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ABSTRACT
Concurrency in data structures is crucial to the performance of multi-
threaded programs in shared-memory multiprocessor environments.
However, greater concurrency also increases the difficulty of verify-
ing correctness of the data structure. Model checking has been used
for verifying concurrent data structures satisfy the correctness condi-
tion ‘linearizability’. In particular, ‘automatic’ tools achieve verifi-
cation without requiring user-specified linearization points. This has
several advantages, but is generally not scalable. We examine the
automatic checking used by Vechev et al. in [? ] to understand the
scalability issues of automatic checking in SPIN. We then describe a
new, more scalable automatic technique based on these insights, and
present the results of a proof-of-concept implementation.
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1 INTRODUCTION
How efficiently data structures are shared is a crucial factor in the
performance of multithreaded programs in shared-memory multi-
processor environments [? ]. This motivates programmers to create
objects with fewer safety mechanisms (such as locks) to achieve
greater concurrency. However, as noted by [? ], any enhancement
in the performance of these objects also increases the difficulty of
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verifying they behave as expected. Several published concurrent
data structures – often with manual proofs of correctness – have
been shown to contain errors (e.g., [? ] and [? ]). This has resulted
in a wealth of research on proving the safety of these objects with
minimal input from programmers.

To verify concurrent data structures it is necessary to have a suit-
able definition of correctness. The general consensus of the literature
is that linearizability, first introduced in [? ], is the appropriate no-
tion of correctness. The definition of linearizability given by Vechev
et al. [? ] is summarised below.

Definition 1.1. A concurrent data structure is linearizable if ev-
ery concurrent/overlapping history of the data structure’s operations
has an equivalent sequential history that

(1) meets a sequential specification of the data structure, and
(2) respects the ordering of non-overlapping operations.

Note that condition (2) is also referred to as the partial ordering
condition. When discussing linearizability the sequential speci-
fication is often referred to as the abstract specification, and the
implementation of the concurrent data structure the concrete im-
plementation. The equivalent sequential history generated from a
concurrent history is referred to as the linearization or sequential
witness.

Given a sequential specification, a history can be checked for a
linearization. This requires examining permutations of the history
to identify whether any one of them is a linearization. This process
is called linearization checking (not to be confused with the overall
process of linearizability checking).

Example 1.2. Figure ?? shows a history of operations for a con-
current queue. By enumerating all permutations, it can be seen
that this history has the linearization [enqueue(1), dequeue()→ 1,
enqueue(2)]. Conversely, consider Figure ??, which is also a history
of a concurrent queue. This does not have a linearization, because,
by the partial ordering condition, enqueue(2) must linearize after
enqueue(1). It follows that dequeue() can only correctly return 1
(if it linearizes after enqueue(1)) or ‘empty’ (if it linearizes before
enqueue(1)). No sequential equivalent of this history will satisfy the
sequential specification of a queue. This history is in fact a behaviour
of the ‘buggy queue’ from [? ].

Linearizability is useful for programmers because it allows them
to view a concurrent data structure’s operations as happening at a
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Figure 1: Concurrent history with a linearization.

Figure 2: Concurrent history with no linearization.

single point in time (called the linearization point) [? ]. Furthermore,
[? ] proves that linearizability generally coincides with ‘observa-
tional refinement’, meaning that when a linearizable data structure
replaces a correct but sub-optimal data structure, the new program
produces a subset of its previous, acceptable behaviour.

1.1 Related Work
There are a wide variety of approaches used to verify linearizability
of data structures. These range from manual proofs, possibly with
the help of a theorem prover (see [? ] and [? ] respectively for
examples with and without a theorem prover), to static and runtime
analysis (e.g., [? ] and [? ], respectively) and model checking (e.g.,
[? ], [? ], [? ] and [? ]).

Model checkers give a high degree of automation because they
work by exhaustive checking of behaviour, but are limited compared
to other approaches because their verification is typically within
bounds on the number of threads, arguments and other factors. We
distinguish two approaches to model checking linearizability:

• linearization point-based checking requires the user to spec-
ify the linearization points (see [? ] for an example),
whereas

• automatic checking does not require user specification of
linearization points (see [? ], [? ] and [? ]).

The latter has two advantages, viz., it does not have errors arising
from incorrectly specified linearization points and also has greater
flexibility for data structures with non-fixed linearization points.

There is a substantial literature on automatic checking which il-
lustrates that many different model checkers and techniques have
been used for this purpose. Vechev et al. [? ] describe a tool for

examining many potential versions of a data structure and determin-
ing which are linearizable. To this end they use both automatic and
linearization point-based methods in SPIN [? ]. They note, impor-
tantly, that automatic checking can be used to cull a large number
of potential implementations but that its inherent scalability issues
make it intractable for thorough checking.

Similarly, Liu et al. [? ] use the model checker PAT [? ] for
automatic checking of linearizability. However, to operate on larger
state spaces, a linearization point-based approach is required. This
situation is improved on by Zhang [? ] by using symmetry to
narrow the potential state space, and in doing so they are able to
verify concurrent data structures (albeit simple ones) for three to six
threads. In contrast, automatic checking reported by Vechev et al. [?
] only allows two threads.

Burckhardt et al. [? ] describe the tool Line-Up, built on top of
the model checker CHESS [? ], for automatically checking lineariz-
ability of data structures. It is one of the most automated approaches
to date; it does not require user-specified linearization points nor an
abstract specification of the data structure (a specification is instead
automatically extracted from the implementation). It also operates
on actual code, as opposed to a model of the code.

The compromise for this convenience, as pointed out by [? ], is
that Line-Up is “only sound with respect to its inputs”. Specifically,
a user must specify which sequences of operations Line-Up checks,
whereas other model checking techniques generate all possible se-
quences of operations (within bounds). Line-Up also requires that a
specification be deterministic, as otherwise the extracted specifica-
tion will misrepresent the actual abstract specification.

1.2 Contributions
A notable theme in the related work is that automatic methods are
considered to have inherent scalability issues for verification [? ]
[? ], though they can be used effectively when limits are placed on
types or numbers of operations checked [? ] [? ] or advanced state
compression techniques are used [? ]. However, the exact causes of
the scalability issues are not discussed in detail, and there is some
disagreement in the literature.

This paper explores in detail the causes of scalability issues in
automatic checking, using the work of Vechev et al. [? ] as our
starting point. The insights derived are then used to describe a tech-
nique for improving the scalability of automatic checking methods
using SPIN. Our solution, as currently implemented, is not sound
and hence can only be used to find bugs. However, we describe how
the technique can be extended to support verification.

The paper is structured as follows. In Section ?? we present our
analysis of the scalability issues in the work of Vechev et al. [? ].
A technique for overcoming these issues is presented in Section ??,
and the results of applying an implementation of this technique to
data structures from the literature with known bugs is described
in Section ??. Also in Section ?? we discuss the main limitation
of our technique which restricts it to bug finding, rather than full
verification. Section ?? then describes how this limitation can be
overcome and how the technique can be integrated into SPIN.
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Figure 3: Checking linearizability using global internal record-
ings.

2 SCALABILITY ISSUES OF AUTOMATIC
CHECKING WITH SPIN

To understand the scalability issues of automatic checking in [? ], we
first describe their methods. We will refer to their approach as using
‘global internal recordings’ since a (global) list of all invocations and
responses of operations by any thread is recorded (internally) as part
of the model checker’s state.

Figure ?? depicts the process of checking with global internal
recordings (based on the top right section of [? , Figure 1]). A
simplified Promela model is also provided in Appendix ??, and line
numbers referenced refer to this model. Data structure models to be
tested are instrumented so that client threads non-deterministically
invoke operations on the data structure (line 32). Invocations and
responses of operations are recorded (lines 42 and 44 respectively).
These recordings are then passed to a linearization checker (line 67)
which searches for a valid linearization of the history. It searches by
generating a permutation of the history, and then checking whether it
satisfies conditions (1) and (2) of Definition ??. Note that condition
(1) requires that the linearization checker has its own sequential
specification of the data structure, separate from the model checker.
If no such linearization can be found, the value returned by the
linearization checker causes a local assertion to fail in the model
checker (line 69).

2.1 Existing Explanations of the Scalability Issues
of Automatic Checking

Though well-acknowledged in the literature, explanations for the
scalability issues of automatic checking in [? ] are not comprehen-
sive. In [? ], the authors note that “every time we append an element
into [sic] the history, we introduce a new state”, explaining that the
recordings create scalability issues related to state space explosion.

However, [? ] consider linearization checking to be the performance-
limiting factor of automatic checking in [? ], stating that “Their ap-
proach needs to find a linearizable sequence for each history, whose
worst-case time is exponential in the length of the history, as
it may have to try all possible permutations of the history. As
a result, the number of operations they can check is only 2 or 3.”
(emphasis added).

Long and Zhang [? ] describe heuristics for improving lineariza-
tion checking. Their approach suggests that linearization checking is
a performance-limiting factor of automatic linearizability checking.
Though their results show the effectiveness of their optimisations,

they only test their methods on pre-generated traces; that is, without
doing model checking to generate the traces. As a result, the impact
of these optimisations on overall linearizability checking is unclear.

2.2 Testing Explanations of the Scalability Issues
of Automatic Checking

To test these different hypotheses, we conducted several preliminary
experiments on a concurrent set provided as supplementary material
by Vechev et al. [? ]. All experiments were performed on a machine
running Ubuntu 14.04.3 with 32 GB RAM and 8 Intel Core i7-4790
processors. The first compared the performance of automatic check-
ing with and without the linearization checker; see Tables ?? and ??.
Without the linearization checker, histories are explored by SPIN
but not checked for linearizability. Checking with a linearization
point-based approach is also shown for comparison.

In this experiment, two threads invoked operations on the data
structure. For 6 operations, both automatic methods were given
a moderate state compression setting (the built-in DCOLLAPSE
flag in SPIN – see [? ]) but failed to complete due to memory
requirements. All times shown are the average of 10 executions.
Note that SPIN was used with a single core to avoid time overhead
for small tests and memory overhead for large tests.

The results clearly indicate model checking is the performance-
limiting factor, since disabling linearization checking does not lead
to performance comparable to checking with linearization points.

A second experiment investigated scalability issues in the model
checking process. The number of states and histories explored in
the same concurrent set were compared; see Tables ??, ?? and ??.
For global internal recordings, histories were recorded by modifying
the linearization checker. Each time the linearization checker was
invoked, the history it was acting on was recorded. When checking
with linearization points, the SPIN model was instrumented to output
each operation as it was checked. The histories checked were then
reconstructed from the output list of recordings.1

Note that states ‘stored’ refers to the number of distinct states in
the state space, whereas states ‘matched’ refers to how many times
a state was revisited [? ]. Together they give an indication of how
much state space exploration occurred.

Tables ?? and ?? confirm the statement of [? ] – many more states
are explored using automatic checking. However, the magnitude of
the difference suggests more than just one state is introduced by each
recording. Table ?? also reveals some implications not immediately
evident from previous explanations – that checking with global
internal recordings generates and checks many more histories than
checking with linearization points. Because this is not encoded
manually by the different approaches, it suggests an optimisation by
SPIN which allows checking with linearization points to shrink the
state space and remove histories which are unnecessary for verifying
linearizability.

An interesting trend from the results was that the biggest differ-
ence in states explored by the two methods was in states ‘stored’ –
that is, unique states in the state space. However, states ‘matched’

1Note that reconstruction of histories required adding a global index variable (similar
to gix in Appendices ?? and ??), which would not normally be used in checking with
linearization points and inflates the state space for reasons explained later in this section.
The number of states and number of histories listed for checking with linearization
points are therefore over-estimates.
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Table 1: Comparison of execution times for automatic and non-automatic checking methods of Vechev et al. All times in milliseconds.

Method
History length (# operations)
2 4 6

linearization points 22 257 2160
global internal recordings 33 10 590 Out of memory (30GB)
global internal recordings

without linearization checker
33 10 240 Out of memory (30GB)

Table 2: Comparison of memory use for automatic and non-automatic checking methods of Vechev et al.
All measurements in MB.

Method
History length (# operations)

2 4 6

linearization points 131.0 204.4 773.3
global internal recordings 136.2 3780.80 Out of memory (30GB)
global internal recordings

without linearization checker
136.2 3744.2 Out of memory (30GB)

Table 3: Comparison of states stored by global internal recordings and linearization points methods.

Method
History length (# operations)

2 4 6

linearization points 21 198 1 215 501 12 899 275
global internal recordings 25 740 12 693 435 Out of memory (30GB)

Table 4: Comparison of states matched by global internal recordings and linearization points methods.

Method
History length (# operations)

2 4 6

linearization points 4514 329 884 3 765 699
global internal recordings 4699 2 570 412 Out of memory (30GB)

(revisited) were much closer (note in the case of 2 operations that
though checking with linearization points has 4000 fewer states, it
revisits states almost as much as global internal recordings checking).
This provides some insight as to why it checks many fewer histories
and has vastly better performance.

It was found that the histories checked with linearization points
are a strict subset of those checked using global internal recordings.
The histories missing from linearization points checking were due to
the model checking process stopping and backtracking in the middle
of a history. That is, SPIN would generate the start of the history
but stop before generating some of the recordings for the end of the
history. For example, Figure ?? shows a history that is missed when
checking a concurrent set using linearization points. The point ‘X’
shows where checking for this history stops.

After examining such histories and considering the algorithm ap-
plied by SPIN for model checking it became apparent that the reason
SPIN stopped preemptively in some histories was the presence of
repeated states. State-based model checking algorithms optimise

Figure 4: A missing history when model checking with lin-
earization points.

state space exploration by not returning to a state if all of the possi-
bilities extending from that state have been previously checked (see,
for example, [? ]).

For example, when checking with global internal recordings, the
history in Figure ?? occurs (in the search process) after the history
shown in Figure ??. When checking with linearization points, at
the point X the global state in the history of Figure ?? matches the
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Table 5: Comparison of histories checked by global internal recordings and linearization points methods.

Method
History length (# operations)

2 4 6

linearization points 165 2876 9783
global internal recordings 296 133 536 Out of memory (30GB)

Figure 5: A history that precedes the missing history.

global state at point Y in Figure ??, so the model checker does not
proceed any further.

This explains the large number of states and histories generated by
global internal recordings. Because of the recordings, states which
would otherwise appear identical to SPIN are differentiated. SPIN
therefore continues to search down the branch of the state space,
whereas with linearization points it would backtrack.

3 A TECHNIQUE FOR IMPROVING
SCALABILITY OF AUTOMATIC
CHECKING

We now describe a new automatic checking technique. The key
insight is to improve scalability by storing less global data, allowing
SPIN to optimise state space exploration by backtracking. The
technique is referred to as ‘external checking’ because it outputs
recordings which are stored by the model checker in the automatic
checking of [? ].

The description provided in this section is for a proof-of-concept
implementation using machinery built to work with SPIN. Unfortu-
nately, subtle issues in the state space exploration technique make
this implementation an unsound checking procedure for verification.
In Section ?? we describe the reasons for this unsoundness and
present a sound and complete checking procedure that extends the
basic idea. Implementing the extension would require alteration of
the SPIN source code and is left for future work.

3.1 External Checking: Preliminary
Implementation

The general concept is similar to that of automatic checking with
global internal recordings where each history is checked for a lin-
earization. The implementation is also similar, viz., client threads
non-deterministically invoke operations on the concurrent data struc-
ture to generate the histories. For comparison, a simplified external
checking Promela model is given in Appendix ??. The key differ-
ence is that the external checking method outputs information (line
20) about the operations to an external linearization checker as they

occur, rather than keeping an internal list of recordings until the end
of each history (note the absence of globaltrace in Appendix ??).

A simplistic approach was taken to outputting recordings exter-
nally. An embedded printf statement was included in the Promela
model whenever an invocation or response occurred. For example,

c_code{printf("%d %d %d %d %d %d\n", now.gix,
Pclient->par, Pclient->op, Pclient->retval,
Pclient->arg, Pclient->type);}

outputs the index of the recording in the history (gix), the parent
recording (i.e., invocation) of the operation if it was a response
(par), the operation (op), argument (arg), return value (retval) and
whether this was an invocation or response (type) for the thread
‘client’ (Pclient).

External checking requires that output recordings be assembled
into complete histories, since the recordings are output in the order in
which SPIN explores the state space. Since SPIN uses a depth-first
search of the state space, this simply requires iterating over the list
of recordings and outputting a history whenever the last recording
(a complete history) is reached.2 In pseudocode,

Recording current_history[history_length];
for (Recording recording : output_recordings) {

current_history[recording.index] = recording;
if (recording.index == history_length) {

//leaf node in the search tree
outputHistory(current_history);

}
}

A process takes the output from SPIN and reconstructs the histo-
ries as shown above. It then passes the histories to the linearization
checker which checks each history for a linearization. The entire
external checking procedure is illustrated in Figure ??. Compare
this to Figure ?? for checking with global recordings. Note that
the external linearization checker runs concurrently with the model
checker. If a failure (non-linearizable history) occurs, it notifies the
model checker and both stop.

Note that at present external checking is only suitable for use with
single-core SPIN checking. Using several cores changes how the
state space is explored and therefore how recordings are output, so it
requires understanding a different state space exploration algorithm
and also the capacity to determine from which core the recordings
originated. Further work could explore implementing these features.

4 RESULTS
Several data structures from the literature with known defects were
used for testing the effectiveness of the external checking method.

2Note that histories are limited to a given length to make model checking feasible.
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Figure 6: The external checking procedure.

These data structures are summarised in Table ??. It is important to
note that both the buggy queue and the Snark deque were originally
published with proofs of correctness, and only later found to be
defective. They therefore represent realistic examples of bugs in
concurrent data structures. The ABA problem, tested for in both
the Treiber Stack and Snark deque, is also a common problem
with concurrent data structures which use the compare-and-swap
primitive.

Promela models of the data structures in Table ?? were created
and instrumented to allow automatic checking both externally and
via global internal recordings. In cases where more than one bug
existed in a single data structure, each bug was repaired after being
flagged so that others could be tested. All experiments were per-
formed on a machine running Ubuntu 14.04.3 with 32 GB RAM
and 8 Intel Core i7-4790 processors. SPIN was used with a single
core to avoid time overhead for small tests and memory overhead
for large tests. Also, external checking does not currently support
checking with multiple cores.

Both methods located three out of four bugs. The results of testing
for detected bugs are shown in Table ??. In the cases where bugs
were located, no state compression flags were needed, and only 2
threads and 4 operations were required for detection. Times shown
are an average of 10 executions for both methods. Only the second
bug for the Snark deque was unable to be detected. For external
checking, the memory limit of 21GB was reached after 50 hours
with the strong state compression flag DMA = 496 (see [? ] for
details). Global internal recordings was also unable to detect this
bug within the memory limit.

4.1 Discussion of External Checking Performance
The results in Table ?? illustrate the utility of the external checking
method. Finding three of the fours bugs, even without the improve-
ments described in Section ??, indicates that this method alone has
promise as a bug-finding approach.

In the case of the missed bug, the second in the Snark deque, it
seems likely that the failing history was skipped by external checking.
Tests with linearization point-based checking show that this bug can
be located in under 30 minutes with DCOLLAPSE state compression.
Hence it is possible that the failing history was missed early on in
external checking, which then proceeded to check the remainder of

int x = 0;
atomic operation1:

x++;
return x;

atomic operation 2:
return True;

Figure 7: Abstract specification.

the (very large) state space, which is time and memory consuming.
In contrast, global internal recordings, as a sound approach, would
detect the bug if sufficient memory was available.

However, when bugs are detected, external checking appears more
scalable than checking with global internal recordings based on the
results of Table ??. For all bugs detected it was both faster and used
less memory. For the Treiber stack and buggy queue, memory use
was roughly half that of global internal recordings, and checking
was around three times faster.

For the first bug of the Snark deque the two methods are closest in
performance. This is because the failing history occurs very early in
the model checking process. External checking takes longer to check
any individual history because it must be reconstructed and then
passed to the linearization checker. Its performance benefit comes
from checking far fewer histories. Therefore when a bug occurs
after only very few histories, external checking does not have time
to yield a significant performance benefit. Conversely, the deeper
the execution required to locate a bug, the greater the improvement
in performance compared to global internal recordings.

5 POTENTIAL IMPROVEMENTS:
INTEGRATION WITH SPIN

The technique described in Section ?? is in fact unsound. Recall
from Section ?? that checking with linearization points covers fewer
histories due to SPIN optimisations that cause it to stop at repeated
states. This is valid with linearization point-based checking because
such approaches include an abstract specification that runs in parallel
with the model of the concrete implementation. The state variables
of the abstract specification ensure that the sub-history encountered
before backtracking is truly equivalent to one checked earlier.

However, in external checking no abstract specification is kept by
SPIN. This means there are cases where SPIN stops preemptively
and this prevents it checking a history that could violate linearizabil-
ity.

For example, consider the sequential specification of a data struc-
ture as shown in Figure ??. Suppose this specification was incor-
rectly implemented as shown in Figure ??. If checking on a single
thread is used, the SPIN output (shown diagrammatically) is as in
Figure ??.

Checking stops before the end of the third (faulty) history, and
therefore it is not checked and no error is raised. The model checker
stops because of the repeated global state x = 1. It reaches this
state after operation1 in the first two histories and from those
histories has explored all states extending from that point. When
SPIN encounters the same state after operation2 completes in the
third history, it stops, despite the global state being incorrect for an
execution of operation2.
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Table 6: Faulty data structures used for testing external checking.

Data structure Source Description of bug

Treiber stack [? ]
Suffers from the ABA problem in non-memory
managed environments. Excellent explanation
in [? , Section 1.2.4].

Buggy queue [? ]
When a dequeue is interrupted by two enqueues
at critical sections, the dequeue returns a value
not from front of the queue. See [? , Section 3.3].

Snark deque [? ]

Two bugs, the first of which can cause either
pop to return ‘empty’ when the queue contains
elements, and the second of which is an ABA-type
error resulting in the return of an already popped
value. See [? , Section 3] for detailed descriptions.

Table 7: Results of external checking and global recordings checking on faulty data structures.

Data structure
Bugs External checking Global recordings checking

Detected time(ms) memory(MB) time(ms) memory(MB)

Treiber stack 1/1 373 172 1346 342
Buggy queue 1/1 248 159 774 252
Snark deque 1/2 86 139 123 145

int x = 0;
operation1:

x++;
return x;

operation 2:
if (x == 0)

x = 1;
return True;

Figure 8: Incorrect implementation.

Figure 9: Histories output by SPIN when using external check-
ing on the data structure of Figure ??. The dotted line indicates
SPIN stopping.

Note that checking with linearization points, where an abstract
specification is included, would prevent this error, since the abstract
specification’s operation1 and operation2 will alter the global
data differently.

5.1 A Sound Verification Algorithm
We now describe a means of extending our technique for verification,
which requires modifying the SPIN source. Doing this would also
lead to a significant performance benefit.

Outputting recordings requires keeping track of a global index
(gix in Appendix ??). As Section ?? showed, global variables
tracked by SPIN can unnecessarily inflate the state space. If SPIN
were modified it would not be necessary to keep a global index as a
global variable in the model – it could be kept as metadata instead.

Likewise, the machinery of Section ?? could be implemented in
a very similar fashion in SPIN. Instead of outputting recordings, it
could be stored as metadata separate from the state vector and model
checking process. Complete histories would still have to be passed
to an external linearization checker, as was done in [? ].

We now outline the extra checking necessary to prevent the miss-
ing histories described in the previous section, making the approach
sound. It was noted that repeated global states cause the lack of
soundness. For external checking, preventing incorrect backtracking
therefore requires a method for deciding when a repeated global state
represents correct behaviour of the implementation. We propose
the following method: whenever a repeated global state is reached,
ensure that the current sub-history has a linearization in common
with the history which originally created that global state.

For example, suppose the history shown in Figure ?? occurred
during checking, followed by the history shown in Figure ??. Here
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Figure 10: Example history.

Figure 11: Second example history.

G is a global state, and op1 and op2 are operations. At the global
state G in the history of Figure ??, it can be checked that the two
histories share two potential linearizations: op1 then op2, and op2
then op1. This means SPIN can backtrack safely.

In contrast, recall the counter-example to verification from Figure
??. In this example there is no linearization of the history containing
just op2 which is also a linearization of the history containing just
op1. Therefore in the proposed implementation SPIN would not
stop after op2 and the entire history would be checked, not missed.

Note that this extended approach requires checking for common
linearizations, metadata caching and the usual state exploration of
model checking. Performance could be improved by a high degree
of parallelism between these separate functions.

A distinct, but equivalent, approach to verification could have
SPIN check that the sub-history up to the stopping point had a
linearization which could lead to that global state. This would
require an abstract specification of the data structure, and being able
to check that the abstract state matched the concrete one. This is,
however, more dependent on the data structure being checked and
therefore is not favoured as an automatic approach to checking.

6 CONCLUSIONS
We have described in detail the scalability issues of automatic lin-
earizability checking in [? ]. The main cause of this is a lack of
state space traversal optimisations in the presence of a large amount
of global data. This identified cause makes explicit a fact which
is widely assumed in the literature but whose explanation is often
omitted or unclear.

These observations motivated a new, more scalable technique
for automatic checking with SPIN. The key insight is to not store
the recordings until the end of history in the model-checker but to
output them directly. This allows the model-checker to optimise
the state space exploration. The algorithm we have implemented
reconstructs the histories from the recordings and determines if these
histories satisfy the linearization conditions. Our experiments show

that the extra cost of generating the history from the recordings that
are output directly is smaller than the speed-up gained from the more
efficient execution of the model-checker.

This external checking technique reduces the number of histories
that need exploration and thus is able to explore longer traces. As
a consequence bugs that occur on long traces are detected more
efficiently than when using the global internal recording technique
in the literature. External checking does detect bugs that occur after
a few histories but the performance benefits are not significant. In
other words, the more states the model-checker is required to explore
before it can detect a bug, the more effective our technique will be.

We have also presented a limitation of the implemented external
checking technique (namely, that it can be used for bug detection but
not verification). We have developed an algorithm that overcomes
this limitation, and intend to implement this in SPIN as future work.
Note that if only an efficient bug detection technique is desired, the
external checking algorithm described in Section ?? would suffice.

A SIMPLIFIED PROMELA MODEL OF
GLOBAL INTERNAL RECORDINGS

This appendix contains a simplified Promela model for checking
the Treiber stack with two threads executing two operations each.
Note that this is based on the model [? ]. The replacement of
the permutation checker with the external checker is highlighted in
gray in the following and Appendix ??.

1 #define NUM OPS 2 // operations per client

2

3 typedef TraceEntry {
4 // Information about the start or end of

5 // an operation.

6 ...

7 };
8 TraceEntry globaltrace[MAXTRACE];

9 int gix; // index of the current recording

10

11 byte clients finished;

12 // Treiber stack global data.

13 ...

14

15 inline push(key) {
16 ...

17 }
18

19 inline pop() {
20 ...

21 }
22

23 inline record event(...) {
24 // Append start or end of operation to

25 // globalTrace by setting the fields at

26 // index gix.

27 globalTrace[gix].op = ...

28 ...

29 gix++

30 }
31
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32 inline invokeOperations()

33 {
34 byte numExecuted;

35 numExecuted = 0;

36

37 do
38 :: (numExecuted < NUM OPS) −>
39 {
40 // randomly select operation and key

41 select operation and key();

42 record event(...);

43 exec operation(op, key); // push or pop

44 record event(...);

45 num executed++;

46 }
47 :: (numExecuted >= NUM OPS) −> break;
48 od;

49 }
50

51 proctype client() {
52 invokeOperations();

53 clients finished++;

54 }
55

56 init {
57 /* Run processes */

58 run client();

59 run client();

60

61 /* wait until the other process finishes. */

62 clients finished == 2;

63

64 // Pass the history to the linearization

65 // checker. clients finished is used as

66 // a flag to indicate failure.

67 c code{ check permutation(&now.globaltrace,

68 & now.gix, & now.clients finished); };
69 assert(clients finished != 0);

70 }

B SIMPLIFIED PROMELA MODEL OF
EXTERNAL CHECKING

This appendix contains a simplified Promela model for external
checking with two threads executing two operations each.

1 #define NUM OPS 2 // operations per client

2

3 int gix; // index of the current recording

4

5 byte clients finished;

6 // Treiber stack global data.

7 ...

8

9 inline push(key) {
10 ...

11 }

12

13 inline pop() {
14 ...

15 }
16

17 inline record event(...) {
18 // Output event to external history

19 // reconstructor

20 c codeprintf([event information]);

21 gix++

22 }
23

24 inline invokeOperations()

25 {
26 byte numExecuted;

27 numExecuted = 0;

28

29 do
30 :: (numExecuted < NUM OPS) −>
31 {
32 // randomly select operation and key

33 select operation and key();

34 record event(...);

35 exec operation(op, key); // push or pop

36 record event(...);

37 num executed++;

38 }
39 :: (numExecuted >= NUM OPS) −> break;
40 od;

41 }
42

43 proctype client() {
44 invokeOperations();

45 clients finished++;

46 }
47

48 init {
49 /* Run processes */

50 run client();

51 run client();

52

53 /* wait until the other process finishes. */

54 clients finished == 2;

55 }
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