
Using Z in the development and maintenance of
computational models of real-world systems

Shahrzad Moeiniyan Bagheri1,2, Graeme Smith1, and Jim Hanan2

1 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

2 Queensland Alliance for Agriculture and Food Innovation
The University of Queensland, Australia

Abstract. There are two main challenges in developing computational models
of a real-world phenomena. One is the difficulty in ensuring clear communica-
tion between the scientists, who are the end-users of the model, and the model
developers. This results from the difference in their backgrounds and terminolo-
gies. Another challenge for the developers is to ensure that the resultant software
satisfies all the requirements accurately. Utilising a formal notation such as Z
which is easy to learn, read, understand and remember can address these issues
by (a) acting as a means to unambiguously communicate between scientists and
simulation developers, and (b) providing a basis for systematically producing and
maintaining simulation code that meets the specification. In this paper, we de-
scribe a translation scheme for producing code for the widely used agent-based
simulation environment NetLogo from Z specifications. Additionally, we report
on the use of the approach on a real project studying the movement of chyme, i.e.
food undergoing digestion, through a pig’s intestine as a means of understanding
the effect of dietary fibre on human health.

1 Introduction

Studying real-world processes through experimental observation can be technically dif-
ficult. It can also be costly both in time and resources, and in certain areas ethical issues
can arise. A more convenient approach is to develop a computational model of the sys-
tem. Such a model allows scientists to uncover patterns in the studied system and to
determine the system parameters and factors that are the most influential. While the
visualisations provided by a computational model allows scientists to observe macro-
level behaviour, this behaviour is only representative of their understanding of how the
system works when that understanding has been accurately encoded. Furthermore, such
visualisations represent specific system behaviours, not the general system behaviour.
Ensuring an accurate encoding of the general behaviour can be difficult to achieve, par-
ticularly when the developers of the model are not part of the scientific team and are
from different backgrounds. The situation can become even worse if developers and sci-
entists have different and even sometimes conflicting terminologies. For example, they
may use different terms for the same concepts, or a single term for different concepts.

An additional problem is that the scientists’ understanding of the system may evolve
over time and the model needs to be modified to reflect this. Again it is important that

the modifications are an accurate reflection of the required change. This is facilitated if
the model is in terms of constructs that are easy to learn and remember. The constructs
of the implementation language of a typical simulation environment are too low-level
(i.e., too close to programming constructs) to satisfy this criteria for scientists who are
not familiar with programming.

To overcome these issues, two considerations are essential. Firstly, the system needs
to be specified and the design ideas and decisions documented using a method that is
easy to learn, read, understand and remember by all the people involved, both dur-
ing the development and for future purposes like testing and maintenance. Such a
method should make the communication between the scientists and developers, and
also between the development team members, more convenient, efficient and well-
documented. Secondly, the applied method for specifying the system should provide a
basis for ensuring efficient and accurate implementation of the specified requirements.
Not only should this facilitate the production of the code, but also its maintenance. The
changes in the scientists’ understanding of the system, and as a result in the specifi-
cation, should be readily incorporated into the code. This reduces the burden of the
resultant model’s integrity assurance and its maintenance from the developers’ shoul-
ders.

To achieve these two goals, formal methods can be utilised. Formal specifications
provide a communication method that does not include the ambiguities that are found
in informal (e.g., natural language) specifications [3]. These methods also allow the de-
velopers to gain a clear understanding of the system, before starting the implementation
process. Moreover, such specifications can form the basis of a systematic approach for
deriving simulation code. This is in contrast to semi-formal specifications (e.g., UML
[2]) that only achieve the first goal.

Recently, we developed simulation software for biologists at the Centre for Nutri-
tion and Food Sciences (CNAFS), The University of Queensland, who are examining
the effect of dietary fibre on human health. For facilitating the communication in the
development process and future maintenance of the software, we utilised the formal
notation Z [10, 13]. Z was chosen due to it being a simple extension of set theory and
first-order predicate logic which is relatively easy to learn. Since the biologists are not
necessarily familiar with programming, notations supporting program-like constructs
(such as B [1]) or program-like structuring (such as Object-Z [9]) were seen as having
more concepts to learn, and hence being less suitable. It should be noted that in order
to achieve the goal of having a fairly simple and easy to learn notation, the use of Z
in this research was restricted to avoid more complex notations and certain modelling
techniques, such as promotion [13], which are regarded as difficult to understand for
non-computer scientists.

For the purpose of implementing this simulator, the NetLogo [11] simulation envi-
ronment was chosen. NetLogo is a modelling language and environment that is widely
used for developing agent-based simulation software. The agent-based approach con-
siders smaller components of the system as autonomous entities (agents) that can form
more complex system-level behaviours while performing relatively simple interactions
with each other and with their environment [8]. Additionally, a systematic translation
scheme from Z to NetLogo code was defined. This made the implementation much

easier and enabled us to ensure that the simulation software behaved as required and
specified.

Mens and Van Gorp [6] argue that even source code can act as the specification of
a system being studied. As a result, the need for utilising Z for specifying the system
requirements might be questioned in this research, especially when a Z specification
block and its equivalent NetLogo code are almost of similar length. However, what
makes a Z specification a more appropriate means of communication than NetLogo
code is that it is based on first-order predicate logic. This makes the Z notation easy
to learn, read, understand and remember. On the other hand, in order to understand the
logic behind NetLogo source code, the reader is required to learn quite a large amount
of syntax as well. Consequently, like with many other programming languages, it is not
easy and straightforward to learn NetLogo and more importantly memorise its syntax
for future references, modifications and maintenance.

In this paper, we present an approach for systematically translating Z specifications
to NetLogo code that was developed while working on the CNAFS case study. We
begin in Section 2 with an overview of NetLogo syntax. In Section 3 we provide the
translation scheme and illustrate its application on part of the CNAFS case study in
Section 4. We then conclude with a discussion of lessons learnt and future directions in
Section 5.

2 Overview of NetLogo

In this section we describe the syntax of NetLogo [11] relevant to the case study de-
scribed in Section 4. A comprehensive documentation of NetLogo can be found in the
NetLogo User Manual [12].

2.1 Agents

NetLogo allows developers to define specific breeds of agents using the syntax

breed[MyBreeds mybreed]

where MyBreeds is the plural, or agentset, form of the breed name and mybreed is the
singular form.

Each type of breed can have its own properties. These are a set of attributes that are
specific to agents of the breed and, for a given agent, can only be accessed and modified
by the agent itself. For example, the following defines agents of type MyBreeds as
having properties x , y and z .

MyBreeds-own[x y z]

A number of commands exist for creating and accessing agents. For example,

create-MyBreeds 2 [set x 0
set y 100]

creates two agents of type MyBreeds where the brackets enclose a sequence of tasks
which are applied to the agents upon creation. In this case NetLogo’s set keyword is
used to set the agents’ property x to 0 and property y to 100.

In NetLogo, in order to update the property values of an agent, the ask command,
which takes an agent or agentset as its input, is used. Thus, the value of z can be set to
10 for all existing agents of type MyBreeds as follows.

askMyBreeds [set z 10]

2.2 Procedures

Procedures in NetLogo enable developers to modularise their code. A procedure in-
cludes a group of statements that aims to perform a particular task on agents, their
environment, interface controls, inputs or outputs to the system. NetLogo procedures
can be defined either as a reporter or as a command procedure. A reporter procedure
is one that reports a value when it is called somewhere in the code, whereas a com-
mand procedure only performs some tasks. Additionally, both reporter and command
procedures can take input variables. When a procedure, which takes n inputs, is called
elsewhere in the code, the first n words after the procedure name, are considered as its
inputs.

Procedures of each type can be defined using the syntax

to mycommand [text]
print text

end

to-report myreporter
report “Hello”

end

where mycommand is a command procedure that takes text as its input and, using the
print command, prints it in the NetLogo Command Center which is part of NetLogo’s
interface. Also, myreporter is a reporter procedure that uses the report keyword to
report a string value (“Hello”). Having defined these two procedures, the following code
prints “Hello” to the Command Centre

mycommand myreporter

where the value reported by myreporter is passed to mycommand as an input.

2.3 Data structures

NetLogo is an untyped programming language which allows a variable to take different
types of values whenever required. In order to define a variable, therefore, it is not re-
quired to identify its data type. This section describes the main types of data structures
that have been used in the case study.

Globals are those types of variables in the system that can be accessed by all proce-
dures. Such variables can be defined either by using the globals keyword as follows

globals[myglobal1 myglobal2]

or by assigning a name to an interface control such as a slider or switch, which can then
be treated as a global variable throughout the code. It should be noted that the defined
breeds are also accessible globally.

Locals, on the other hand, are the variables that can only be accessed within the scope
of the procedure in which they have been defined. A local can be defined using the let
keyword and is accessible to following statements within the procedure.

to myprocedure
let mylocal myvalue
. . . ; other statements

end

Strings, numbers, booleans and lists are the main data types that exist in NetLogo.
For instance, a string, number and boolean can be defined as follows.

let mystring “my string value”
let mynumber 1000
let myboolean? false

It is common in the NetLogo user community to add a ‘?’ to the end of a boolean
variable name, however it is not compulsory.

Lists allow developers to define more complex data structures. Each element of a
list can be a number, string, agent, agentset or a list. A list can be defined as follows.

let mylist list 1 2 ; a list with the two elements 1 and 2

2.4 Operators and reporters

NetLogo supports the usual range of arithmetic (e.g., +,−,∗,/), comparison (e.g., <=,
>=, = and ! =) and logical operators (e.g., and, or and not). NetLogo also has a range
of built-in reporters that are explained in the rest of this section.

The with reporter can be used to report only those agents from an agentset that
satisfy the given conditions as follows

askMyBreeds with [x = 10] [set z 10]

where z will be set to 10 only for those agents with x = 10. The with reporter can be
used together with all of the following reporters when required.

The one-of reporter can be used to randomly choose a single agent from an agentset.
For example, the following equates to an agent with x = 10.

one-ofMyBreeds with [x = 10]

The min-one-of reporter can be used to randomly choose an agent with the min-
imum value for a given property. For example, the following equates to an agent with
the minimum value of z out of all those agents with x = 10.

min-one-ofMyBreeds with [x = 10] [z]

Note that in both the one-of and min-one-of examples, a reserved value in NetLogo,
nobody (representing no agent), is reported in the case where no mybreed with x = 10
is found.

Additionally, whenever it is required to get the value of any agent’s properties, the
of reporter can be used. For example, the x property of an agent can be accessed as
follows

[x] of mybreed 0

where mybreed 0 refers to the agent of type MyBreeds with who number equal to 0.
Note that the who number is a unique non-negative integer that is automatically assigned
to agents when they are created, no matter which agentset they are from.

The member? reporter can be used to check that an agent mb (defined, for example,
as a local variable) is a member of the agentset MyBreeds as follows.

member? mb MyBreeds

The all? or any? reporters, which report true or false, can be used to check
conditions on all or any agents in an agentset. For example,

set myboolean? (all? MyBreeds with [color = green] [x = 0])

sets myboolean? to true when all agents of type MyBreeds with color green have
their x property equal to 0, or when there is no greenmybreed1. Otherwise, myboolean?
will be set to false. Also,

set myboolean? (any? MyBreeds with [color = green and x = 0])

sets myboolean? to true when at least one agent of type MyBreeds with color green

and x = 0 exists. Otherwise, myboolean? will be set to false.

2.5 Branching

The main branching structures in NetLogo, as in most programming languages, are the
if and ifelse commands. The latter can be used to control the flow of the program
under two opposite conditions as follows.

ifelse mytotal < 1000
[create-MyBreeds 1 [set color green]]
[askMyBreeds with [color = green] [die]]

In this example, if mytotal is less than 1000, the commands within the first brackets
will be executed and as a result, one agent of type MyBreeds will be created and its
initial color will be set to green. However, if mytotal is greater than or equal to 1000,
then the commands inside the second brackets will be executed and consequently, all
the green MyBreeds will die. The die command can be applied on all agents of the
system and removes the specified agent from its agentset.

1 color is a property of all agents, and green is a constant that may be assigned to color.

3 Translating Z to NetLogo

The goal of this section is to describe how a Z specification can be systematically trans-
lated into NetLogo code. We adopt the guarded (or blocking) interpretation of Z [4] in
which operations can only occur when their pre-state predicates, i.e., their predicates
describing the state before the operation, hold. In the traditional (or non-blocking) in-
terpretation of Z, operations can always occur but have an undefined effect when their
pre-state predicates do not hold.

It should be noted that not all of the Z notation has been investigated in this work.
Rather we have considered a subset of Z that we believe satisfies our requirements
of being easy to learn, read, understand and remember while also being adequate for
modelling the kinds of systems we are targeting. In particular, all updates of variables
are written in the form x ′ = e , where e is an expression, facilitating translation to
NetLogo set commands. Similarly, all initialisations of variables are written x = e .
Also, some constructs which are not readily translated are avoided. For example, nested
quantifiers are avoided in operation guards. Also, use of promotion schemas (used in
Z to promote operations on local state spaces to the global system state) is avoided by
specifying all operations directly on the global system state.

Additionally, as in other programming languages, there are alternative ways to im-
plement a single task in NetLogo, each of which differs in terms of performance, effi-
ciency, readability and other characteristics. Consequently, the translation examples in
this section are not necessarily the best or the most efficient way to implement a Z spec-
ification. Instead, they represent how a Z specification could be translated into NetLogo
code effortlessly. In this section, we use a car racing game as an example.

3.1 Type definitions

In addition to the predefined types such as N (natural numbers) and Z (integers), Z
also supports definition of other types [13, 10], such as free types . Free types represent
the fact that a variable of this type can take a value from the set of distinct specified
constants. For instance,

LicenceClass ::= Car | Lightrigid | Mediumrigid | Heavyrigid

represents a type for specifying different kinds of a driver’s licence.
Schemas in Z can also be used as (record) types. This is useful for expressing more

details regarding the format of a defined type. For instance, the following schema de-
fines a Driver type

Driver
licence : LicenceClass
age : N

where licence and age represent the driver’s licence type and age respectively.
Since NetLogo does not support type definition, it is the implementer’s responsibil-

ity to ensure that the values of variables of such types satisfy the specified constraints
throughout the program.

3.2 Global constants

Z supports the definition of global constants which are accessible throughout a specifi-
cation. They are defined using an axiomatic definition as follows

SPEED LIMIT : N

SPEED LIMIT = 200

where SPEED LIMIT represents the highest speed allowed for cars on a road.
In NetLogo, global constants can be defined like global variables using the follow-

ing syntax.

globals[SPEED LIMIT]

The value of SPEED LIMIT should then be set in the first procedure that will be run
in the NetLogo code (usually called setup), so that its value can be used throughout the
program. This value should not be changed anywhere else in the code as it is a constant.

to setup
set SPEED LIMIT 200
. . . ; other tasks, which should be performed in the setup procedure

end

3.3 State and initial state schemas

As mentioned in Section 3.1, schemas can be used as types in Z. State schemas are also
used for specifying the main entities of a system. In our car racing game, cars are the
main entities (agents) of the system and are specified with the following state schema

Car
ID : N
fuelAmount : N
speed : N

speed ≤ SPEED LIMIT

where ID , fuelAmount and speed (in the declaration part of the schema) represent the
car’s unique ID in the race, amount of fuel and speed respectively. In NetLogo, the main
system’s entities can be implemented as breeds of agents using the following syntax.

breed [Cars Car]
Cars-own [ID fuelAmount speed]

In Z, the invariant part of the Car state schema (speed ≤ SPEED LIMIT) is im-
plicitly included in all other schemas in which Car is included. However, in NetLogo,
such invariants need to be implemented explicitly. For example, whenever the speed
variable changes, the programmer needs to check its new value to ensure that it satisfies
the specified constraint.

State schemas are also used to model the entire system of agents. For example, given
the type definition

GameStatus ::= Normal | Dangerous

CarRacingGame is a multi-agent system with a set of cars as the agents of the system
and status as the game status.

CarRacingGame
cars : PCar
status : GameStatus

InitCarRacingGame
CarRacingGame

status = Normal
∀ c : cars •

c.fuelAmount = 100 ∧ c.speed = 0

In NetLogo, the variables of the multi-agent system schema can be defined as globals
(as described in Section 2.3).

The InitCarRacingGame specifies that the game status is Normal in the initial
state of the system. This can be implemented by setting the value of the global variable
status to Normal at the beginning of the program (usually in the setup procedure). The
next predicate starts with a universal quantifier (∀), where the • symbol reads such that
and states that there are some constraints on the quantified variable c. The constraint
part of the predicate then specifies that, in the initial state of the system, each mem-
ber (c) of the cars set has a fuel amount of 100 (c.fuelAmount = 100) and a speed
of 0 (c.speed = 0). These values can be set when the agents are created as described in
Section 2.1.

3.4 Operation schemas

In NetLogo, operation schemas of Z can be implemented using procedures. As an exam-
ple, consider the following operation schemas on the state space of CarRacingGame.

Assume that for safety reasons, all moving cars should have a fuel amount higher
than 10. If this is the case, the game status would be Normal ; otherwise, the game
status would be Dangerous and one of the unsafe cars is reported. In Z, a variable
followed by ! specifies an output of the operation. Also, the ∆ symbol represents that
one or more variables of the following state schema will be changed as a result of the
operation being performed. Note that the post-state variables in Z are displayed using
the prime symbol (′).

GameStatusNormal
∆CarRacingGame

∀ c : cars • c.speed > 0⇒
c.fuelAmount > 10

status ′ = Normal ∧ cars ′ = cars

GameStatusDangerous
∆CarRacingGame
unsafe! : Car

∃ c : cars • c.speed > 0 ∧
c.fuelAmount ≤ 10 ∧ unsafe! = c

status ′ = Dangerous

The GameStatusNormal and GameStatusDangerous operation schemas can be
implemented in NetLogo as follows. Note that in translating an operation no action is
required if a variable remains unchanged (e.g., as in the predicate cars ′ = cars).

to game-status-normal
if all? Cars with [speed > 0][fuelAmount > 10]
[set status “Normal”]

end

to-report game-status-dangerous
ifelse any? Cars with [speed > 0 and fuelAmount <= 10]
[report one-of Cars with [speed > 0 and fuelAmount <= 10]
set status “Dangerous”]
[report nobody]

end

As can be seen, we use nearly direct translation from the quantified expressions of
the operation schemas in Z to the NetLogo procedures’ statements. These expressions
are guards of the operations and hence checked using an if or ifelse statement. The
with reporter can be used in the all? statement to introduce constraints on the quanti-
fied variable. Such constraints would appear in Z as proposition P(x) in predicates of
the form ∀ x : X | P(x) • Q(x) or ∀ x : X • P(x)⇒ Q(x). The translation of Q(x)
comes within the last brackets in the all? statement. Similar constraints P(x) in Z
predicates of the form ∃ x : X | P(x) • Q(x) appear in the single set of brackets after
the with, combined with the translation of Q(x) using and. To access an existentially
quantified variable, such as c in GameStatusDangerous , we utilise the one-of re-
porter. Note that if the existentially quantified variable is required to have the minimum
value for a given property (as in the case study of Section 4) we use the min-one-of
reporter instead.

Whenever a Z operation has an output, it needs to be translated as a reporter pro-
cedure in NetLogo. Hence, the game-status-dangerous procedure is defined as a re-
porter. The output is nobody in the case where the Z operation’s guard is false.

In Z such outputs can be used as inputs to other schemas using the piping operator
(>>) [10]. For example, RefuelUnsafe specifies an operation in which an unsafe car
is refuelled. In this operation the output unsafe! of GameStatusDangerous is equated
with the input unsafe? of Refuel . In Z, a variable followed by ? denotes an input to the
operation.

Refuel
∆CarRacingGame
unsafe? : Car

unsafe? ∈ cars
∃ uc : Car • uc.ID = unsafe?.ID ∧ uc.fuelAmount = 100 ∧ uc.speed = 0

∧ cars ′ = cars \ {unsafe?} ∪ {uc}

RefuelUnsafe =̂ GameStatusDangerous >> Refuel

The ∃ quantifier in Refuel is used to define a new car uc, which has the same ID as
the unsafe?, fuel amount of 100 and speed of 0. The last part of the predicate specifies
that the new car uc is replaced with the unsafe car unsafe? in the cars set. The union
symbol (∪) can be translated into NetLogo code by creating a new agent. This agent will
automatically be added to the agentset. Also, the set difference symbol (\) is translated
by using the die command which removes the old agent from the agentset. Hence, the
above operations can be translated as

to refuel [unsafe]
if (member? unsafe Cars)
[create-Cars 1 [set ID ([ID] of unsafe)

set fuelAmount 100
set speed 0]

ask Cars with [self = unsafe][die]]
end

to refuel -unsafe
if game-status-dangerous != nobody

[refuel game-status-dangerous]
end

where self is a reporter used to refer to the current agent at each iteration of the ask
command. Note that equality between two agents (= operator) is checked according to
their who numbers. Additionally, in order to access the state variables of a variable that
is of type schema in Z a dot (.) is used. This dot can be translated using the of reporter
in NetLogo, e.g., unsafe?.ID in Z is translated into [ID] of unsafe.

4 Case study

In this section, we illustrate the translation scheme on a small part of the CNAFS case
study: a model of movement of chyme, i.e., food undergoing digestion, through the
small intestine of a pig. In their experiments, the researchers consider the small intestine
as comprising 6 different intestine segments (SI1 – SI6). One of the main reasons for
this segmentation is that the movement rate of chyme varies in each of these segments.
To allow results of the simulation to be verified against experimental data, most parts
of the specification are based on CNAFS researchers’ hypotheses and their methods of
running their experiments. Additional biological details of small intestine functionality
are derived from Guyton and Hall [5]. Using the built-in NetLogo visualisation facili-
ties, the outcome of this simulation provides the biologists with a visualisation of the
system at each time step and some statistical results, such as total amount of chyme
content and marker content in each intestine segment at each time step.

4.1 State definitions

All non-schema types used in this section are defined as appropriate global types in
Z. The agents of the system are intestine segments and packets of chyme. The idea of

considering chyme as a collection of discrete packets is derived from the functionality
of the pyloric valve which controls chyme entry to the small intestine [5].

An intestine segment is specified in terms of its length, the total amount of chyme
content that exists in the segment, and the movement rate of chyme packets in the
segment. Also, each segment can only take up to a certain amount of chyme because of
physical limits on its expansion. This value is represented by contentThreshold . When
the total amount of chyme content in a segment reaches this threshold, the variable
entryBlocked of the segment will be set to Yes to specify that the segment cannot take
any more packets. The value of entryBlocked will be changed back to No whenever
the total amount of chyme content is decreased to a value less than contentThreshold .

IntestineSegment
length : NonNegativeReal
totalExistingChymeContent : NonNegativeReal
chymePassageRate : NonNegativeReal
contentThreshold : NonNegativeReal
entryBlocked : YesOrNo

totalExistingChymeContent ≥ contentThreshold ⇔ entryBlocked = Yes

A schema Position represents a chyme packet’s current position in the small intes-
tine. In the Position schema, segNum represents the ID of the segment that the packet
is currently in and posInSeg specifies the packet’s distance from the beginning of the
segment. Each chyme packet contains specific amounts of nutrients, markers and water.
Markers are consumable, but non-absorbable materials used in experiments for different
purposes such as calculation of passage rate in the gastrointestinal tract [7]. All these
contents together have a total mass that is represented by the variable totalContent .

Position
segNum : SegmentID
posInSeg : NonNegativeReal

ChymePacket
Position
nutrients : PNutrient
markers : PMarker
waterAmount : NonNegativeReal
totalContent : NonNegativeReal

The (multi-agent) system is a small intestine comprising a sequence of intestine seg-
ments and set of chyme packets that have entered, but not left the small intestine. The
variables totalLength , chymeEntryRate and emptyingBlocked represent the small in-
testine length, the rate at which the chyme packets enter the small intestine and whether
the packets can leave the small intestine or not, respectively.

SmallIntestine
segments : SegmentID → IntestineSegment
chymePackets : FChymePacket
totalLength : NonNegativeReal
chymeEntryRate : NonNegativeReal
emptyingBlocked : YesOrNo

∀ c1, c2 : chymePackets •
c1.segNum = c2.segNum ∧ c1.posInSeg = c2.posInSeg ⇔ c1 = c2

(segments 1).length = (segments 6).length = 1
∀ segID : SegmentID • segID 6= 1 ∧ segID 6= 6⇒

(segments segID).length = (totalLength − 2) div 4
∀ c : chymePackets; segID : SegmentID •

c.segNum = segID ⇒ c.posInSeg ≤ (segments segID).length

The predicate of SmallIntestine states that no chyme packets have the same posi-
tion. Additionally, according to the experiments at CNAFS, both the first and the last
segments (SI1 and SI6) of the small intestine are considered to be 1 metre long and the
other four segments are each one quarter of the remaining length of the small intestine.
Finally, the position of each chyme packet in each segment must be less than or equal
to the segment length.

When translating a schema such as ChymePacket that includes another schema,
we include the variables of the included schema as properties of the NetLogo breed.
When translating collections of agents such as segments which are specified in terms
of a function, we include the domain value associated with an agent, as a property of
the NetLogo breed. Effectively, we are using the Z interpretation of the function as a
set of ordered pairs of domain and range values [10]. Hence, the NetLogo translation
of the above is as follows. As mentioned in Section 3.3, state invariants need to be
implemented explicitly in operations.

breed [IntestineSegments IntestineSegment]
breed [ChymePackets ChymePacket]
IntestineSegments-own [segmentID length chymePassageRate . . .]
ChymePackets-own [segNum posInSeg nutrients markers . . .]
globals [totalLength chymeEntryRate emptyingBlocked . . .]

4.2 Operations

This section describes the case in which a chyme packet wants to move through one
intestine segment, but will be blocked by another packet. One of the assumptions made
in the specification is that chyme packets move through and leave the small intestine in
the same order as they arrive. Therefore, packets cannot pass each other and sometimes
packets may be blocked.

An operation MovingBlocked in the Z specification specifies the movement of a
packet pkt? being blocked by another packet blocking ! in the same segment. The func-
tion Min is a predefined global constant in the specification which returns the minimum
of a set of real numbers (defined similarly to Z’s min function for integers [10]).

MovingBlocked
ΞSmallIntestine
pkt? : ChymePacket
blocking ! : ChymePacket

pkt? ∈ chymePackets
pkt?.posInSeg +

(segments pkt?.segNum).chymePassageRate ∗ TIMESTEP ≤
(segments pkt?.segNum).length

∃ c : chymePackets •
c.segNum = pkt?.segNum ∧ c.posInSeg > pkt?.posInSeg ∧
c.posInSeg ≤ pkt?.posInSeg +

(segments pkt?.segNum).chymePassageRate ∗ TIMESTEP ∧
c.posInSeg = Min({ch : chymePackets | ch.segNum = pkt?.segNum ∧

ch.posInSeg > pkt?.posInSeg • ch.posInSeg}) ∧
blocking ! = c

The first two predicates state that pkt? is a chyme packet in a segment of the small
intestines which, if unblocked, would not leave that segment in the next time step
(TIMESTEP is a global constant representing the time step in our NetLogo simu-
lation). The final predicate states there exists another packet c which will block pkt?’s
movement and assigns that packet to the output variable blocking !. Following the trans-
lation scheme in Section 3, the operation is translated as follows. Note that in order
to access agents which are specified in the range of a function, such as segments , the
one-of and with reporters are used, where the desired domain value comes inside the
brackets after with.

to-reportMovingBlocked [pkt]
ifelse (member? pkt ChymePackets) and

([posInSeg] of pkt +
([chymePassageRate] of one-of IntestineSegments with

[segmentID = [segNum] of pkt] ∗ TIMESTEP) <=
[length] of one-of IntestineSegments with

[segmentID = [segNum] of pkt]) and
(any? ChymePackets with [(segNum = [segNum] of pkt) and

(posInSeg > [posInSeg] of pkt) and
(posInSeg <= [posInSeg] of pkt +

([chymePassageRate] of one-of IntestineSegments with
[segmentID = [segNum] of pkt] ∗ TIMESTEP))])

[report min-one-of ChymePackets with
[segNum = [segNum] of pkt and
posInSeg > [posInSeg] of pkt] [posInSeg]]

[report nobody]
end

The operation MoveUntilBlocked specifies that a chyme packet pkt? moves to right
behind another packet blocking? which is blocking it.

MoveUntilBlocked
∆SmallIntestine
pkt? : ChymePacket
blocking? : ChymePacket

pkt? ∈ chymePackets ∧ blocking? ∈ chymePackets
∃ updPkt : ChymePacket • updPkt .segNum = pkt?.segNum ∧
((blocking?.posInSeg − PKTSIZE > pkt?.posInSeg ⇒

updPkt .posInSeg = blocking?.posInSeg − PKTSIZE)
∨ (blocking?.posInSeg − PKTSIZE ≤ pkt?.posInSeg ⇒

updPkt .posInSeg = pkt?.posInSeg))
updPkt .nutrients = pkt?.nutrients ∧ updPkt .markers = pkt?.markers ∧
updPkt .waterAmount = pkt?.waterAmount ∧
updPkt .totalContent = pkt?.totalContent ∧
chymePackets ′ = chymePackets \ {pkt?} ∪ {updPkt}

totalLength ′ = totalLength ∧ emptyingBlocked ′ = emptyingBlocked
segments ′ = segments ∧ chymeEntryRate ′ = chymeEntryRate

The first predicate of this schema states that pkt? and blocking? are chyme packets
within the small intestine. The second predicate replaces pkt? with a new chyme packet
updPkt which is in the position the blocked packet would move to, and is otherwise
identical to pkt? (PKTSIZE is a global constant representing the size of chyme packets
in our NetLogo simulation). The remaining predicates indicate that the small intestine
is otherwise unchanged.

MoveUntilBlocked is combined with the operation schema MovingBlocked , which
provides the input blocking?, as follows.

PacketMoveInSegmentBlocked =̂ MovingBlocked >>MoveUntilBlocked

This part of the specification is translated into the following NetLogo code.

toMoveUntilBlocked [pkt blocking]
if(member? pkt ChymePackets) and (member? blocking ChymePackets)
[create-ChymePackets 1 [

set segNum ([segNum] of pkt)
ifelse ([posInSeg] of blocking − PKTSIZE) > ([posInSeg] of pkt)

[set posInSeg ([posInSeg] of blocking − PKTSIZE)]
[set posInSeg ([posInSeg] of pkt)]

set nutrients ([nutrients] of pkt)
set markers ([markers] of pkt)
set waterAmount ([waterAmount] of pkt)
set totalContent ([totalContent] of pkt)]

ask ChymePackets with [self = pkt] [die]]
end

to PacketMoveInSegmentBlocked [pkt]
ifMovingBlocked pkt != nobody

[MoveUntilBlocked pkt (MovingBlocked pkt)]
end

5 Conclusion

This research combined the use of the Z formal notation with computational modelling
in the NetLogo simulation language. This reduced a large amount of effort required for
the developer of the simulation to firstly understand the system requirements and func-
tionality clearly, and to secondly efficiently derive code directly from the specification
of these requirements. The approach was trialled on a real project studying digestion in
pigs’ intestines. During simulations, the emergent property of total contents in differ-
ent segments increased along the intestine in a manner qualitatively in agreement with
the patterns seen in experimental data. Additionally, modifications to the model were
readily integrated into the Z specification and, via translation, into the NetLogo simu-
lation. Overall, the application of the approach was successful in the sense that it made
the development process more convenient for all the people involved. This warrants its
ongoing use as well as use in similar projects in the future.

A major lesson learnt is that the usability and effectiveness of formal methods is
influenced by human-factors such as the background of the people involved in the de-
velopment process. Consequently, one important step before applying formal methods
is to choose a suitable formal modelling language that makes the software development
process more efficient and convenient for all the people involved.

Acknowledgements This project was jointly supported by the Queensland Alliance for
Agriculture and Food Innovation (QAAFI) and Australian Research Council (ARC)
Discovery Grant DP110101211.

References
1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996.
2. G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language user guide. Read-

ing, PA: Addison-Wesley, 1999.
3. J.P. Bowen. Formal specification and documentation using Z: A case study approach. Inter-

national Thomson Computer Press London, 1996.
4. J. Derrick and E. Boiten. Refinement in Z and Object-Z, Foundations and Advanced Appli-

cations. Springer-Verlag, 2nd edition, 2014.
5. A.C. Guyton and J.E. Hall. Guyton and Hall Textbook of Medical Physiology. Saunders

Elsevier, 12th edition, 2011.
6. T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic Notes in Theo-

retical Computer Science, 152:125–142, 2006.
7. F.N. Owens and C.F. Hanson. External and internal markers for appraising site and extent of

digestion in ruminants. Journal of Dairy Science, 75(9):2605–2617, 1992.
8. V.K. Singh, D. Gautam, R.R. Singh, and A.K. Gupta. Agent-based computational modeling

of emergent collective intelligence. InComputational Collective Intelligence.Springer,2009.
9. G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.

10. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.
11. S. Tisue and U. Wilensky. Netlogo: A simple environment for modeling complexity. In

International Conference on Complex Systems, pages 16–21, 2004.
12. U. Wilensky. NetLogo User Manual. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL, 5.0.5 edition, 2013.
13. J.C.P.Woodcock and J.Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall,

1994.

