I , Σ, δ) is a component automaton.
– C ⊆ 2Q is the set of conditions whose elements form a total order ≤ cap-

turing the priority amongst production rules.
– ρ ⊆ C × 2δ is the agent’s set of production rules and satisfies the following

constraint. For all conditions c in C , for all q ∈ c such that q 6∈ c′ for any
c′ ≤ c, there exists a transition (q , a, q ′) ∈ ρ(c). This constraint ensures
the set of actions associated with a condition represents a non-terminating
program, or durative action.

Assuming transitions in δ are atomic and that conditions are evaluated before
each transition, the behaviour of a teleo-reactive agent, T , is a possibly infinite
sequence alternating between states and actions q0 a1 q1 a2 q2 . . . where for all
i ≥ 0, if there exists a condition c ∈ C such that qi ∈ c and, for all c′ ≤ c, qi 6∈ c′

then (qi , ai , qi+1) ∈ ρ(c). If there does not exist a condition c ∈ C such that
qi ∈ c then the action and post state of the next transition are undefined; they
can be any action and state including those not in the sets Q and Σ respectively.
This would be used to leave implementation flexibility in an abstract design.

Teleo-reactive agents are usually designed to have a regression property
whereby executing a durative action Pi when condition c holds, will eventu-
ally result in a condition c′ occurring earlier in the list, i.e., c′ ≤ c. This enables
an agent to eventually reach its goal corresponding to the first production rule
in the list. In our context, we use the regression property to ensure an adaptive
agent reaches a legitimate state.

5.1 Designing adaptivity

In keeping with the generality of our results, our teleo-reactive framework is
independent of the specification notation used to capture the behaviour of the
agent’s state and actions. We illustrate its use on a case study with a particular
specification language, Object-Z [28], in Section 6.

To motivate our approach, we return to the client-server example of Sections 3
and 4. In Figure 3 we extended the original component automaton for a client
agent to include a modified behaviour when server 1 is down (corresponding
to a particular value of the auxiliary variable down). Although not shown in
Figure 3, similar modified behaviours would exist for when server 2 is down and



for when both servers are down. The client can therefore be thought of as being
in one of four modes; the particular mode being determined by the state of the
environment, i.e., which servers are currently down.

As our definition of adaptivity precludes the agent changing its environment,
reasoning about adaptivity following an external action Z is reduced to reasoning
within the mode to which Z takes the agent. For example, when server 1 goes
down we need consider only the behaviour within the four (out of 16) states
corresponding to this server being down. We therefore define a teleo-reactive
specification corresponding to each mode. This considerably simplifies the pro-
cess of reasoning about adaptivity.

For the normal operational behaviour of the agent, i.e., when no servers
are down, the specification is as in Figure 1. A teleo-reactive version of this
specification is presented below.

Client =̂ true −→ {request , respond , cs}

where {request , respond , cs} denotes a program which repeatedly chooses to per-
form one of the agent actions request , respond or cs. The choice when more than
one action is enabled is nondeterministic. For this program to represent a dura-
tive action, it is necessary that at least one of the agent actions is always enabled
(which is the case in the example). In general, we need to prove

∀ c ∈ C • ∀ q ∈ c • (∀ c′ 6= c • c′ ≤ c ⇒ q 6∈ c′)⇒
∃ q ′ ∈ Q , a ∈ Σ • (q , a, q ′) ∈ ρ(c). (11)

In the teleo-reactive specification of Client , there are no illegitimate states
and hence the teleo-reactive specification has only one production rule. In gen-
eral, an agent may start in an illegitimate state and need to self-configure before
normal operation begins. In that case, there would be one production rule whose
condition describes the legitimate states followed by one or more production
rules whose conditions describe illegitimate states. Self-configuration would be
proved by showing that the specification has the previously mentioned regression
property. Similarly, adaptivity to external duress can be shown in this way.

Consider the mode of the client when server 1 is down. The teleo-reactive
specification is

Server1Down =̂ id = s2 −→ {request , respond}
id = s1 ∧ state = idle −→ {cs}
id = s1 ∧ state = waiting −→ {skip}

where the special action skip corresponds to the agent doing nothing.
The legitimate states are those satisfying id = s2. We divide the illegitimate

states into those that result from Z 1 (satisfying id = s1 ∧ state = idle) and
those that result from Z 2 (satisfying id = s1 ∧ state = waiting). To prove
adaptivity to Z 1, we need to simply prove that cs changes id from s1 to s2
(since this will make the earlier condition id = 2 true moving the agent to a



legitimate state). It is also obvious from the specification that the agent cannot
adapt to Z 2 (since skip does not change the agent’s state). If this were not
desirable, we could change the specification at this point to add, for example,
the timeout action suggested in Section 4.

A similar teleo-reactive specification Server2Down is given for the mode in
which server 2 is down. For the mode where both servers are down the teleo-
reactive specification is

BothServersDown =̂ true −→ {skip}

indicating there is no means for the agent to adapt; external (maintenance)
actions are required for continued operation in this case.

By considering each mode in isolation as a teleo-reactive system, we can
readily reason about the adaptivity of our design and modify the design when
necessary. The final step of our approach combines the mode specifications as
follows.

TR Client =̂ down = ∅ −→ Client
down = {s1} −→ Server1Down
down = {s2} −→ Server2Down
down = {s1, s2} −→ BothServersDown

where the occurrence of a teleo-reactive specification on the right-hand side of
a production rule is a syntactic convention which expands as follows: A rule
C −→ TR, where TR is a teleo-reactive specification, is replaced by a sequence
of rules C ∧ Ci −→ Pi corresponding to the sequence of rules Ci −→ Pi in TR.
For example, down = {s1} −→ Server1Down is replaced by

down = {s1} ∧ id = s2 −→ {request , respond}
down = {s1} ∧ id = s1 ∧ state = idle −→ {cs}
down = {s1} ∧ id = s1 ∧ state = waiting −→ {skip}.

Formally, a composed teleo-reactive system is defined as follows.

Definition 7. Let a system have n modes on the state space defined by states Q
and initial states I . Let (Q , I , Σi , δi ,Ci , ρi) where i ∈ 1 . . n be the teleo-reactive
specification of the ith mode. Let E denote the set of states described by the
auxiliary variables, and Ei ⊆ E be those states corresponding to the ith mode.
Given the first mode corresponds to normal behaviour (in the absence of external
duress), the teleo-reactive specification of the entire system is (Q ′, I ′, Σ, δ,C , ρ)
where

– Q ′ = Q × E.

– I ′ = I × E1.

– Σ =
⋃

i:1..n
Σi .



– δ = {(q , a, q ′) ∈ Q ×Σ ×Q | ∃ i ∈ 1 . . n • q |E∈ Ei ∧ (q |Q , a, q ′ |Q) ∈ δi}.

– C = C1 × E1 ∪ . . . ∪ Cn × En such that
• for all i ∈ 1 . . n and c, c′ : Ci where c′ ≤ c, c′ × Ei ≤ c × Ei

• for all i , j ∈ 1 . . n where i ≤ j and c′ : Ci and c : Cj , c′ × Ei ≤ c × Ej .

– ρ ⊆ C × 2δ such that for all c ∈ Ci ×Ei , (q , a, q ′)∈ ρ(c) iff (q |Q , a, q ′ |Q) ∈
ρi(c |Q).

The composed teleo-reactive system begins in the first mode and transitions to
other modes depending on the values of the auxiliary variables. The behaviour
in a given mode is identical to that of the mode considered in isolation. Since the
first mode corresponds to the behaviour in the absence of external actions, (7)
is guaranteed to hold.

It should be noted that the assumption that modes operate on the same
state space is not overly restrictive. If it is necessary to specify modes of a system
which operate on different states, i.e., different sets of variables, to combine these
modes we first extend the states of each mode with the variables of the others
to provide a unified state.

5.2 From teleo-reactive specification to component automaton

While teleo-reactive implementation approaches exist [15], in general we may
not wish to implement our system in a teleo-reactive style. We therefore provide
a mapping from a teleo-reactive specification to the more general form of a
component automaton.

Definition 8. Let (Q , I , Σ, δ,C , ρ)be a teleo-reactive system. The equivalent
component automaton is (Q , I , Σ, δ′) where

δ′ =
⋃
c:C
{(q , a, q ′) ∈ ρ(c) | q ∈ c ∧ ∀ c′ ≤ c • c′ 6= c ⇒ q 6∈ c′}.

A transition from the teleo-reactive system is enabled only when a condition
under which it may occur is true, and all conditions of earlier producation rules
are false.

5.3 Adapting to internal disturbances

The approach proposed above assumes a set of auxiliary variables which capture
the effect of an external action. In the client example these variables represent
a state of the environment. The auxiliary variables can, however, also be used
to represent a condition of the internal state of the system. The main difference
is that it may be possible in this case for a system to move from one mode to
another during adaptation. Hence, for showing that a system adapts when in a
given mode may require showing that, rather than reaching a legitimate state in
that mode, the system transitions to another mode from which it can adapt.

As a result the approach can be used in the development of systems (including
closed systems) which adapt to changes to internal state. This is illustrated by
the case study in Section 6.



6 Case study: The self-adaptive production cell

In this section we illustrate our approach and its use with a specific formal
notation, Object-Z [28]. Object-Z is an object-oriented extension of the well
known Z specification language [32]. Its notions of classes and objects are ideal
for specifying MAS [30]. Both Z and Object-Z have been advocated for the
description of agents by other researchers in the field [9, 14].

Our case study is a self-adaptive, multi-robot production cell based on that
described by Nafz et al. [22]. The production cell comprises a number of robots
which are capable of taking on various roles in the production of an item. These
roles may involve the use of tools such as drills and screwdrivers. Since chang-
ing tools, and hence changing roles, is very time-consuming, the robots in the
production cell take on different roles from each other and collaborate on the
production of items; passing the items between them in the required order. For
example, a typical scenario is a production cell with three robots: the first robot
uses a drill to drill a hole in the item, the second inserts a screw, and the third
tightens the screw with a screwdriver [22].

In the design of the system below, we consider both the self-configuration of
the system from an initial state where no robot has a role, as well as the ability
of the system to adapt to a robot losing a capability, e.g., if a robot in the above
scenario breaks its drill or screwdriver, or runs out of screws.

6.1 Normal behaviour and self-configuration

We begin by specifying the normal behaviour of the system, in which all robots
possess all capabilities. A robot is specified using an Object-Z class which, like a
class in an object-oriented programming language, encapsulates state variables,
their initial values and all operations which can change their values.

The robot has two state variables: available denoting the roles which are
available for the robot to take on (corresponding to an internal model of its
environment), and roles the robot’s current roles (we will limit the number of
roles to one in the specification, but, in general, cases where a robot could take
on more than one role could be considered). Each variable is assigned a value
which is a subset of a given type Role comprising all possible roles (PS denotes
the power set of S ). Initially, all roles are available and the robot has no role.

Robot

available : PRole
roles : PRole

roles ∩ available = ∅
#roles ≤ 1



INIT

available = Role
roles = ∅

. . . operations detailed below

The operations of a class are named boxes with

– a ∆-list (read“delta list”) listing the state variables which the operation may
change; all other variables remain unchanged. An operation without a ∆-list
cannot change any state variables.

– a number of declarations of local variables (such as inputs and outputs).

– a predicate restricting the values of the state variables both before and after
the operation, and the values of the local variables. State variables after an
operation are denoted by the variable name decorated with a prime, e.g.,
available ′.

The operations of class Robot are as follows.

A robot without a role may choose one from the available roles. The robot’s
new role is communicated to the environment via the output variable r !. At the
level of abstraction of our specification we are assuming that two robots will
not choose an available role simultaneously. At a lower level of abstraction such
an occurrence would need to be resolved using a suitable contention mechanism
such as the robot with the minimum (or maximum) identifier backing off, or
both robots backing off for random amounts of time.

ChooseRole
∆(available, roles)
r ! : Role

role = ∅
r ! ∈ available
available ′ = available \ {r !}
roles ′ = {r !}

A robot receiving an input r? corresponding to another robot taking on an
available role, updates its environmental model accordingly.

RemoveAvailable
∆(available)
r? : Role

r? ∈ available
available ′ = available \ {r?}



A robot with a role may operate according to that role. We abstract from
what the robot actually does including the passing of the item between robots:
these aspects of the production cell have no effect on the system’s adaptivity.

Operate
roles 6= ∅

The system is specified by another class System whose state comprises a set
of robots; one for each role. Initially, each robot is in its initial state, i.e., has no
role and believes all roles are available.

System

robots : PRobot

#robots = #Role

INIT

∀ r : robots • r .INIT

ChooseRole =̂ [] r0 : robots • r0.ChooseAvailable ‖
(∧r : robots \ {r0} • r .RemoveAvailable)

Operate =̂ ∧r : robots • r .Operate

The operations use the familiar dot notation from object-oriented program-
ming to denote robots undergoing operations. In ChooseRole the choice operator
[] is used to select one robot r0 to undergo operation ChooseAvailable, and the
conjunction operator ∧ to specify all other robots undergoing UpdateAvailable.
The parallel composition operator || equates the inputs r? of the latter robots’
operations with the output r ! of r0’s operation. A precise semantics of these
operators is given by Smith [28]. In Operate, the conjunction operator is used to
specify all robots undergoing their Operate operation.

Following the approach in the previous section and assuming that legitimate
states are those in which all robots have a role, the teleo-reactive specification
of the system is as follows.

NormalOperation =̂ ∀ r : robots • r .role 6= ∅ −→ {Operate}
true −→ {ChooseRole}

Note that the second production rule’s condition is implictly ∃ r : robots •
r .role = ∅ since this production rule is only considered when the condition
of the first production rule is false.

Showing that (11) holds is straightforward. ChooseRole will be enabled when-
ever there is a robot that can undergo ChooseAvailable, i.e., whenever there is
a robot without a role (which is the implicit condition of the second produc-
tion rule). Similarly, Operate will be enabled whenever all robots can undergo



Operate, i.e., whenever all robots have a role (which is the condition of the first
production rule).

To prove the system self-configures, we need to show that the teleo-reactive
specification has the regression property, i.e., that the condition of the first
production rule will become true. Choosing the number of robots without a
role as a variant, we can show that this variant will decrease by one with each
occurrence of ChooseRole. Hence, with a finite number of robots the variant will
decrease to zero and the condition of the first production rule will be true.

6.2 Adapting to loss of capabilities

We now consider two external actions that cause a single robot to lose a capa-
bility. The first action Z 1 causes it to lose the capability to perform its current
role. The second Z 2 causes it to lose the capability to perform a role other than
its current role, if any. We assume that legitimate states are those in which all
robots are assigned a role that they can perform.

To model the effects of these external actions, we introduce an auxiliary
variable capabilities : Robot 7→ PRole which maps robots in the system to
those roles they are capable of performing. Given this variable, we will con-
sider two modes of operation: the mode where all robots can perform all roles
∀ r : robots • capabilities(r) = Role, and the mode where a robot r0 : robots has
lost a capability c : Role, capabilities(r0) = Role \ {c} ∧ (∀ r : robots \ {r0} •
capabilities(r) = Role).

The behaviour of the former mode is captured by the teleo-reactive specifi-
cation NormalOperation above. The behaviour of the latter is captured by the
following teleo-reactive specification.

Loss(r0, c) =̂ r0.role 6= {c} −→ NormalOperation
true −→ {ChooseRole, skip}

That is, when r0’s role is not c the system behaves as in mode NormalOperation,
and when r0’s role is c the system may perform ChooseRole (when robots other
than r0 need to choose a role) and otherwise does nothing, i.e., skip. Again it is
straightforward to show (11) holds.

It is immediately obvious from the final production rule that the system is
not Z1-adaptive. To be able to adapt, it would need a way for the robot r0 to
release its current role in order to choose a new role; something we have not
included in our specification. Further analysis shows that the system is also not
Z 2-adaptive: when r0 has no role, it may choose c causing the condition of the
final production rule to be the only one enabled.

Modifying the design In the interests of making the production cell adap-
tive, we modify the original specification as follows. Firstly, we add a variable
capable of : PRole to the class Robot to make robots self-aware of their own
capabilities. Initially, this variable would be assigned the value Role and no op-
eration would change this value (it would only be changed by external actions



such as Z 1 and Z 2). The operation ChooseRole would be modified so that a
robot would only choose a role it was capable of performing, i.e., we would add
the predicate r ! ∈ capable of .

We would also add a new operation ReleaseRole which allows a robot to
release a role it is not capable of performing.

ReleaseRole
∆(available, role)
r ! : Role

role = {r !}
r ! 6∈ capable of
available ′ = available ∪ {r !}
role ′ = ∅

Other robots would need to update their beliefs about the available roles using
the following operations.

AddAvailable
∆(available)
r? : Role

r? 6∈ available
available ′ = available ∪ {r?}

The corresponding operation added to class System would be

ReleaseRole =̂ [] r0 : robots • r0.ReleaseRole ‖
(∧r : robots \ {r0} • r .AddAvailable)

Before reanaylsing the mode Loss(r0, c) with this new specification, we first
re-examine NormalOperation to make sure that the changes have not affected the
system’s ability to self-configure. NormalOperation is in fact unchanged since, in
the absence of external actions, capable of = Role for all robots, and ReleaseRole
is never enabled.

A naive reinterpretation of mode Loss(r0, c) is

Loss(r0, c) =̂ r0.role 6= {c} −→ NormalOperation
true −→ {ChooseRole,ReleaseRole}

However, it is easy to show that (11) no longer holds. When r0 is the only robot
without a role, and c is the only available role then ChooseRole is not enabled.
Hence, Loss(r0, c) needs to be modified to

Loss(r0, c) =̂ ∀ r : robots • r .role 6= ∅ −→ {Operate}
r0.role 6= {c} −→ {ChooseRole, skip}
true −→ {ChooseRole,ReleaseRole}

from which it is easy to see that adaptivity is not assured: since skip is the
only action enabled when r0 is the only robot without a role, and c is the only
available role.



Modifying the design further To remedy the above situation, we need robots
to be able to release their current role for another robot to take on. This should
only occur when the latter robot has lost the capability of a role and no other
roles are available.

We add a boolean variable reconfig to class Robot to denote when a robot
without a role is unable to choose any available role. This variable acts as a
shared flag indicating that (partial) reconfiguration is required. This variable
would initially be false. An operation InitiateReconfig sets it to true when a
robot without a role cannot choose an available role.

InitiateReconfig
∆(reconfig)

role = ∅
available ∩ capable of = ∅
reconfig ′

Other robots would need to update their reconfig variable using the following
operation.

SetReconfig
∆(reconfig)

reconfig ′

The corresponding operation added to class System would be

InitiateReconfig =̂ [] r0 : robots • r0.InitiateReconfig∧
(∧r : robots \ {r0} • r .SetReconfig)

Note that conjunction is used in place of parallel composition here as there are
no input and output variables in the combined operations.

A further operation ChangeRole is added to Robot . This operation is enabled
when reconfig is true and the robot is capable of performing a role that is avail-
able. The robot releases its current role and takes on an available role. It also
sets its reconfig value to false.

ChangeRole
∆(available, role, reconfig)
r old ! : Role
r new ! : Role

reconfig
r new ! ∈ available ∩ capable of
role = {r old !}
available ′ = (available ∪ {r old !}) \ {r new !}
role ′ = {r new !}
¬ reconfig ′



Other robots would need to update their beliefs about the available roles and
reconfig using the following operation.

ChangeAvailable
∆(available, reconfig)
r old? : Role
r new? : Role

reconfig
r old? 6∈ available
r new? ∈ available
available ′ = (available ∪ {r old !}) \ {r new !}
¬ reconfig ′

The corresponding operation added to class System would be

ChangeRole =̂ [] r0 : robots • r0.ChangeRole ‖
(∧r : robots \ {r0} • r .ChangeAvailable)

Again we need to re-examine the mode NormalOperation in light of the
changes. As the new operations become enabled only when a robot loses a ca-
pability, there is no change to behaviour. Next we need to reinterpret mode
Loss(r0, c) as a teleo-reactive system. One possible specification is

Loss(r0, c) =̂ r0.role 6= {c} ∧ r0.role 6= ∅ −→ NormalOperation
r0.role = ∅ −→ Reconfigure(r0)
r0.role = {c} −→ {ChooseRole,ReleaseRole}

Reconfigure(r0) =̂ r0.available ∩ r0.capable of 6= ∅ −→ {ChooseRole}
r0.reconfig −→ {ChooseRole,ChangeRole}
true −→ {ChooseRole, InitiateReconfig}

It is now possible to show that (11) holds: each of the conditions ensures that
the associated atomic actions form a durative action. It is also possible to show
that the system is both Z1-adaptive and Z2-adaptive. We may further quantify
the adaptivity.

Z1 causes a robot r0 to lose the capability to perform its current role. Hence,
it will need to perform ReleaseRole. The worst case, in terms of number of
actions until it is in a legitimate state, occurs when all other robots have no role,
and then choose all roles apart from the one r0 has just released. This would
force r0 to perform InitiateReconfig after which another robot would perform
ChangeRole before r0 could finally choose a role. In this scenario each robot
in the system performs ChooseRole, r0 additionally performs ReleaseRole and
InitiateReconfig , and another robot performs ChangeRole. Hence, for n robots
the system is (n + 3)-Z 1-adaptive.

Z2 causes a robot r0 to lose a capability other than its current role, if any.
The worst case occurs when all robots, including r0, have no roles and then all



robots other than r0 choose a role other than the one r0 has just released. Again
r0 would be forced to perform InitiateReconfig and another robot would have
to perform ChangeRole before r0 could choose a role. Hence, for n robots the
system is (n + 2)-Z 2-adaptive.

Examining worst case scenarios in order to quantify adaptivity can highlight
inefficiencies in the design. Above it can be seen that if the robots were aware of
which role had been released, they could choose that role with priority thereby
avoiding a later reconfiguration. At this stage the designer may make a decision
to change the design to reflect this.

Further external actions and associated modes can then be considered in a
similar fashion. For example, we might like to consider where a robot r0 loses
more than one capability. In this case, the boolean variable reconfig is not enough:
robots changing their role cannot be certain that the role they are giving up is one
which r0 is capable of performing. Hence, reconfig would need to be replaced by a
set of roles that r0 cannot perform, for example. We could also consider multiple
robots losing capabilities, or a single robot losing all capabilities. In the latter
case, for the system to adapt robots would need to be able to take on more than
one role simultaneously. This would allow the system to keep functioning but, due
to the time needed to swap tools, in a degraded fashion. If multiple robots could
fail completely then to reduce this degradation in performance, the functioning
robots would need to share the load as evenly as possible. Our approach helps us
to realise these requirements and prove that suitable collaborative mechanisms
satisfy them.

6.3 Combining the modes

With just the two modes we have considered, the teleo-reactive specification of
the production cell would be

ProductionCell =̂
∀ r : robots • capabilities(r) = Role −→ NormalOperation
∃ r0 : robots; c : Role • capabilities(r0) = Role \ {c} ∧

(∀ r : robots\{r0} • capabilities(r) = Role) −→ Loss(r0, c)

It is straightforward to show that the equivalent component automaton has
the same behaviour as the modified Object-Z specification. In this case study,
the effect of the auxiliary variable capabilities to restrict actions in a given mode
is captured by the introduced variable capable of of the individual robots, and
so does not need to appear in the final specification.

7 Conclusion

In this paper we have presented a formal definition of adaptivity in terms of
Dijskstra’s notion of self stabilisation [8], and based on this definition, a frame-
work for designing adaptive systems. The latter is based on Nilsson’s notion of



teleo-reactive agents [23, 24]. Both our definition and framework are independent
of any specific implementation mechanism for adaptivity, and any specific spec-
ification notation. We illustrated our approach using the Object-Z specification
notation [28] on a case study involving a multi-robot production cell [22].

Formalisms by which adaptivity can be specified and verified are scant. An-
ceaume et al. [1] concentrate on self-organisation in dynamic networks. They
argue that a definition of self-organisation cast in terms of convergence to pre-
defined legitimate states is inadequate for two reasons: (a) the identification of
legitimacy may be impractical (it may be emergent; the status of batteries in
sensor networks is quoted as an example); and (b) due to the dynamic nature of
the network, convergence to a legitimate state may not be possible. As a result
they consider instead structural properties reflecting high interactivity between
nodes, node mobility and heterogeneity, and view local self-organisation as re-
ducing system entropy. Criticisms (a) and (b) may well be valid if only ‘static’
system descriptions are considered but are overcome if the dynamic features of
the system are specified. Generally that requires non-local specifications; but a
specification is not constrained to be local like the implementation. A simple but
typical example is the glider in Conway’s Game of Life where global time may
be introduced as a ‘specification device’ to capture a property which emerges in
the implementation from local interactions [27].

By pursuing that approach we have here offered a formalism complementary
to that of [1], able to consider directly the system functionality of entirely general
systems rather than secondary structural properties of dynamic networks.

An alternative to our approach should be mentioned, in which the speci-
fication of an adaptive MAS is not static but thought to change with time,
reflecting adaptivity. That is the approach considered by Artikis [2] who defines
a dynamic specification language C+, a kind of action language for express-
ing changing properties, and a ‘causal calculator’ for their execution. Our view
is that a specification which by its definition changes with time offers none of
the advantages expected of a specification. Much of the detail incurred by the
present work solves the problem of how to capture, in a static specification,
dynamic changes which are environmentally triggered.
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