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Abstract 

This thesis presents a novel set of image analysis tools developed for the purpose of 

assisting radiologists with the task of detecting and characterizing breast lesions in 

image data acquired using magnetic resonance imaging (MRI). MRI is increasingly being 

used in the clinical setting as an adjunct to x-ray mammography (which is, itself, the 

basis of breast cancer screening programs worldwide) and ultrasound. Of these imaging 

modalities, MRI has the highest sensitivity to invasive cancer and to multifocal disease. 

MRI is the most reliable method for assessing tumour size and extent compared to the 

gold standard histopathology. It also shows great promise for the improved screening of 

younger women (with denser, more radio opaque breasts) and, potentially, for women 

at high risk. 

Breast MRI presently has two major shortcomings. First, although its sensitivity is high 

its specificity is relatively poor; i.e. the method detects many false positives. Second, the 

method involves acquiring several high-resolution image volumes before, during and 

after the injection of a contrast agent. The large volume of data makes the task of 

interpretation by the radiologist both complex and time-consuming. These 

shortcomings have motivated the research and development of the computer-aided 

detection systems designed to improve the efficiency and accuracy of interpretation by 

the radiologist. Whilst such systems have helped to improve the sensitivity/specificity 

of interpretation, it is the premise of this thesis that further gains are possible through 

automated image analysis. However, the automated analysis of breast MRI presents 

several technical challenges. This thesis investigates several of these, noise filtering, 

parametric modelling of contrast enhancement, segmentation of suspicious tissue and 

quantitative characterisation and classification of suspicious lesions.  

In relation to noise filtering, a new denoising algorithm for dynamic contrast-enhanced 

(DCE-MRI) data is presented, called the Dynamic Non-Local Means (DNLM). The DCE-

MR image data is inherently contaminated by Rician noise and, additionally, the limited 

acquisition time per volume and the use of fat-suppression diminishes the signal-to-
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noise ratio. The DNLM algorithm, specifically designed for the DCE-MRI, is able to 

attenuate this noise by exploiting the redundancy of the information between the 

different temporal volumes, while taking into account the contrast enhancement of the 

tissue. Empirical results show that the algorithm more effectively attenuates noise in 

the DCE-MRI data than any of the previously proposed algorithms. 

In relation to parametric modelling of contrast enhancement, a new empiric model of 

contrast enhancement has been developed that is parsimonious in form. The proposed 

model serves as the basis for the segmentation and feature extraction algorithms 

presented in the thesis. In contrast to pharmacokinetic models, the proposed model 

does not rely on measured parameters or constants relating to the type or density of the 

tissue. It also does not assume a particular relationship between the observed changes 

in signal intensity and the concentration of the contrast agent. Empirical results 

demonstrate that the proposed model fits real data better than either the Tofts or Brix 

models and equally as well as the more complicated Hayton model. 

In relation to the automatic segmentation of suspicious lesions, a novel method is 

presented, based on seeded region growing and merging, using criteria based on both 

the original image MR values and the fitted parameters of the proposed model of 

contrast enhancement. Empirical results demonstrate the efficacy of the method, both 

as a tool to assist the clinician with the task of locating suspicious tissue and for 

extracting quantitative features. 

Finally, in relation to the quantitative characterisation and classification of suspicious 

lesions, a novel classifier (i.e. a set of features together with a classification method) is 

presented. Features were extracted from noise-filtered and segmented-image volumes 

and were based both on well-known features and several new ones (principally, on the 

proposed model of contrast enhancement). Empirical results, based on routine clinical 

breast MRI data, show that the resulting classifier performs better than other such 

classifiers reported in the literature. Therefore, this thesis demonstrates that 

improvements in both sensitivity and specificity are possible through automated image 

analysis. 
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1. Introduction 

Breast cancer is the most common cancer in women and represented over a quarter of 

all reported cancer cases in Australia in 2006 (Australian Institute of Health and 

Welfare, 2009). In Australia alone, more than 2500 women die from the disease every 

year (2007, Australian Institute of Health and Welfare, 2009). Moreover, health 

expenditure on breast cancer in Australia from 2004 to 2005 was over A$330 million 

(Australian Institute of Health and Welfare, 2009). The cause of breast cancer is still 

unknown and thus prevention is impossible. Therefore, early detection and medical 

imaging-guided therapy form the main strategy for improving mortality rates caused by 

breast cancer.   

Breast cancer screening is commonly based on x-ray mammography owing to its low 

cost and the short acquisition time that provides a high throughput. X-ray 

mammography, however, has a high false-negative rate (i.e. low sensitivity) (Behrens et 

al., 2007, Morris and Liberman, 2005), requiring compression of the breast and is not 

effective in dense breast tissue (Morris and Liberman, 2005). This has motivated the 

exploration of alternative imaging modalities including, computed tomography (CT), 

ultrasound (US), single photon emission computed tomography (SPECT), positron 

emission tomography (PET) and magnetic resonance imaging (MRI). Of these, MRI 

shows the most promise for improved breast cancer screening (Morris and Liberman, 

2005, Heiberg et al., 1996). In particular, dynamic contrast-enhanced (DCE) MRI shows 

promise in the characterisation of breast cancer, to which it has a high sensitivity. 

However, the specificity of the DCE-MRI is relatively low (Heiberg et al., 1996). Also, the 

acquisition time of the DCE-MRI is longer than X-ray (30–45 minutes as opposed to 5–

10 minutes for the X-ray), it is more expensive and requires the injection of a contrast 

agent (Morris and Liberman, 2005). 



2 Introduction 

 

 
 

1.1 Dynamic Contrast-enhanced Breast MRI 

Cancers in breast MRI were originally invisible or poorly contrasted (Morris and 

Liberman, 2005). This has changed with the development of dynamic-contrast-

enhanced (DCE) MRI. DCE MRI involves the injection of a contrast agent into the patient 

that leads to a contrast enhancement over time. However, when the DCE-MRI was first 

introduced, its technological constraints forced a choice between a high spatial 

resolution MRI and a high temporal resolution MRI (Orel and Schnall, 2001). As a result, 

two schools of breast MRI analyses evolved: the dynamic and the static schools. 

The dynamic school (mainly in Europe) used a high temporal resolution for 

characterising suspicious lesions (typically 60 seconds per scan, 5–9 scans per dynamic 

sequence), while the static school (mainly in the USA) characterised suspicious lesions 

by evaluating the morphologic features (i.e. shape) at a high spatial resolution and a low 

temporal resolution (typically, one pre-contrast image and one post-contrast image). 

Current technology makes it possible to reach a better compromise between a high 

spatial and a high temporal resolution. In modern breast MRI, a sequence of three 

dimensional images of the breast acquired before and during/after the injection of a 

contrast agent are often used to identify suspicious lesions that are otherwise invisible 

or poorly contrasted in the non-contrast images (Warren and Coulthard, 2002). The 

change in signal intensity over time is an important criterion for the differentiation of 

the malignant from the benign lesions (Warren and Coulthard, 2002). The signal 

intensity-time curves (enhancement curves) for most cancers show an early steep rise 

after a contrast agent injection, followed by a plateau and then a washout. Whilst those 

for benign lesions either show no increase or exhibit a slow continued increase with a 

delayed washout (Sinha et al., 1997) (see Figure  1.1). Many benign lesions, however, 

enhance in a similar fashion to cancers (Sinha et al., 1997, Morris and Liberman, 2005) 

and shallow or non-enhancement is a feature of some malignant changes (Morris and 

Liberman, 2005). Consequently, although the sensitivity of breast MRI is high 

(approximately 90%), the specificity of the technique is variable (Jansen et al., 2008, 

Heiberg et al., 1996) and usually lies between 37% and 86% (Behrens et al., 2007, 

Heiberg et al., 1996, Jacobs et al., 2003, Liu et al., 1998, Orel and Schnall, 2001, Warren 

et al., 2005). This has motivated research into ways for improving specificity including, 

(i) combining the morphologic features of the lesion with its kinetic features and, (ii) 
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combining the radiologist’s interpretation with the quantitative measurements using 

computer image analysis features (computer-aided detection). Moreover, the 

subjectivity in the interpretation of breast MRI is high, which has led to the 

development of a standard method for reporting breast MRI findings. 

1.2 Standardised reporting of breast MRI findings 

The BI-RADSTM (Breast Imaging Reporting and Data System) lexicon for breast MRI 

(Morris and Liberman, 2005, 2006), published by the American College of Radiology 

(ACR) provides a standard method for reporting the morphometric and kinetic features 

on which radiologists should base their analyses. The kinetic features in the lexicon 

describe the temporal analysis that should be made by examining the enhancement 

curves averaged over a region of interest within the suspicious lesion (Figure  1.1). This 

lexicon is aimed at improving the objectivity of the analysis and creating a common 

language between radiologists for describing the features of suspicious lesions. 

1.3 Computer assisted evaluation of breast MRI 

Dynamic Contrast Enhanced (DCE) MRI data comprises a set of high resolution volumes, 

acquired before and during/after the injection of a contrast agent. Each volume typically 

comprises more than a hundred slices (for bilateral acquisition), 256x256 or 512x512 

voxels in size (Figure  1.2). In the conventional approach, data are analysed manually by 

a radiologist. This involves looking for lesions that have certain characteristics, both in 

the spatial and in the temporal domains.  

The amount of data that needs to be interpreted by the radiologist is often huge, and is 

likely to increase as the spatial resolution of the MRI machines improves with 

technology. Thus, radiologists can be overwhelmed by the amount of data and the 

increasing workloads. This motivates the development of computer-assisted evaluation 

(CAE) systems that will allow radiologists to diagnose the data more efficiently. 

Furthermore, the specificity of MRI is relatively poor and MR images are difficult to 

interpret in some circumstances, because of the large amounts of data that need to be 

analysed in each study. 
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Figure  1.1: Types of enhancement
Morris and Liberman, 2005)
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more efficiently, fully-automatic techniques are usually of higher interest than 

interactive ones. 

 

 

Figure  1.2: The structure of a typical DCE MRI data set (

Introduction

ent curves in DCE-MRI  Adapted with changes from 
Morris and Liberman, 2005). 

provides various techniques for medical image

image denoising, registration, segmentation and classification

ated classification of images, a combination of several techniques may be 

required to achieve a reliable process that will yield consistent results. Also, 

main goal of such techniques is to help the radiologist to perform the 

automatic techniques are usually of higher interest than 

structure of a typical DCE MRI data set (bilateral axial slices)  

Introduction 

 

from (Kuhl et al., 1999, 

techniques for medical image analysis. These 

and classification.  When dealing 

ated classification of images, a combination of several techniques may be 

required to achieve a reliable process that will yield consistent results. Also, because the 

the interpretation 

automatic techniques are usually of higher interest than 

 



 5 

 

 

1.4 Scope of this research 

This research focuses on computer-aided analysis techniques. This thesis constitutes 

part of a larger research project, known as the Breast MRI project, within the 

Biomedical Engineering Research Division within the School of ITEE at the University of 

Queensland, Australia. The aim of the Breast MRI project is to improve the specificity 

and the sensitivity of breast MRI, and therefore its clinical utility, through the use of 

computer vision (CV), computerised image analysis and pattern recognition techniques 

and the integration of information concerning breast tissue morphology and contrast-

enhancement kinetics. CV offers the possibility of quantitatively, and hence objectively, 

characterising breast tissue enhancement kinetics and morphology. The underlying 

hypothesis of this research is that novel quantitative features derived from both 

dynamic contrast-enhanced (DCE) MRI sequences and co-registered high resolution 

pre- and post-contrast (��- and ��-weighted) images will lead to improved sensitivity 

and specificity, and to more accurate characterisation of lesions. Indeed, recent research 

suggests that the combination of quantitative features characterising lesion morphology 

and the features characterising the enhancement curve lead to improved sensitivity and 

specificity (Chen et al., 2004, Nattkemper et al., 2005, Sinha et al., 1997, Morris and 

Liberman, 2005). 

However, the development of the requisite CV algorithms presents several technical 

challenges including, noise reduction, correction for patient movement, segmentation of 

breast volume, bias field correction, parameterisation of contrast enhancement, 

segmentation of enhancing tissue, feature extraction and the classification of suspicious 

tissue. This thesis primarily focuses on the following. 

1. Noise reduction. Noise in MRI obeys the Rician distribution (Rice, 1944, 

Macovski, 1996, Gudbjartsson and Patz, 1996). The signal-to-noise ratio (SNR) is 

especially low when the resolution of the acquired image is high or when the 

acquisition time is short. Also, fat suppression, which is in wide use, reduces the 

SNR in the image. A low SNR may mask the fine details in the image and diminish 

its effective resolution, making both manual and automatic analysis of the image 

more complicated and less reliable. 
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2. Parameterisation of contrast enhancement. Empiric-parametric and 

model-parametric (e.g. pharmacokinetic models) methods must be devised and 

investigated. The quality of the model-fitting is critical. For example, in the case 

of the pharmacokinetic models, they are typically fitted pixel-wise, using 

iterative non-linear least-squares algorithms, such as the Levenberg-Marquardt 

or the Nelder-Mead where fitting can be problematic: slow, fail to converge or 

extreme parameter values after a fixed number of iterations (Furman-Haran and 

Degani, 2002, Sykulski et al., 1998, Buckley et al., 1994, Hittmair et al., 1994, 

Martel, 2006). 

3. Segmentation of enhancing tissue. A robust algorithm is needed to 

automatically delineate the regions of clinical significance in each slice or 

volume.  

4. Feature extraction. A suitable set of features must be devised for enhancing 

lesions to construct a feature space that will be used for automatic classification 

of suspicious lesions.  

5. Classification of enhancing tissue. Based on the most discriminatory 

features, a classifier should be developed that can discriminate benign and 

malignant lesions. 

1.5 Research hypothesis 

Recent research shows that combining morphometric and kinetic information has the 

potential for improving the accuracy of interpretation of DCE-MRI of the breast (Chen et 

al., 2004, Nattkemper et al., 2005, Sinha et al., 1997, Morris and Liberman, 2005, Szabo 

et al., 2003). Nevertheless, the specificity of DCE-MRI is still too low and breast MRI 

interpretation is usually based solely on the radiologist’s analysis. Hence, the 

hypothesis of this research is that the specificity (and possibly the sensitivity) of 

breast MRI interpretation can be improved by: 

• Designing features for suspicious lesion classification that will integrate information 

about tissue kinetic enhancement and morphology 
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• Reducing the subjectivity of breast MRI interpretation by using image analysis and 

pattern recognition techniques to automatically classify suspicious lesions in the 

breast. 

1.6 Aims and objectives 

To test this hypothesis, this research focuses on the development and evaluation of CAE 

system that will automatically classify suspicious lesions in breast MRI. This system will 

be constructed using ‘low-’, ‘intermediate-’ and ‘high-level’ processing methods 

(Gonzalez and Woods, 2002). It will use novel image processing and computer vision 

algorithms and will improve the detection and characterisation (differentiation, size, 

extent) of breast cancer in MR images. To this end, it was necessary to undertake the 

following tasks. 

1. The development of a new denoising method for improving the quality of 

DCE MR Images. Because of the nature of the MRI systems, DCE MRI data is 

contaminated by Rician noise. The noise in the images may often mask fine 

details and diminish the effective resolution. To perform a high level analysis on 

the image, it is essential that the input data have the least possible amount of 

noise. In this research project, a new denoising algorithm for DCE-MRI will be 

developed. 

2. The development of a new model of contrast enhancement to be used as a 

tool for automatic/semi-automatic/visual analysis of DCE MRI data. Models 

of enhancement for DCE MRI help by reducing the dimensionality of the data 

from typically 5 to 9 volumes to as little as three free parameters of the model 

that can then be used for automatic analysis. The models of enhancement also 

mitigate the effect of noise in the data. In this research project, a model of 

enhancement that has no more three free parameters will be developed and 

evaluated against existing models. 

3. The development of a robust segmentation method for suspicious lesions 

in the breast. Automatic segmentation of medical data is challenging because of 

the delicate nature of the problem (low tolerance to misinterpretation). A 

reliable segmentation method is highly desirable, especially one that has almost 

no false negatives and a minimum amount of false positives. As part of this 
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research, a new algorithm for automatic segmentation of enhancing lesions in 

DCE-MRI of the breast will be developed. 

4. The design and implementation of a feature space and a classifier for 

automatic classification of suspicious lesions in the breast. The 

interpretation of breast MRI images is usually performed in both the spatial and 

the temporal domains. The BI-RADS lexicon, in addition to previous work 

describing automatic classification of suspicious lesions in breast MRI, is used as 

a basis for the construction of an efficient feature space. Classifying suspicious 

lesions with a high precision requires an efficient feature space and also a 

suitable classifier. A well-designed classification system may thus reduce the 

subjectivity in diagnosis and improve the specificity of the DCE-MRI. As part of 

this research, a feature space and a suitable classifier for the classification of 

suspicious lesions in the DCE-MRI of the breast will be developed.  

1.7 Overview of the thesis 

The remainder of the thesis is organised as follows.  

Chapter 2 intends to familiarize the reader with some basic terms and concepts in MRI, 

breast cancer and statistical pattern recognition that will later be used in different 

places in this thesis. It introduces the terminology and background concepts of MR 

Imaging of the breast and breast cancer. It describes the basic physics behind different 

types of MR imaging in addition to the physiology described. The chapter then reviews 

the different types of breast cancer and how they appear in MR imaging. Finally, the 

chapter provides an overview of some basic concepts in the field of statistical pattern 

recognition that are relevant for this thesis.  

Chapter 3 reviews existing models for contrast enhancement in DCE-MRI, including a 

new, empirical, model of enhancement. In addition, the chapter presents a comparison 

between the ‘goodness of fit’ of the existing models and the new one. The chapter also 

describes the properties of the new model and evaluates it, in comparison with the 

existing pharmacokinetic models. 

Chapter 4 describes the noise model in MRI and various denoising methods. The 

chapter reviews denoising methods for MRI and describes a new denoising method for 

DCE-MRI; the Matlab code for this method is given in Appendix C. This paves the way for 



 9 

 

 

the next chapters, where the high performance of the proposed methods relies on noise-

free DCE-MRI data.  

Chapter 5 presents a method for the automatic segmentation of enhancing lesions in 

DCE-MRI of the breast, which is considered an ‘intermediate level’ processing. The 

method is based on entropy-based binarization (described in Appendix A) and a seeded 

region growing (described in Appendix B) where the selection of seeds is performed 

automatically, based on a set of criteria. This method can be used as a tool for reducing 

the volume of data that needs to be interpreted by the radiologist or as a basis for 

automated classification of suspicious lesions. 

Chapters 3–5 describe the novel CAE system that was developed during this research. 

The methods that incorporate this system can be classified into three groups, ‘low-level’, 

‘intermediate-level’ and ‘high-level’ image analysis methods. Chapters 3–4 of the thesis 

describe ‘low level’ methods for improving or enhancing DCE-MR images, including 

image denoising and kinetic modelling.  

Chapter 6 describes a ‘high-level’ processing method that uses the concepts and 

methods that were previously described in this thesis. The chapter describes a selected 

set of features and a classifier for automatic classification of suspicious lesions in DCE-

MRI of the breast. Also, the chapter describes an evaluation of the classification of 

suspicious lesions in real data, using the selected features and classifier. 

Chapter 7 summarises the main points arising from this research and draws some 

conclusions from them. Also, it describes possible future directions in which this 

research may continue. 
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2. Background 

This research draws upon several fields, including: mathematics, image processing, 

computer vision, pattern recognition and biomedical engineering. In Chapter 1, breast 

MRI was introduced and its advantages and disadvantages relative to other imaging 

modalities were discussed. In this chapter, a general background in a variety of relevant 

topics is provided. The first part of the chapter describes the basic principles in MRI 

physics. It then describes the anatomy of the human breast and breast mammography. 

This material is required for understanding the material in the later chapters of this 

thesis. The last section of the chapter provides a basic background of statistical pattern 

recognition, including basic classifier types and methods for evaluating classification 

performance, which is needed for understanding the methods that are described in 

Chapter 6. 

2.1 The theory of MRI 

This section acquaints the reader with the underlying physics of MRI and of its clinical 

application, particularly to DCE MRI of the breast. This section provides the reader with 

basic knowledge of the imaging method (DCE-MRI) that is later used as the primary 

source of clinical data for this research. The majority of the material in this section is 

primarily based on (Warren and Coulthard, 2002, Haacke et al., 1999). 

2.1.1 Basic physics of MRI 

Subatomic particles, such as protons, have the quantum property of spin. Magnetic 

Resonance signals are a result of the interaction between a magnetic field and the spin 

angular momentum of atomic nuclei (Leggett, 2004). More specifically, the precession of 

the hydrogen protons yields changes in the flux in the nearby coils. These changes in 

flux are used to create an MR image. Hydrogen nuclei are most commonly used, mainly 

because they are more abundant in the human body than any other nucleus capable of 
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undergoing nuclear magnetic resonance (NMR) and thus give a denser signal for a given 

period of time.  

In the absence of a magnetic field, nuclear spins do not have any preferred direction of 

alignment. Each nucleus spins around an axis called the magnetic moment. Once placed 

in a strong magnetic field, B0, producing bulk (averaged) nuclear magnetization, M, the 

magnetic moments of the bulk magnetisation (i.e. the average magnetic moment) will 

tend to align with the direction of the magnetic field (Figure  2.1).  

The magnetization, M, has a naturally-preferred alignment in the direction of B0. Nuclei 

with such a property are called nuclear spins, where the Z axis denotes the initial 

alignment of the top. The bulk magnetisation of the protons is then tipped away from 

the external field direction to produce a magnetic field that yields changes in the flux in 

any nearby coil (Haacke et al., 1999). 

 

Figure  2.1:  Larmor precessing of a nuclear spin around an applied magnetic field, B0 

 

In NMR the precession frequency ω0 is called the Larmor frequency and is given by:  

  �� � � · 	�, ( 2.1) 
 

where γ is a scalar called the gyromagnetic ratio and is measured in radians per second 

per Tesla (unit of magnetic flux density). The values of γ are different for different 

nuclei. From equation (2.1) it can be seen that the precession frequency is directly 

proportional to the static field strength. A typical field strength used in clinical MRI is 

1.5 Tesla in which the Larmor frequency for hydrogen is 63.9 MHz. 

To measure the bulk magnetization, M has to be disturbed by an oscillating magnetic 

field applied at right angles to B0. The field has to be applied at precisely the Larmor 

frequency to produce the effect because resonant absorption of energy by the protons 
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due to an external oscillating magnetic field occurring exactly at the Larmor frequency. 

The oscillating field is usually referred to as the Radio Frequency (RF) magnetic pulse, 

because it is applied for only a few milliseconds. An RF pulse that rotates M through 90○ 

from its initial position aligned with Z is called a 90○ pulse. If the amplitude of the RF 

pulse is doubled or, alternatively, if it is applied for twice as long, then M is rotated by 

180○. The strength of the magnetic field, B1, of the RF pulse is typically in the order of 

10-5 B0. 

After the nuclear magnetization M is moved away from its initial alignment by an RF 

pulse, it will begin to realign itself as soon as the RF pulse is switched off. The z 

component of the magnetization Mz recovers exponentially with time constant T1, 

toward its equilibrium value M0, the value at which M is aligned with B0. The MR signal 

is produced by the transverse magnetisation of the precessing spins in the measured 

volume of the body. This signal decays in amplitude and is detected externally, often by 

the same coil that produces the RF pulse (Poole, 2007). T1 is called the longitudinal 

relaxation time or spin-lattice relaxation time. The actual meaning of T1 is that the 

difference between Mz and M0 is decreased by 63% of its value in each T1 period, 

provided that no additional RF pulses are applied. The relaxation process can be 

described as follows: 

  
��
� � 
� � �
��0� � 
�� · �� ��� , ( 2.2) 
 

where 
��
� is the longitudinal magnetisation (in the direction of B0) and M0 is its 

equilibrium value.   

In a similar way, the amount of any magnetization rotated into the transverse plane, 


��, declines during the recovery to equilibrium. As with longitudinal relaxation, the 

decay to the final value of 
�� � 0 is exponential. This process can be described as 

follows: 

  
���
� � 
���0� · �� ��� ,  ( 2.3) 
 

where Mxy(t) is the transverse component of the magnetisation and T2 is the time 

constant of the exponential decay of the transverse magnetisation. It is often called 

‘transverse relaxation time’ or the ‘spin-spin’ relaxation time. 
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�� is always less than or equal to ��. The meaning of �� is that 
�� decreases by 63% of 

its value in each �� period in the absence of any RF pulses. MR imaging has been 

developed to show the differences in these relaxation time constants. 

2.1.2 Encoding the MR signal 

The underlying principal in MR imaging is that the Larmor precession frequency is used 

to mark the position of the encoded volume. The precession frequency, ω0, of an NMR 

signal is directly proportional to the strength of the static magnetic field 	� (Equation 

2.1). A magnetic field gradient coil can change the strength of 	� as a function of the 

position within the scanner. Thus, the Larmor frequency varies along the direction of 

the gradient coil (Figure  2.2).  

Given that only one dimension can be encoded at a time, three separate gradient 

magnetic coils are used in an MRI scanner, ��, �� and ��, one for each axis. The imaging 

process therefore encodes each one of the directions sequentially by alternately turning 

on each one of the gradient fields. 

 

Figure  2.2: The magnetic fields in a single slice MR imaging 
A magnetic field gradient, �� , is applied at the same time of an 90° RF pulse. The frequency of 
the RF pulse, ��� , matches exactly the Larmor frequency, ��, at the position of the imaged slice.  

 

Once the gradient has been switched on, a 90° (flip angle) RF pulse is applied. A 90° RF 

pulse is considered to be the simplest and the signal resulting from it is called the free 

induction decay (FID). Nuclei with a Larmor frequency that matches the RF pulse 

frequency are then rotated through 90° and precess to yield an NMR signal. The position 

0f  

zG  

RFf  

Position 



 15 

 

 

of the selected slice is changed by changing the frequency of the RF pulse. This 

frequency depends on the position along the z axis: 

  � � � · �	�  �! · "�  ( 2.4) 
 

To excite a slice, a range of frequencies ω1< ω <ω2 have to be produced, corresponding 

to the range of frequencies inside the excited slice. To do that, an RF pulse is used. The 

RF pulse’s shape is selected to be a sinc shape that creates a ‘top hat’ shape response 

that is 1 inside the frequency interval of the slice, and 0 outside of this interval. This 

happens because the Fourier transform of the sinc function is a rectangular function. 

The slice thickness is typically a few millimetres and is controlled by the frequency 

spread contained within the 90○ RF pulse. 

To spatially encode the NMR signal, a frequency-encoding gradient is switched on at the 

moment the slice selection gradient has been switched off. Protons at different positions 

along the frequency encoding direction will therefore precess at different frequencies 

and will generate different frequency signals in the receiving coil. To separate the 

signals and create a readable image, an inverse Fourier transform is then performed. 

The raw data, received by the RF receiver coil of a MR scan is known as k-space. The 

inverse 2D Fourier transform of the k-space is the MR image that will be interpreted by 

a clinician. 

2.1.3 Pulse sequences 

Various pulse sequences are used in MRI. Two of the most common ones are the spin 

echo (SE) and gradient echo (GE) pulse sequences. The GE is especially important for 

dynamic contrast-enhanced (DCE) MRI acquisition. 

In the case of an SE sequence, a 90○ RF pulse is applied. After half of the echo time (TE) 

has passed, a 180○ RF pulse is applied, which re-phases the precessing spins at time TE. 

This pulse compensates for signal loss caused by inhomogeneities in the magnetic field 

and maximises the signal emission. The SE sequence will result at TE. The whole 

sequence is repeated with a repetition time (TR), depending on the desired image (i.e. 

T1-weighted, T2-weighted or proton-weighted).  

In the case of GE sequences the echo is produced by reversing the gradient field, which 

causes a re-phased RF echo (i.e. gradient echo). In addition, the initial 90○ RF pulse may 
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be substituted with a pulse with a (RF pulse) flip angle smaller than 90○, which does not 

use the entire longitudinal magnetisation. This allows faster image acquisition at the 

expense of decreased signal intensity. GE sequences suffer from higher susceptibility to 

image artefacts than SE sequences owing to a greater sensitivity to field 

inhomogeneities (Fischer and Brinck, 2004).     

2.1.4 2D and 3D imaging 

In 2D MR imaging, a single slice is excited at a time. The slices are adjacent and, ideally, 

have no gaps between them. The field of view (FOV) of each slice is rectangular and 

approximately 2–3 mm in thickness. In 3D MR imaging, the entire breast is excited as a 

volume. The TR values for 2D imaging are usually between 200 and 300 ms. The ideal 

flip angle is between 70○ and 90○.  

The 3D acquisition technique allows thin slices to be acquired with no gaps (typically 2 

mm thick). Another advantage of the 3D acquisition technique is a shorter acquisition 

time. This is the result of the shorter repetition time (TR) that is usually in the order of 

10 ms. The flip angle for 3D imaging is typically 25○. However, 3D MRI acquisition 

suffers from a higher susceptibility to artefacts and requires a higher dose of contrast 

agent (see Section  2.1.8 for further details about contrast agents) (Fischer and Brinck, 

2004).    

2.1.5 Tissue contrast in MRI 

Although most of the tissues in the human body have a similar water or proton density, 

in MRI the NMR signal strength is greatly influenced by the T1 and T2 relaxation times. 

This, in turn, influences the intensity of the different tissues in the displayed image. 

Disease can also considerably alter the signal strength of a tissue.   

The longest T1 relaxation times usually appear in body fluids. Body fluids also have long 

T2 values. However, relaxation times are greatly decreased by the presence of blood. In 

practice, the differences between T1 and T2 are used to produce T1 and T2-weighted 

images (Warren and Coulthard, 2002), as demonstrated in Table  2.1. By altering the 

acquisition parameters, different tissue types can be highlighted in the image. 
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Table  2.1: Proton T1 relaxation times for some types of tissue at 0.5, 1.0 and 1.5 T 
T2 does not vary greatly with Larmor frequency (Warren and Coulthard, 2002). 

Tissue #$�%. '�# ms #$�$. %�# ms #$�$. '�# ms #( ms 

Grey matter - 1040 1140 100 
White matter 450 660 720 90 
Muscle 560 - 1160 35 
Cerebral Spinal Fluid (CSF) 4000 4000 4000 2000 
Liver 360 - 720 60 

 

2.1.6 Bias Field 

The bias field is a phenomenon that causes the same type tissue in different locations in 

the MR image to have different levels of intensity. It is identified as a low spatial 

frequency signal that increases the average intensity in some parts of the image and 

reduces it in others. The bias field originates in non-uniformity in the 	� excitation field 

owing to non-uniformity in the interaction between the RF field and the tissue of the 

patient being imaged. This non-uniformity results in different amounts of signal being 

received from tissue in different spatial locations (Hayton, 1998).  

2.1.7 Fat and Silicone suppression  

Fat usually has high intensity on T1- and T2-weighted images unless suppressed. Bright 

fat can sometimes obscure adjacent tissue and can introduce artefacts. Two main 

methods are used to suppress the fat signal: 

1. The short Tau Inversion Recovery (STIR) sequence 

2. Chemical shift saturation 

In the first method, a 180° RF pulse is used to invert the spin alignment from +, to +�. 

No signal is produced by this process because no magnetization is introduced in the 

transverse plane. At a time (TI) later, a 90° RF pulse, or a (90°, 180°� RF pulse pair, is 

used to tip the magnetization into the transverse plane to generate a gradient-echo or 

spin-echo signal, respectively. The amount of z-magnetization (
!) presented 

immediately before the 90° pulse determines the signal obtained. The �� of fat is shorter 

than most other tissues. Therefore, TI is chosen such that the 90° RF pulse is applied at 

exactly the time that the fat 
! has recovered to zero (Figure  2.3). Note that other 

tissues with longer �� values will have a negative 
! value at that point. However, in the 

resulting image, only the magnitude of 
! is important and the sign is ignored. 
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In the second method, the fat signal is suppressed

Larmor frequency of fat protons compared to water protons. The difference in

resonant frequency ω0 is called a chemical shift, 

magnetic environment of the hydrogen protons. It is therefore possible to apply a

RF pulse tuned to the fat molecules, but not to the water molecules, provided that the 

field gradients have been switched off. The z

zero after the pulse, thus it can be followed by a conventional gradient or spin echo 

sequence, which will yield a very low fat signal

free’ noisy image. 

Figure  2.3:  STIR sequence fat suppression
TI is chosen such that the magnetization in the Z direction is zero for fat, but not zero for most 
other tissues. Thus fat will yield no signal in the image 
Coulthard, 2002)).  

 

When imaging breast implants, the silicone filling material produces 

can mask enhancing tissue. 

from water and fat protons, a selective saturation process can be applied

chemical shift suppression of fat

2.1.8 Contrast agents and dynamic studies in Breast MRI
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:  STIR sequence fat suppression 
TI is chosen such that the magnetization in the Z direction is zero for fat, but not zero for most 
other tissues. Thus fat will yield no signal in the image  (reproduced from 

When imaging breast implants, the silicone filling material produces a 

can mask enhancing tissue. However, because silicone protons are chemically shifted 

from water and fat protons, a selective saturation process can be applied

of fat.  

Contrast agents and dynamic studies in Breast MRI 

uses �� and ��-weighted images pre- and post
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Larmor frequency of fat protons compared to water protons. The difference in the 

it arises from the different 
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(non-contrast) images. Malignant lesions, as well as some benign conditions, show 

contrast enhancement after the injection of a contrast agent. The contrast enhancement 

is primarily due to angiogenesis (growth of new blood vessels) around the malignant 

tissue, which accelerates the blood inflow, and hence the flow of contrast agent around 

the tissue. Also, malignancy-related angiogenesis creates vessels with ‘leaky endothelial 

linings’ (Morris and Liberman, 2005), which increase the flow of contrast agent in the 

extracellular compartment at the site of the tumor. This allows the creation of contrast-

enhanced MR images that are created by subtracting the pre-contrast from each post-

contrast image and thereby providing a better contrast for malignant lesions.  

Most malignant tissues enhance in contrast-enhanced MRI (i.e. 1 pre-contrast, 1 post-

contrast), which makes it sensitive to breast cancer (Morris and Liberman, 2005, 

Warren and Coulthard, 2002). However, it can be difficult to distinguish benign from 

malignant disease, because some benign conditions also exhibit contrast enhancement. 

This limitation can be diminished by using dynamic contrast-enhanced (DCE) MRI. DCE 

MRI involves taking a series of sequential ��-weighted images every few seconds, or 

tens of seconds (typically 60–90), following a bolus injection of Gd-DTPA (gadolinium-

diethylene-triamine pentaacetic acid; gadopentetate dimeglumine). The result of the 

acquisition is a series of volumes resulting from the �� acquisitions at the different time 

points, as demonstrated in Figure  1.2. In this case, both the rate of signal change in 

addition to the characteristic shape of the signal versus time is used to interpret the 

image and identify suspicious lesions (Figure  1.1). 

2.1.9 The relationship between signal enhancement and contrast agent perfusion 

The characteristic behaviour of enhancement curves in DCE-MRI is related to excessive 

angiogenesis, the growth of new blood vessels, around many types of malignant tissues. 

Angiogenesis is a natural process, occurring both in healthy and diseased tissues in the 

body. In some malignant conditions, the body loses control of the angiogenesis process 

and excessive angiogenesis develops. Tumours cannot enlarge beyond 1 to 2 mm unless 

they are vascularised; thus, angiogenesis is a requisite for continued tumour growth, in 

addition to metastasis (secondary growth of malignant tissues around the body). Hence, 

angiogenesis is a necessary biologic condition of malignancy (and some benign disease 

as well) (Morris and Liberman, 2005). 
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In DCE MRI, angiogenesis facilitates contrast enhancement in two ways, increased 

vascularity leads to an increased contrast agent inflow, and increased vessel 

permeability leads to an accelerated contrast extravasation at the tumour site (Morris 

and Liberman, 2005), which enhances the exchange of the contrast agent between the 

tissue compartments. The molecular weight of the Gd-DTPA contrast agent allows it to 

diffuse outside the blood vessels into the extra-cellular compartment, but not to 

penetrate the cell membrane. Figure  2.4 shows the major tissue compartments involved 

in the distribution of contrast agent (represented by stars). 

2.1.10 Interpreting DCE-MR images 

Contrast enhancement in DCE-MRI is related both to malignant and benign disease. 

However, contrast enhancement is also related to some healthy tissue such as the liver. 

To properly interpret DCE-MRI and to be able differentiate between malignant and 

benign lesions, a deep knowledge of breast and human anatomy is required. This 

knowledge provides contextual information that can easily be used by humans, but, to 

date, can hardly be automated for use in CAE tools. 

 

Figure  2.4: Major compartments and functional variables involved in the distribution of a contrast agent 

2.2 Breast MRI 

This section focuses on breast MRI and its interpretation. It describes the anatomy of 

the human breast, the types of breast cancer and their characteristics of appearance in 

breast MRI.  
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2.2.1 Anatomy of the human breast 

The human breast is actually a skin gland, enveloped in a fibrous fascia (Morris and 

Liberman, 2005). The breast content is bounded by the skin on the outside and by the 

pectoralis major muscle on the back side (which marks the beginning of the chest wall). 

There are many layers between the breast and the pectoralis major muscle. However, 

the breast is not completely separated from the pectoralis major muscle and there are 

lymphatic and blood vessels that penetrate the breast. Breast tissue is divided into 

parenchyma (glandular tissue) and stroma (connective/fibrous tissue). The 

parenchyma consists of 15 to 20 lobes (milk glands) that converge toward the nipple. 

Ducts from the lobes converge into 6 to 10 major ducts that hold a ductal ampulla, 

beneath the nipple and connect to the outside through the nipple (Figure  2.5). The lobes 

are arranged in segments of glandular tissue that are connected by stromal tissue 

(Morris and Liberman, 2005). A segment of lobular tissue, connected to a duct, is called 

Terminal Duct Lobular Units or TDLU (Figure  2.5). The stromal tissue is mainly fatty 

tissue and ligaments that surround the lobes and ducts in the breast. 

Breast cancer can develop in each of the breast tissue types. Different tissue types may 

develop different types of cancer that may have different characteristics in DCE-MR 

images, thus making the description of malignant lesions more complicated. 

2.2.2  Types of breast cancer 

Breast cancer is a heterogeneous disease which has several subtypes (Claus et al., 

1993).  In general, breast cancer can be divided into two types:  

1. Carcinoma in situ – when the malignant mass stays confined inside the tissue in 

which it has developed 

2. Invasive carcinoma – when the malignant mass invades surrounding tissue. 

Several histological subtypes of breast cancer are known.  Of these, the most common 

ones are (Claus et al., 1993): 

1. Invasive ductal carcinoma (IDC). Starts in a duct, then breaks through the 

basement membrane (i.e. the wall of the duct) and invades the stromal tissue.  

2. Ductal carcinoma in situ (DCIS). Cancerous cells develop inside a duct, but do not 

penetrate the basement membrane. 
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3. Invasive lobular carcinoma (ILC). Starts in a lobular gland and invades the 

surrounding tissue. 

4. Lobular carcinoma in situ (LCIS). Also called lobular neoplasia, begins in a 

lobular gland, but does not penetrate the gland’s wall.  

5. Medullary carcinoma.  This is an invasive breast cancer that has a well-defined 

boundary between the cancerous tissue and the surrounding tissue. 

Some of the less common breast cancer types include the colloid carcinoma, tubular 

carcinoma and adenoid cystic carcinoma.  

 

 

Figure  2.5: The anatomy of human breast  
Adapted with changes from (Hayton, 1998). 

 

In DCE-MRI, ductal carcinoma tends to show a linear enhancement similar to that of a 

blood vessel. Mass enhancement, on the other hand, is usually easier to spot and analyse 

if the lesion size is sufficient. Improving the specificity of DCE-MRI may thus improve 
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both detection and categorisation of breast cancer and may help differentiate between 

enhancing normal tissue (e.g. blood vessels) and enhancing malignant tissue (e.g. DCIS). 

2.2.3 Breast MRI mammography 

The prevention of breast cancer is still impossible and thus the main treatment strategy 

relies on early detection, using mammography. Owing to its relatively high cost, DCE-

MRI of the breast is usually reserved for cases with high probability or known 

malignancy and for cases where other imaging techniques (e.g. ultrasound, 

mammography) cannot provide a definitive answer. In most cases, X-ray mammography 

is performed first and only high risk patients are referred to DCE-MRI (Morris and 

Liberman, 2005). Other imaging methods include Computed Tomography (CT), Single 

Photon Emission Tomography (SPECT), Positron Emission Tomography (PET) and 

Tomosynthesis. These include a relatively high level of exposure to ionizing radiation, 

both on the patient’s side and on the technologist’s side. In SPECT and PET, a radio-

isotope is injected into the patient blood stream and the photons that are emitted from 

the patient’s body, during the radioactive decay process, are then received by a detector 

to create the image. 

Characteristic appearance of benign and malignant breast diseases in MR images 

In ��-weighted images, both normal breast tissue and fibrous tissue (i.e. connective 

tissue that is not muscles) show a low signal intensity and fat shows an intermediate to 

high signal intensity. Most benign and malignant lesions also show a low signal intensity 

on ��-weighted sequences and cannot be differentiated from normal breast tissue on 

non-enhanced ��-weighted images. In ��-weighted images, fat is of an intermediate 

signal intensity. The signal intensity of the breast tissue depends on the water content, 

varying from a low signal intensity in fibrosis to a high or very high signal intensity in 

the majority of cysts. In contrast-enhanced images, normal breast tissue demonstrates 

only a slight increase in signal intensity, with some exceptions (such as blood vessels). 

Malignant lesions enhance, but there are also benign lesions that may enhance in a 

similar fashion. 

Patients with benign breast changes may show delayed and diffuse patchy enhancement 

in 25–30% of cases (Figure  2.6). However, in 5–10% of cases, there may be focal 

enhancement, which may be rapid and simulate malignancy (Figure  2.7). 
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Although tumours can be identified within fatty tissue, the differentiation of benign and 

malignant tumours cannot be undertaken with certainty using signal characteristics on 

��-weighted or ��-weighted sequences, except in the case of a cyst. The use of 

intravenous gadolinium has increased both the sensitivity and specificity of breast MRI, 

because most malignant tumours enhance markedly (Warren and Coulthard, 2002). 

Following the injection of a contrast agent, most cancers show an early steep rise in 

enhancement within the first 5 minutes, typically by 70–100% (a threshold that gives 

high sensitivity, but low specificity). If a lesion enhances by less than 60% or does not 

enhance at all, it is most likely to be benign, although up to 10% of cancers will also 

enhance slowly (Warren and Coulthard, 2002). 

Time/intensity enhancement curves have been studied by many, including (Hayton et 

al., 1997, Furman-Haran and Degani, 2002), in an attempt to improve specificity without 

reducing sensitivity. The shape of the intensity curve was assessed and three types were 

defined.  All three curves demonstrate a rapid increase in signal intensity in the early 

post-contrast phase. The difference is in the intermediate and late post-contrast phase 

(Figure  1.1). The prediction accuracy of the time/intensity curves is demonstrated in 

Table  2.2. 

 

Table  2.2: Percent of benign and malignant cases for each type of curve 
Curves are shown in Figure  1.1. Figures in the table are taken from (Morris and Liberman, 
2005, Warren and Coulthard, 2002) 

Curve Type % of benign % of malignant 

Type I (a & b) 84% 9% 

Type II 11.5% 34% 

Type III 5.5% 57% 

 

The pattern of contrast enhancement may also be helpful in differentiating benign from 

malignant lesions, because malignant lesions show a peripheral enhancement with 

centripetal progression, whereas enhancing benign lesions may either show a 

peripheral enhancement with no progression or may enhance centrally rather than 

peripherally. 
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Figure  2.6:  The enhancement over time of benign breast tissue (25–30% of the cases) 
The vertical axis represents signal enhancement while the horizontal axis represents time. 
Reproduced from (Warren and Coulthard, 2002). 

 

 

Figure  2.7: The enhancement over time of benign breast tissue which mimics malignancy (5–10% percent 
of the cases) 
The vertical axis represents signal enhancement while the horizontal axis represents time. 
Reproduced from (Warren and Coulthard, 2002).  

 

Collectively, the amount and speed of the enhancement and the morphological 

appearances of the lesion have to be considered. Positive enhancement will occur with 

several benign breast diseases. 
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Architectural features of benign and malignant lesions 

As the use of DCE MRI becomes more common, standardisation of the terminology has 

become necessary. The need for a lexicon becomes apparent when interpreting 

contrast-enhanced breast MRI, because there are many different types of enhancements 

seen in addition to different types of tissue architectures. To reduce the subjectivity of 

interpretation an architectural lexicon, describing both the morphology and the kinetic 

behaviour of lesions has been developed. 

The American College of Radiologists (ACR) BI-RADSTM (Breast Imaging Reporting Data 

System) MRI lexicon, first published in 2003, provides a terminology for describing both 

the enhancement behaviour and the morphology of a lesion (see Appendix D). The ACR 

lexicon was introduced to help improve the specificity of breast MRI by providing 

standardised and universally-acceptable terminology for the reporting of breast MRI 

findings. Morris and Liberman (Morris and Liberman, 2005) present an architectural 

features lexicon that was assembled over a few years by an international working group 

consisting of breast MRI experts from around the world and is also based on the BI-

RADSTM lexicon. The lexicon describes a list of terms that are usually related to 

suspicious tissues in breast MRI. By using the lexicon, a common language for 

describing suspicious tissues can be created that will lead, in turn, to a better diagnosis 

and cooperation between radiologists. The lexicon that Morris and Liberman present 

describes the following terms. 

Description of Terms 

Focus/Mass/Stippled - A focus is a single tiny punctate enhancement that is non-specific 

and too small to be characterized. An enhancing lesion on MRI can be described as a 

mass if it displaces tissue and has space-occupying properties. If there are multiple foci 

in the breast, the term stippled can be applied. 

 

Shape/Margin - Mass shape can be described as round, oval, lobular or irregular. 

Margins of masses can be described as smooth, irregular and spiculated. 

Spiculated and irregular masses are suspicious for carcinoma; whereas, a smooth 

margin is more suggestive of a benign lesion. 
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In general, margin and shape analysis should be performed on the first post-contrast 

image to avoid washout and progressive enhancement of the surrounding breast tissue. 

 

Internal enhancement – Internal enhancement of lesions can be divided into 

homogenous and heterogeneous. Homogenous enhancement is uniform. Heterogeneous 

enhancement is non-uniform, with areas of variable signal intensity. Masses may 

display rim enhancement, a particularly suspicious finding for malignancy. Other 

suspicious findings include enhancing septations or central enhancement, though these 

signs occur less commonly. 

Homogeneous enhancement is suggestive of a benign process. Other benign lesions 

include an inflammatory cyst that enhances peripherally and benign fat necrosis that 

can exhibit rim enhancement with a central low signal indicating fatty content. 

 

Nonmass enhancement – If the enhancement is neither a focus nor a mass, then it is 

classified as non-mass-like enhancement. A non-mass enhancement is classified 

according to the distribution of the enhancement and can be described as linear-ductal, 

linear-nonspecific, regional, segmental or diffuse. Linear enhancement is usually related 

to the ductal system. Ductal enhancement corresponds to one or more ducts in 

orientation and is suspicious for DCIS (ductal carcinoma in situ). Ductal non-specific will 

not follow this pattern and is less suspicious for malignancy. 

Segmental refers to an enhancement that is triangular in shape with the apex at the 

nipple and is suspicious for DCIS with a single branching duct system. 

Regional enhancement is an enhancement that does not correspond to a single duct 

system and can be further described as smooth or linear smooth (suggestive of benign) 

or irregular, which is a non-smooth enhancement, continuous or discontinuous 

(suspicious for malignancy, especially if clumped).   

Regional, segmental or diffuse enhancement can be further described as homogeneous, 

heterogeneous-stippled/punctate (scattered multiple foci, 1–2 mm), clumped, septal or 

non-specific. These are usually demonstrated by benign disease.  
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Value of  T� 

By incorporating information from the ��-weighted image, the rate of false positive 

results may be decreased. Cysts, lymph nodes and certain types of myxomatous (benign 

tumour) are high in signal on the ��-weighted images. Some malignant disease may also 

enhance on the ��-weighted images. However, if the lesion is high in signal on the ��-

weighted imaging, it is more likely to be benign than malignant (Morris and Liberman, 

2005).  

Kinetics 

Enhancement kinetics can be particularly helpful if the lesion has benign morphometric 

characteristics. In the case of a well-defined mass that could quite possibly be benign, 

enhancement kinetic data may help one decide whether a biopsy is required or whether 

it is safe to recommend a follow-up imaging of the lesion. The contrast enhancement of 

a lesion is related to the amount of contrast agent in the tissue. Pharmacokinetic models 

describe the contrast enhancement in the tissue using just a few free parameters. Such a 

model may give an indication of the behaviour of the contrast agent in the tissue and 

thus indicate if the tissue is benign or malignant (Furman-Haran and Degani, 2002). 

Automatic classification of suspicious lesions in the breast 

Recent research implies that CAE can, indeed, improve the interpretation of DCE-MRI of 

the breast. The techniques that are used to classify suspicious lesions in the breast are 

usually based on statistical and mathematical tools from the field of statistical pattern 

recognition and are aimed at objectively describing the difference between malignant 

and benign lesions, based on predefined features. These features are commonly derived 

from the morphological and kinetic features that are in the ACR-BIRADS lexicon (see 

Appendix C). 

2.3 Statistical Pattern Recognition Overview 

This section provides an overview of statistical pattern recognition. The primary goal of 

pattern recognition is the classification of data samples in a supervised or unsupervised 

manner. Among the different pattern recognition frameworks, statistical pattern 

recognition has been the one studied the most (Jain et al., 2000). The process of pattern 

classification consists of the following stages: definition of classes, pattern 
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representation, feature extraction and selection, classifier design and training, 

performance evaluation and possibly various pre- and post-processing stages (Jain et 

al., 2000). Classification problems are also challenging, because the performance of the 

final classification may only be as good as the stage with the lowest performance in the 

system. Thus, if the representation of the classes, the selected features or the design of 

the classifier is suboptimal, so will be the performance of the resulting classification 

system. 

There are four principal approaches to pattern recognition (Jain et al., 2000): 

1. Template matching. Using a template or a prototype of the pattern that is to be 

recognised. Each new pattern is then matched against the stored template using 

some similarity measure, while accounting for a degree of variability. 

2. Statistical approach. In this approach, each pattern is represented as a point in a 

multi-dimensional feature space. The goal is to select a set of features that will 

provide sufficient separability (i.e. a simple discrimination boundary) between 

the different classes. Given a set of samples from each class (training set) 

decision boundaries are then constructed by a classifier in the selected feature 

space. These decision boundaries will determine the class of a new unseen 

pattern. 

3. Syntactic approach. The syntactic approach is a hierarchical approach that is 

aimed at problems that include complex patterns. In this approach, each pattern 

is viewed as consisting of simpler sub-patterns in a hierarchical fashion. The 

lowest level patterns (i.e. the simplest sub-patterns) are called primitives and the 

complex patterns are then represented in terms of interrelationships between 

the primitives. 

4. Neural networks. This is a massively-parallel computing system consisting of 

many simple processing units (perceptrons) with many interconnections. This 

method is capable of solving complex nonlinear discrimination problems owing 

to the flexibility that can be implicitly configured into the network. 

Of these, the statistical pattern recognition is the most studied (Jain et al., 2000) and is 

often used in medical image analysis. Also, it provides a large variety of classification 

tools (i.e. classifier types) that can be selected to fit the type of problem and level of 

complication that is required for the solution (e.g. linear or non-linear). 
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2.3.1 Statistical pattern recognition 

In statistical pattern recognition, a pattern is represented by a feature vector. The 

decision rules between the different classes are designed using concepts from a well-

known statistical decision theory (Jain et al., 2000). When the class conditional densities 

are known, a Bayes decision rule (i.e. a decision rule that minimises a posterior 

expected value) can be applied for classifying the patterns. When the conditional 

density is unknown, however, a supervised or unsupervised classification method can 

be applied. In the supervised classification, the classification process consists of two 

main stages, training and testing (classification). In the training stage, a set of labelled 

patterns from each class is given to the classifier (i.e. the discrimination function) and 

the classifier is then adjusted to yield a different, but consistent, value for each class (e.g. 

0 for class A and 1 for class B). It is then assumed that when a new pattern is presented 

to the classifier (from the testing set) the response value of the classifier will indicate to 

which class the new pattern belongs.  

In the unsupervised classification, no training set is used. Instead, it is assumed that the 

structure of the classes will be automatically described by the classifier. In some cases, it 

is even assumed that the number of classes is unknown. In this research, however, only 

the supervised classification has been used, because both the number and description of 

the classes is known (benign vs. malignant). 

2.3.2 The ‘curse of dimensionality’/’Peaking phenomenon’ 

The quality of the classification strongly depends on the choice of features and type of 

classifier. A ‘good’ feature space is one that clearly separates classes. In other words, 

patterns from different classes in the feature space can be discriminated using a simple 

discrimination function (e.g. linear). The selected classifier needs to fit well to the 

training data (i.e. produce good separation between the classes) while, on the other 

hand, being as robust as possible to unseen data (generalisability). However, the 

performance of the classifier also depends on the relationship between the number of 

features and the size of the training set. In the naïve lookup table approach (i.e. 

partitioning the space into cells and associating each cell with a class), the size of the 

training set would be an exponential function of the feature space dimension (Jain et al., 

2000). In less naïve approaches, the ratio may be smaller and less training samples are 
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required. Nevertheless, the number of training samples should always be much higher 

than the dimension of the feature space. This phenomenon is known as the ‘curse of 

dimensionality’. A rule of thumb is that the number of training samples per class should 

be at least ten times the number of features (Jain et al., 2000). If the number of features 

is increased beyond this point, the performance of the classifier will usually degrade. 

This behaviour is known as the ‘peaking phenomena’. The reason for this behaviour is 

that using a training set that is too small (relative to the number of features), yields an 

‘over-fitted’ classifier that will not generalise to unforeseen data samples and thus have 

a low performance on a testing set. 

The curse of dimensionality thus implies that the elimination of redundant information 

from the feature space (e.g. by reducing its dimensionality) will lead to a better 

classification quality (i.e. more robust), which motivated the development of 

dimensionality reduction techniques, such as the Principal Component Analysis (Webb, 

2003, Moore, 1981, Jain et al., 2000) and the Independent Component Analysis (Webb, 

2003, Jain et al., 2000, Comon, 1994). Some classifiers incorporate dimensionality 

reduction as an integral part, such as the Eigen-faces (Turk and Pentland, 1991) and the 

Anti-faces (Keren et al., 2000, Keren et al., 2001) classifiers. 

2.3.3 Classifiers 

Once a proper representation in a feature space, has been chosen for the patterns, a 

classifier should be trained and tested on the data. The role of the classifier is to 

implement a decision rule that will indicate to which class a given pattern belongs. In 

other words, it operates a discriminant function on the data. In the two-class case, the 

classifier creates a decision boundary in the feature space on which the discriminant 

function yields a certain value that is a pre-determined threshold. Patterns for which 

the discriminant function yields a value higher than this threshold are classified as class 

A, while the rest are classified as class B. 

A brief overview of several types of classifiers that were used in this research follows. 

The review is based on (Webb, 2003). 
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Linear discrimination classifiers 

Let us assume a set of training patterns /�, … , /1234, where each pattern is assigned to 

one of two classes, 5� or 5�. We now seek a vector 6234 and a threshold ��23 such 

that 

67/8  �� 9 0 : /8 ; 5� 

and 

67/8  �� < 0 : /8 ; 5� 

Ideally, we would like 67/  �� to be positive for all the patterns of class 5� and 

negative for the patterns of class 5� (Webb, 2003). In practice, it is usually not the case 

and thus we seek to minimise the number of misclassifications. To do that, additional 

criteria should be employed. Some of the criteria used for linear discrimination are the 

Perceptron criterion, Fisher’s criterion, Baysian criterion and the least mean squared 

error. 

Logistic discrimination 

Logistic discrimination, or logistic regression, is based on the assumption that the 

difference between the logarithms of the density functions of the classes is a linear 

function of the variables x: 

log @A�/|5��A�/|5��C � D�  E7/ 

This assumption is satisfied by a variety of distributions and has been found to be useful 

in a wide range of real datasets that depart from normality (Webb, 2003). The 

discrimination rule of logistic discrimination is based on the ratio between the 

probabilities and is given by:  

A�5�|/�A�5�|/� F9 1 G / ; 5�< 1 G / ; 5� H 
Support vector machines 

Support vector machines (SVMs), originally proposed by Vapnik (Cortes and Vapnik, 

1995), construct a maximal margin separating hyper plane in the feature space to create 

a ‘best’ separation between the classes (Figure  2.8). The discriminant function that the 
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SVM constructs yields a corresponding label with value of +1 on one class and a label 

value of -1 on the other class. The SVM can be either linear or nonlinear. In the 

nonlinear case, the boundary between the classes will not be a plane. 

In the linear case, the discriminant function of the SVM is given by: 

I�/� � 67/  �� 

with the decision rule: 

67/8  �� F9 0 G /8 ; 5� 6J
K LMNN�OAMPQJPI RSTU� V8 �  1< 0 G /8 ; 5� 6J
K LMNN�OAMPQJPI RSTU� V8 � �1H 
In the nonlinear case, a nonlinear kernel function, W�X�, is embedded into the 

discriminant function. The discriminant function then becomes: 

I�/� � 67W�X�  �� 

which allows a more complicated decision boundary between the classes. Some of the 

commonly used kernels for SVM are Polynomial, Gaussian and Sigmoid. 

 

     

Figure  2.8: Two linearly separable sets of data with a separating hyperplane 
The separating hyperplane on the left (marked with S) defines a maximum distance, d, between 
the margins (marked with thin lines). The patterns of each class that are on the margins are 
called ‘support vectors’. 

 

2.3.4 Evaluating classification performance 

In real world classification systems, the classification error rate, YZ , is the ultimate 

measure of the performance of a classifier (Jain et al., 2000). The error rate of a 

classifier is estimated from the available sample patterns split into a training set and a 

test set. The classifier is first trained on the training set and then its performance is 

tested on the test set. The training set must be sufficiently large to avoid the curse of 

S 
S 

d 
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dimensionality and to increase the robustness of the classifier, while the test set should 

be as large as possible to increase the confidence of the error rate estimation. It is also 

important that the training set and the test set be independent to avoid bias. 

Given a set of classification results, let t be the number of misclassifications out of n 

samples in the test set. It can be shown that the probability density function of t has a 

binomial distribution and the maximum likelihood estimates, YZ[ , of YZ is given by 

YZ[ � 
/P , with ]^YZ[ _ � YZ and RSN^YZ[ _ � YZ�1 � YZ�/P. Given that YZ[  is a random 

variable, a confidence interval can be associated with it. This confidence interval shrinks 

as the number of samples, n, increases (Jain et al., 2000). 

The Receiver Operating Characteristic (ROC) curve summarises the performance of a 

two-class discrimination rule, over a range of classification thresholds (Webb, 2003). 

The ROC curve is the plot of true positive (i.e. the proportion of patterns from class 5� 

that were classified correctly) against the false positive (i.e. the proportion of patterns 

from class 5� that were classified as 5�) by changing the decision rule threshold. In 

practice, the real ROC curve is unknown and is estimated by a trained classifier using a 

test set.  

When measuring the performance of a classifier, often a single number is desired to 

represent its performance to simplify the comparison between the different classifiers. 

The area under the ROC curve (AUC) provides a single value, based on the ROC curve 

that indicates the potential performance of the classifier (Webb, 2003). A value of 1 

means, that given the right threshold, the classifier will perfectly discriminate between 

the two classes. A value close to 0.5, on the other hand, means that for any threshold, the 

classifier will not be able to discriminate between patterns of the different classes with 

a high probability (i.e. larger than 0.5). The AUC measure has a few more important 

features. One is that it does not make a misclassification-cost assumption. When 

measuring the error rate YZ , we implicitly assume that the cost of misclassification is 

equal for false positive and false negative. In many cases, we do not have enough 

information to associate different costs with the different types of misclassification. The 

AUC measure, however, is free from this assumption. Another important feature of the 

AUC is that it is independent of prior knowledge about the distribution of samples. Thus, 

the AUC will be the same whether we train the classifier under the assumption the 



 35 

 

 

population distribution between the different classes is 50% in each class or something 

else. 

2.4 Summary and conclusions 

This chapter has introduced the basic principles behind MRI in general and DCE-MRI 

specifically. It has also described the basic physiology of breast cancer and the anatomy 

of the human breast. The last section of the chapter has given an overview of statistical 

pattern recognition, including basic classifier types and methods for evaluating 

classification performance that will be used later, in Chapter 6. The next chapter of the 

thesis will discuss models of contrast enhancement for DCE-MRI, which are derived 

from the behaviour of the contrast agent in the human body after it is injected into the 

patient’s bloodstream. In particular, a new model of contrast enhancement will be 

described and compared with the existing pharmacokinetic models of DCE-MRI. 

MRI currently shows the most promise for the detection of breast cancer and provides a 

good compromise between 3D volume coverage, image acquisition time, spatial 

resolution and temporal sampling (Heiberg et al., 1996). However, although sensitivity 

is high, specificity of MRI is still low (Morris and Liberman, 2005, Warren and 

Coulthard, 2002) and the resulting images often suffer from low SNR and bias field 

effects (Hayton, 1998). 
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3. Parametric models of contrast 

enhancement 

As discussed in Chapters 1 and 2, the amount of data that needs to be interpreted in 

DCE-MRI is often huge, and is likely to increase in the future. Thus, radiologists can be 

overwhelmed by the amount of data and the increasing work load. Parametric models of 

enhancement provide ways to visualise the data more efficiently, decrease the size of 

the data and permit the development of kinetic features for the automated classification 

of breast lesions (the subject of Chapter 6).  

Existing approaches vary between using the raw data, its derived statistics and a range 

or empiric kinetic and pharmacokinetic models. This chapter introduces the reader to 

the motivation and types of parametric models in DCE-MRI. It reviews existing models 

of enhancement and presents a novel parametric model of enhancement for DCE-MRI of 

the breast. Also, it presents an empirical evaluation of the goodness-of-fit of four 

parametric models of contrast enhancement for DCE-MRI of the breast: the Tofts (Tofts 

and Kermode, 1991), Brix (Brix et al., 1991), and Hayton (Hayton et al., 1997) 

pharmacokinetic models, and the proposed empiric model. Each of these models has 

three free parameters. The aim of this work was to analyse the behaviour of each model 

under different optimization conditions to determine which one had the best 

performance for each given optimisation system. The core material of this chapter was 

published in (Gal et al., 2007b). 

3.1 Introduction 

Parametric models of contrast enhancement reduce the dimensionality of DCE-MRI by 

transforming a dataset of typically 5-9 time points (i.e. volumes) to two or three 

parameters. This conversion helps standardise the size of the data (to have a constant 

size, instead of a varying number of volumes) and makes the data easier to visualise (by 
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using the parameter values from the fitted model) (Mehnert et al., 2005, Vidholm et al., 

2007). Also, computer-assisted evaluation often derives information from such models 

to segment or classify suspicious lesions.   

In most protocols used with DCE breast MRI, the injection is applied as a bolus (i.e. 

rapidly injected intravenous injection). Variations in injection time, in addition to the 

lag times between the injection and the imaging need to be considered when analysing 

the shape of the enhancement curves. Contrast enhancement patterns help to 

differentiate the benign from the malignant lesions in DCE-MRI of the breast (Furman-

Haran and Degani, 2002). These are particularly helpful when the morphometric 

features of a lesion make the differentiation, and thus the indication if the tissue is 

benign or malignant, difficult. The behaviour of the contrast agent in the body tissues 

can be described using a model-based equation that approximates the entry and 

washout of the agents in the body.  

Gd-based contrast agents cannot cross the cell membranes and enter the cells. 

Therefore, many models assume that the contrast agent is distributed between two 

main tissue compartments, the intra-vascular plasma volume and the extra-

vascular/extra-cellular volume (Figure  2.4). Many models also share several additional 

assumptions, usually related to the water exchange between the tissue compartments 

and water interaction with the contrast agent. Those assumptions usually lead to extra 

parameters that are experimentally tested or are estimated by the model fitting process. 

Several pharmacokinetic models for breast DCE-MRI have been developed to date 

including, Tofts (Tofts and Berkowitz, 1994, Tofts and Kermode, 1991), Brix (Brix et al., 

1991), Larsson (Larsson et al., 1990), and Hayton (Hayton et al., 1997). 

Pharmacokinetic models make assumptions about the contrast agent’s perfusion 

process and the water exchange rates between the prescribed tissue compartments. As 

a result of these assumptions, some prior knowledge is typically required to fit the 

model to the measured DCE-MRI data. This prior knowledge is usually introduced into 

the model as additional parameters that have to be estimated for each study or 

statistically measured from previous studies (Furman-Haran and Degani, 2002, Tofts 

and Kermode, 1991, Larsson et al., 1990, Tofts et al., 1995). This can introduce 

additional noise and/or bias in the model-fitting process. In theory, one of the 

advantages of the pharmacokinetic models over the empiric models is that they make 
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possible inter-study comparability. However, in practice, this is rarely the case, because 

of factors such as, differing spatial and/or temporal resolutions, �� contrast dynamic 

range, the ability to quantify ��, and the ability to measure the arterial input function 

(Jackson et al., 2005).  

3.2 Review of parametric models of enhancement 

Existing parametric models of contrast enhancement can be broadly classified into two 

groups, model-based parametric models and empiric parametric models (Furman-

Haran and Degani, 2002). The former are pharmacokinetic models that mathematically 

characterise the change in the concentration of the contrast agent over time in terms of 

physiologic properties, whilst the latter are objective parameterisations that describe 

the enhancement kinetics without specific physiologic interpretation. An overview of 

parametric models of contrast enhancement can be found in (Furman-Haran and 

Degani, 2002). This section reviews a variety of parametric models of contrast 

enhancement and methods of fitting these models to DCE-MRI data. The review focuses 

on models with only three free parameters, because models with more than three free 

parameters, such as the Larsson model (Larsson et al., 1990), require data with a high 

temporal resolution. 

3.2.1 Pharmacokinetic models 

This section reviews models that are based on compartmental contrast-agent diffusion 

in the body. Data providing the time-dependent changes in the concentration of the 

contrast agent in body tissues can be analysed by nonlinear regression methods 

yielding parameters that have characteristic tissue properties (Hittmair et al., 1994, 

Morris and Liberman, 2005, Tofts and Berkowitz, 1994). Various models yield different 

physiologic parameters that may cause different fitting of the data to different models. 

The pharmacokinetic models developed for DCE-MRI of the breast are each formulated 

as a sum of exponential functions (arising from the solution of the differential equations 

governing the exchange rate of the contrast agent between the prescribed tissue 

compartments) describing the concentration of a contrast agent in the tissue as a 

function of time. Each model seeks to describe the relationship between the intensity in 

the image, as a function of time, and the concentration of the contrast agent in the 

observed tissue. There is empirical evidence suggesting that the relationship between 
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the �� MR relaxation time and the concentration is approximately linear (Hittmair et al., 

1994). This, then, implies that the concentration at time t is directly proportional to the 

relative signal increase at time t (Hayton, 1998, Chen et al., 2005). Given that the 

assumption is only approximately true, the accuracy of these models is limited and their 

closed forms are quite rigid and will always be a sum of exponentials. 

The Tofts model was the first pharmacokinetic model proposed for breast MRI. It is an 

adaptation of a pharmacokinetic model initially proposed by Tofts and Kermode (Tofts 

and Kermode, 1991) for the measurement of the blood-brain barrier permeability. This 

model (which measures signal enhancement) can be described as follows (Furman-

Haran and Degani, 2002, Tofts and Kermode, 1991): 
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where 5`�
�, the concentration of the contrast agent, is given by: 

  ab�b� � c de$f�g$b  e(f�g(b  ehf�ibj$k,  ( 3.2) 

 

where: 

E� � lm�no��4�  

E� � lm�no��4�  

Ep � ��E�  E�� 

 

D is the contrast agent dose (m M / kg body wt)  

S�, q� and S�, q� are the corresponding amplitude and decay constants of the contrast 

agent in the body tissue and blood plasma (vary between contrast agents and between 

different species — these constants are measured experimentally) 

R� is the extra-cellular volume fraction, available to the contrast agent (practically 

unknown)  
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K is the permeability factor (practically unknown) 

r�, r� are the relaxivities of the contrast agent (of ��, �� respectively) 

��� is the intrinsic tissue relaxation of �� (i.e. the relaxation time, before injection, which 

is practically unknown)  

�� , �s , t are parameters of the acquisition (Time of pulse repetition, Time of pulse echo, 

Initial pulse angle, respectively). 

 

From the definition of the Tofts model it can be seen that to fit the model to a set of 

points, a non-linear fitting method should be used for the three parameters (K, R�, ���), 

whilst the values for the other parameters are evaluated experimentally (S�, q� and 

S�, q�) and may vary from one subject to another. 

In certain cases, the lack or inaccuracy of the information about the value of certain 

parameters may result in an ill posed problem that leads to a poor fitting rate and a high 

sensitivity to noise. 

Several additional models have since been proposed including the Brix model (Brix et 

al., 1991) and the Hayton model (Hayton et al., 1997). These two are of high interest, 

because they have no more than three free parameters. The Brix model can be 

expressed by the following explicit expression for a spin echo sequence: 

  u�b� � u�%�  u�%� · v · wj^fxfybz � $_f�xfyb � {^fx$(bz � $_f�x($b|,  ( 3.3) 
 

where:  

A is a parameter that depends on the properties of the tissue, the MR sequence and the 

infusion rate (practically unknown)  

R � }~Z��~�� � ~Z�����  

U � }~���~�� � ~Z�����  

~Z� is a pre-measured systematic constant  

~�� and ~�� are free parameters  
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� is a time parameterization that corrects for the offset between the injection of the 

agent and the time it enters the lesion. During the contrast agent infusion (0 � 
 � �) 

the identity 
� � 
 has to be used; afterwards, the identity 
� � � has to be used. 

The Hayton model (Hayton, 1998, Hayton et al., 1997) has a more parsimonious form. It 

contains three free parameters and can be expressed as a difference between two 

exponentials: 

  a�b� � v
��e ^f�eb � f��b_,  ( 3.4) 

 

where A, a and b are free parameters and are constrained to be positive. 

Although most of these models have been shown to be theoretically compatible, 

historically there exist significant differences in the assumptions made in the 

application of these models (Jackson et al., 2005). One example is the manner in which 

the arterial input function (AIF1) is determined. In most study protocols for breast DCE-

MRI, the contrast agent is administered as a bolus either manually or using a power 

injector. Therefore, the AIF and the lag time between injection and imaging need to be 

considered when analysing the shape of the enhancement curves. The early Tofts and 

Kermode model assumes an AIF of bi-exponential form. The Brix model assumes a 

patient-specific exponentially decaying AIF whose parameter is included as an 

additional free parameter in the model. The Hayton model assumes a bi-exponential 

model (if the bolus injection is assumed to be instantaneous then the Hayton model has 

three free parameters).  

However, it is important to realise that physiological parameters derived from a fit of 

one model are unlikely to be comparable to those derived from a fit of another model to 

the very same data (Jackson et al., 2005). The pharmacokinetic models developed for 

DCE-MRI of the breast are each formulated as a sum of exponential functions describing 

the concentration of a contrast agent in the tissue as a function of time. 

3.2.2 Empiric models 

In addition to the development of the pharmacokinetic models, other models of 

enhancement were developed. Those models do not use prior knowledge about the 

behaviour of the contrast agent in the body tissue but rather, try to present a model that 

                                                        
1 AIF describes the concentration of contrast agent in the arterial blood, feeding a tissue, as a function of time. 
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will fit best to the observed data with a minimum number of free parameters. These 

include the Fan model (Fan et al., 2004), which consists of a product of three 

exponential terms and five free parameters. Another model of enhancement is the 

three-time-point model, proposed by Degani et al. (Degani et al., 1997). This model is 

based on selecting three time points (where one is always the pre-contrast) to 

represent the data. Other empiric methods include the ‘Method of Factor Analysis’ and 

‘Triple Acquisition Rapid Gradient Echo Technique’ (Furman-Haran and Degani, 2002). 

3.2.3 Model fitting methods 

Once a model of contrast enhancement is given, it is required to fit the model to the data 

to evaluate its parameter values. This can be done on a pixel-by-pixel basis (i.e. for each 

enhancement curve in the data) or on a sum of enhancement curves, taken from a 

region of interest. To fit a model to a sampled DCE curve, a non-linear fitting method is 

needed. Both deterministic and stochastic algorithms can be used. The objective 

function used for the fitting process is usually the least squares. A few common 

deterministic methods of fitting can be found in the literature, such as Levenberg-

Marquardt, Steepest Descent, Newton-Gauss, Nelder-Mead Simplex and Trust Region 

(Buckley et al., 1994, Sykulski et al., 1998). Stochastic algorithms include Monte-Carlo, 

Genetic Algorithms and Simulated Annealing (Sykulski et al., 1998). 

Comparison between non-linear fitting methods is strongly influenced by the type and 

structure of the problem, thus it is very limited and mainly restricted to ‘hand picked’ 

types of problems. Sykulski et al. suggest that although deterministic methods are 

generally robust and computationally economical, they often fail to reach the global 

maximum/minimum (Sykulski et al., 1998). Of these, the Levenberg-Marquardt has 

been found the most efficient and is commonly used for fitting parametric models of 

contrast enhancement in DCE MRI (Ahearn et al., 2005, Hayton, 1998). Of the stochastic 

methods, Genetic Algorithms have proven useful for electromagnetic applications. The 

Simplex optimization method, however, has been found to be less sensitive to initial 

conditions than the Levenberg-Marquardt algorithm, although this conclusion was 

drawn from a comparison that was made using noisy synthetic data generated from a 

simple kinetic model with Gaussian noise (Buckley et al., 1994). 
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Non-linear fitting methods are usually time-consuming, especially when a high level of 

precision in the final solution is required (i.e. closeness to global minimum). Anne L. 

Martel (Martel, 2006) recently proposed a way of significantly accelerating the fit of 

pharmacokinetic models to DCE curves by creating a pre-calculated map of the model 

parameter values. The intensity curves from the DCE-MRI data are compared to those in 

the map and the parameter values of the most similar curve in the map are selected. 

Principal component analysis (PCA) is used to reduce the dimensionality of the problem 

and to further accelerate the calculations. 

Given that a DCE-MRI data set typically comprises only a small number of time points, 

e.g. 5–9, spaced a minute or more apart, and that the data can be extremely noisy, it is 

dangerous to attempt to fit a multi-exponential model with a similar number of 

parameters. It can be shown that the error in the fit, E, is given by (Collins and Padhani, 

2004): 

  � � �∑ ^a�(���(_(
������$ ,  ( 3.5) 

 

where N is the number of time points, P is the number of free parameters in the model, 

58 is the concentration of contrast agent, and L8 is the model estimate of the 

concentration of contrast agent. Consequently, for a fixed number of parameters, the 

fewer the number of data points the larger the error. In practice it is not possible to 

increase the number of time points without sacrificing spatial resolution or reducing the 

field of view to only part of the breast volume. Neither option is acceptable. Instead, it is 

preferable to diminish the error by reducing the number of parameters. One possibility 

is to attempt to measure a parameter experimentally rather than to try and estimate it. 

However, this introduces measurement errors into the model. An alternative is to build 

an empiric model that will imitate the contrast enhancement in DCE-MRI without 

relying on physiological characteristics and with a small number (i.e. up to three) of free 

parameters. 

3.3 New empirical model of enhancement 

Our proposed model is not derived from pharmacokinetics but rather, chosen 

empirically to seek a parsimonious fit to the time series data, while still having the 

flexibility to model a variety of enhancement curve shapes typically observed in DCE-
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MRI (Figure  1.1). The model requires a fit of three free parameters. It is free of 

experimental errors and the pre-measurement of physiological properties because ,(i) it 

does not rely on measured parameters or constants relating to the type or density of the 

tissue and, (ii) it does not assume a particular relationship between the observed 

change in signal intensity and the concentration of contrast agent. The model is defined 

in terms of only one exponential function and the range of its parameters can be 

restricted to a relatively narrow set of values. The proposed model of the voxel-wise 

tissue signal intensity over time is given by: 

 

  ��b� � � · b · f�b�
e ,  ( 3.6) 

 

where t is the time that has elapsed since the injection of the contrast agent; and a, b 

and c are positive, real parameters. When L � 0 the model approximates a straight line. 

Given that 
 � 0 is the acquisition starting point, we do not deal with values of the 

model when 
 < 0.  

3.3.1 Analytical properties of the model 

To find the peak of the curve (i.e. point of maximum intensity), the first derivative of the 

model has to be computed: 

  ���b� � � · f�b�
e �$ � b�·�

e �  ( 3.7) 

 

The model has a single maximum at the (wash-in/wash-out) critical point (i.e. peak) for 

which �̀��
� � 0: 

  b�f�x � ��� ���b ��b� � �e
��$�   ( 3.8) 

 

And the value at the peak is thus:  

  �^b�f�x_ � � � e
�·f�$�    ( 3.9) 
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3.3.2 Motivation for the form of the model 

The model is a product of three factors:  

1. The first factor is the coefficient a, which is the scaling parameter. Given a value, ��
�, 

of the form 

��
� � 
 · ����
� , 

the value of enhancement at the peak,  

��
�Zm�� � d EL · �k
��

 

can be controlled by the coefficient a alone. This allows the model to be fitted to any 

magnitude of enhancement, regardless of the curve’s shape. 

2.  The second factor is t. This factor makes sure that for 
 � 0 the value of the model 

will be 0: 

��0� � S · 0 · ����� � S · 0 · 1 � 0 

Once 
 9 0 the value of the model will increase as long as 
 < 
�Zm�. 

3. The third factor is the exponential term ����
�  . It is responsible for the shape of the 

curve. The parameter b determines the width of the Gaussian function and thus it 

influences both the wash-in and the wash-out slopes. The parameter c is a bias factor 

that influences the difference between the two slopes. 

3.3.3 Fitting the model to clinical data 

To fit the model to the enhancement curve of a given voxel, a non-linear fitting 

algorithm is required. The minimization problem, in the least squares sense, is not 

convex and thus a global best fit is not guaranteed. Suitable algorithms include the 

Levenberg-Marquardt (LM) algorithm (Marquardt, 1963) and the Nelder-Mead (NM) 

simplex algorithm (Nelder and Mead, 1965) (both non-linear least squares optimisation 

algorithms). Our experience is that the fitted values for the model parameters lie within 

a relatively narrow range, e.g. based on several clinical data sets additional to those 

described in Experiment 1 (Table  3.1), we observed that, S ; �0,200�, E ; �0,100�, 

L ; �0,3�. 
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3.4 Empirical evaluation of the proposed model 

To evaluate the ability of the proposed model to describe DCE-MRI data, its goodness-

of-fit (GOF) was compared against three other models. The comparison included the 

following models of contrast enhancement for DCE-MRI: the Tofts, Brix, and Hayton 

pharmacokinetic models, and a novel empiric model. The goodness-of-fit of each model 

was evaluated on breast MRI data from a local radiology practice in two experiments: (i) 

comparison of two model-fitting algorithms (Levenberg-Marquardt and Nelder-Mead) 

and two fitting tolerances and, (ii) goodness-of-fit with respect to the  temporal 

resolution. 

3.4.1 Experiment 1: Evaluation of the goodness-of-fit with respect to the fitting 

algorithm and the fitting tolerance 

The aim of this experiment was to evaluate the impact that the choice of the non-linear 

least squares fitting algorithm — the LM algorithm and the NM simplex algorithm — 

and the choice of fitting tolerance level had on the ability of the Tofts, Brix, and Hayton 

pharmacokinetic models and the proposed empiric enhancement model to fit clinical 

DCE-MRI data. Three DCE-MRI data sets, originating from routine clinical breast MRI 

examinations, were used for this experiment, one with malignant enhancement, one 

with benign enhancement, and one with no suspicious enhancement (findings of the 

reporting radiologist). The data were acquired on a 1.5T Signa EchoSpeed (GE Medical 

Systems, Milwaukee, USA). The scan/sequence details are given in Table  3.1. The GOF of 

the models was measured using two metrics, (i) the coefficient of determination R-

squared and, (ii) the mean squared error (MSE). The R-squared was chosen because of 

its insensitivity to scale, thus yielding an assessment of the GOF that is not influenced by 

the scale of enhancement in the data, and thus allows comparing different tissue types. 

The MSE was chosen because it measures directly the goal of the optimization algorithm 

and assesses how well the algorithm achieved this goal. Thus, it allows the comparison 

of different optimisation algorithms, when using the same data set. 

Model-fitting was performed voxel–wise. Starting values for the model parameters were 

defined to be the average values of these parameters estimated in model-fitting 

experiments on several additional clinical data sets. The voxel-wise GOFs were averaged 

over, (i) the entire breast volume and, (ii) a selected region of interest (either the area of 
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enhancement identified by the reporting radiologist or an arbitrary area of 

enhancement in the case with no suspicious enhancement). The resulting mean GOFs 

were then averaged over the three data sets. Two tolerance levels were selected to 

represent, (i) ‘quick and dirty’ fitting (10-3) and, (ii) accurate fitting (10-6). It should be 

noted, however, that the meaning of the tolerance levels is different for the two 

algorithms; for the LM algorithm, the tolerance level is defined with respect to the 

optimization function, and for the NM algorithm, it is defined with respect to the model 

parameters. The results are presented in Table  3.2 and Table  3.3. 

Table  3.1: Scan/sequence details for the data sets used in Experiment 1 
Acquisition matrix 256×256 
Image matrix 512×512 (†ZIP512) 
Flip angle 10°  
No. sagittal slices 40 
Slice thickness  2.5 mm (†ZIP2) 
No. post-contrast 
volumes 

5–9 

Pixel spacing 0.39 mm 
†ZIP512 and ZIP2 are image resizing algorithms that use interpolation 

3.4.2 Experiment 2: Evaluation of the goodness-of-fit with respect to missing 

temporal data 

Experiment 1 evaluated how well each model fits to real data. However, although the 

proposed model fits better to the data than the other models, one may still relate this 

advantage to the flexibility of the model. For example, by taking a polynomial function of 

order N-1 or higher (where N is the number of time points in the data), we can create a 

model that will perfectly fit any given data. To check how well the model represents 

reality, it is necessary to check how well it can predict data points that are missing from 

the time series, but can be inferred using physiological prior knowledge (or measured, 

using a higher temporal resolution). Hence, the aim of this experiment was to evaluate 

the impact that temporal resolution has on the ability of the models considered in 

Experiment 1 to predict the behaviour of real DCE-MRI data. A custom high temporal 

resolution DCE-MRI data set was acquired for this experiment: 26 volumes (15 seconds 

per volume), 8 slices (5 mm thickness) per volume, and 256×256 pixels per slice (0.78 

mm square pixels). The data were obtained from a patient with a previously-identified 

malignant lesion. A high temporal resolution was achieved without compromising the 

spatial resolution by restricting the field of view to the vicinity of the lesion.  
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Model-fitting was performed voxel-wise using the LM and NM algorithms and the two 

tolerance levels defined in Experiment 1. The GOFs were measured for the complete 

time series as described in Experiment 1. As in Experiment 1, the GOFs were averaged 

over, (i) the entire breast volume and, (ii) a region of interest (ROI) within the 

malignant enhancement. Next, the data were temporally sub-sampled, the model-fitting 

repeated, and the GOFs computed with respect to the complete time series. The method 

used for sub-sampling involves taking the first volume out of every N volumes and 

discarding the rest. Sub-sampling levels of N = 2, 3, and 4 were used (N = 1 is the 

complete time series). The results are presented in Figure  3.1.  

Table  3.2: Experiment 1: Average GOF for the Levenberg-Marquardt algorithm  
(best results are highlighted in bold) 

Model 
name 

Tol. 
Level 

Whole Breast Enhancing Region 

R2 MSE R2 MSE 
New 10-3 0.797 0.728 0.955 0.010 

10-6 0.826 0.657 0.967 0.007 

Hayton 10-3 0.773 0.699 0.953 0.010 

10-6 0.817 0.654 0.964 0.008 
Tofts 10-3 0.651 5.603 0.821 0.080 

10-6 0.652 2.125 0.821 0.042 
Brix 10-3 0.716 1.059 0.890 0.029 

10-6 0.729 0.950 0.898 0.026 
 

Table  3.3: Experiment 1: Average GOF for the Nelder-Mead algorithm  
(best results are highlighted in bold) 

Model 
name 

Tol. 
Level 

Whole Breast Enhancing Region 
R2 MSE R2 MSE 

New 10-3 0.8241 1.1990 0.9680 0.0068 

10-6 0.8385 1.1315 0.9680 0.0068 

Hayton 10-3 0.8253 0.9736 0.9647 0.0078 
10-6 0.8273 0.9727 0.9649 0.0077 

Tofts 10-3 0.6504 1.2364 0.8211 0.0419 
10-6 0.6504 1.2364 0.8211 0.0419 

Brix 10-3 0.7326 1.0036 0.8976 0.0265 
10-6 0.7332 0.9996 0.8983 0.0261 
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A. Whole breast – LM optimization 

 

  

B. Region of interest – LM optimization 

 

 

C. Whole breast – NM optimization 
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D. Region of interest – NM optimization 

 

Figure  3.1: Experiment 2: The mean GOFs for the four enhancement models for sub-sampling levels N = 1, 
2, 3, and 4  
The horizontal axis in each graph represents the sub-sampling level, the bars show the mean R-
squared values (the scale is on the left-hand side vertical axis), and the lines show the mean 
MSE values (the scale is on the right-hand side vertical axis). The left-hand column of graphs 
(1) correspond to a tolerance level of 10-3 and the right-hand ones (2) to a tolerance of 10-6. 
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3.4.3 Discussion 

This section presented an empirical evaluation of the goodness-of-fit of four parametric 

models of contrast enhancement for DCE-MRI of the breast, the Tofts, Brix, and Hayton 

pharmacokinetic models, and a novel empirical model. The GOF of each model was 

evaluated with respect to, (i) two model-fitting algorithms (Levenberg-Marquardt and 

Nelder-Mead) and different fitting tolerances (Experiment 1) and, (ii) temporal 

resolution (Experiment 2). The results of Experiment 1 show that, irrespective of the 

fitting algorithm or whether the whole breast or a ROI is considered, a smaller 

termination tolerance leads to an improved GOF, albeit minor in the case of the NM 

algorithm. In addition, although the NM algorithm yields a slightly better R-squared 

values than the LM algorithm, it offers no consistent advantage over the LM algorithm in 

terms of the MSE values. Another observation is that the GOFs for the chosen ROIs 

(enhancing regions) are significantly better than those for the whole breast. This is 

likely because of the improved average signal-to-noise ratio within the ROI as compared 

to the breast as a whole. 

The results of Experiment 2 for the whole breast show that, irrespective of the fitting 

algorithm and tolerance level, reduced temporal resolution leads to reduced mean R-

squared values. In addition, they show that both the new model and the Hayton model 

yield better R-squared values than the other two models for both the whole breast and 

ROI, and better MSE values for the ROI. This implies that although Hayton’s and the new 

model are more parsimonious than the other models, they tend to predict the behaviour 

of the contrast agent in the body more accurately. 

Surprisingly, in the case of the whole breast, the MSE values generally decrease 

(improve) with decreasing temporal resolution. A possible explanation for this could be 

that, for the same stopping criterion, the algorithms may converge faster when there are 

fewer sample points (because the fitting problem is generally ill-posed).  

3.4.4 Conclusions 

The results of the experiments demonstrate that under the various optimization 

conditions considered, in general, both the proposed empiric model and the Hayton 

model fit the data about equally well and that both of these models fit the data better 

than the Tofts and Brix models. The advantages of the new model over the Hayton 



 53 

 

 

model are that it has a more parsimonious form and that it makes no physiological 

assumptions (and thus its parameters cannot be linked to physiological properties). The 

simpler form of the new model and that, in practice, its parameters lie within a narrow 

range of values, suggests that it should be possible to fit this model faster than the 

Hayton model. 

3.5 Summary 

This chapter has reviewed models of contrast enhancements and methods for model 

fitting. The chapter has also presented a novel model of contrast enhancement and a 

comparison between the new model and three pharmacokinetic models from the 

literature, all with three free parameters. The new models are used in Chapter 4 for an 

evaluation of a new denoising algorithm, in Chapter 5 for the segmentation of 

suspicious lesions in the breast and in Chapter 6 for generating novel features for 

classification of suspicious lesions in DCE-MRI of the breast.   
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4. Denoising of DCE-MRI 

This chapter deals with the issue of denoising DCE-MR images. Noise in MRI may mask 

fine details in the image and diminish its effective resolution, making both manual and 

automatic analysis of the image more complicated and less reliable. This chapter 

introduces the motivation for denoising methods for MRI. Also, the chapter presents a 

novel denoising method. The method is called Dynamic Non-Local Means (DNLM) and is 

designed specifically for the denoising of DCE-MRI. The DNLM is a variation of the Non-

Local Means algorithm (NLM) (Buades et al., 2004, Buades et al., 2005b, Buades et al., 

2005a, Buades et al., 2008). It exploits the redundancy of information in the temporal 

sequence of images whilst at the same time accounting for contrast enhancement. The 

chapter also presents quantitative and qualitative evaluations of the performance of the 

DNLM relative to seven other denoising methods (the Matlab code for the NLM and 

DNLM algorithms is given in Appendix C). The core material of this chapter was 

published in (Gal et al., 2009b, Gal et al., 2008, Gal et al., 2010). 

4.1 Introduction 

The interpretation of DCE-MRI data is a complex task for the radiologist, because of the 

large quantity of data that is acquired (several image volumes in a single scan). The task 

is further complicated by the presence of hardware-induced noise, geometric 

distortions and intensity non-uniformities (bias field), in addition to motion artefacts 

resulting from patient movement during image acquisition. Also, the noise in MRI is 

higher for shorter acquisition time. This may become a significant factor when 

acquisition time is strictly limited, such as in DCE-MRI. Moreover, some MRI procedures, 

such as fat suppression, reduce the SNR in the image. Ideally, the image data should 

have the highest possible signal-to-noise ratio (SNR) and the least artefacts for 

interpretation. This chapter focuses on the critical issue of noise removal in DCE-MRI. 

Sources of this noise include fluctuations in the receiver coil electronics and thermal 

noise from electrically-conducting tissue within the patient. A good denoising algorithm 
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will attenuate noise while, at the same time, preserving kinetic enhancement 

information and fine structural details, and minimising the introduction of new artefacts 

(e.g. smoothing artefacts). The DNLM algorithm exploits the redundancy of information 

in the temporal sequence of the images while, at the same time, reducing the propensity 

of the ‘non-local’ property of the NLM to create geometric artefacts. The DNLM 

algorithm is compared to seven other denoising methods: simple Gaussian filtering 

(Gonzalez and Woods, 2002), the original NLM algorithm (Buades et al., 2004), a trivial 

extension of the NLM to include the temporal dimension, bilateral filtering (Tomasi and 

Manduchi, 1998), anisotropic diffusion filtering (Perona and Malik, 1990), wavelet 

adaptive multiscale products threshold (Bao and Zhang, 2003), and traditional wavelet 

thresholding (Bao and Zhang, 2003, Pan et al., 1999).  

The evaluations include quantitative evaluations on simulated and real data (20 DCE-

MRI data sets from routine clinical breast MRI examinations) in addition to a qualitative 

evaluation by 24 observers (including 14 image/signal-processing experts and 10 

clinical breast MRI radiographers).   

4.2 Modelling noise in DCE-MRI 

The noise in MR images has been studied and modelled, and has been found to be of 

Rician Distribution. In contrast to the Gaussian additive noise, the Rician noise is signal-

dependent and is therefore more difficult to separate from the signal (Nowak, 1999). 

Macovski (Macovski, 1996) describes the different sources of noise in the MRI process 

as follows: 

 

  ¢£r � 5 · ��¤E� · I�¥q�  ( 4.1) 

 

where the first factor, C, represents the physical constants of the system that are beyond 

our control (e.g. magnetic flux, current in conductors); the second factor, ��¤E�, is a 

function of the dimensions of the object being imaged; and the third factor, I�¥q�, is a 

function of the chosen imaging parameters. The last factor can be expressed as follows 

(Macovski, 1996): 

 

  I�¥q� � ���¦√�,  ( 4.2) 
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where �� is the readout frequency, �¦ is the voxel size, and T is the imaging time. It is 

immediately apparent that as the voxel size is decreased (i.e. as resolution is increased) 

the SNR decreases proportionally. An effective denoising method is, therefore, of great 

interest, because it offers the clinician the possibility of either increasing the image 

resolution without increasing the effect of noise or having a better SNR for a given 

image resolution. 

A statistical model of the noise in MR images was developed by Gudbjartsson and Patz 

(Gudbjartsson and Patz, 1996). According to their model, the distribution for a 

measured intensity, M, of a pixel can be described by: 

 

  Ÿ �
� � ¨
©� · ��ª�«¬�

�­� · ¥� �®·¨
©� �,  ( 4.3) 

 

where, A is the image pixel intensity in the absence of noise  

¯ is the standard deviation of the Gaussian noise in the real and imaginary images 

(which assumed to be equal)  

M is the measured intensity  

¥� is the modified zero order Bessel function of the first kind. 

 

Gudbjartsson and Patz point out that for a small SNR (°/¯ � 1), the Rician distribution 

is different from Gaussian distribution. However, for larger SNR values (°/¯ ± 3), the 

Rician distribution can be approximated by a Gaussian distribution. 

A special case of the Rician distribution is obtained in image regions where only noise is 

present (A=0). This case is known as the Rayleigh distribution and reduces equation 4.3 

to: 

 

  Ÿ �
� � ¨
©� �� ª�

�­�  ( 4.4) 

 

The mean and variance respectively of this distribution are given by: 
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² � ¯³´/2 and ¯�̈ � �2 � ´/2�¯� 

This can be used for evaluating the true noise magnitude, ¯�, from the image. Another 

limit of the image distribution equation is when the SNR is very large: 

 

  Ÿ � �
³�µ©� ���ª¶³¬�«­���

�­�   ( 4.5) 

 

This shows that for regions with large signal intensities, the noise distribution can be 

approximated by a Gaussian with variance ¯� and mean √°�  ¯�. 

4.3 Review of previous denoising approaches 

Numerous approaches to denoising MR images have been proposed, including 

approaches based on anisotropic diffusion (Murase et al., 2001, Gerig et al., 1992), the 

wavelet transform (Bao and Zhang, 2003), the non-local means algorithm (Buades et al., 

2004, Buades et al., 2005b, Buades et al., 2005a), non-parametric neighbourhood 

statistics/estimation (Awate and Whitaker, 2005b, Awate and Whitaker, 2007, Awate 

and Whitaker, 2005a, Awate and Whitaker, 2006), and ~-space filtering (Tisdall and 

Atkins, 2005). The principal approaches are discussed below together with simple 

Gaussian low-pass filtering (GLPF) (Gonzalez and Woods, 2002) and bilateral filtering 

(Tomasi and Manduchi, 1998). 

4.3.1 Simple Gaussian Filter 

One of the simplest techniques for noise removal is the Gaussian low pass filter (GLPF) 

(Gonzalez and Woods, 2002). It is a smoothing filter and whilst it can effectively 

eliminate high frequency additive noise, it does so at the expense of blurring fine details 

and sharp edges in the image. The amount of filtering is directly related to the standard 

deviation of the Gaussian kernel. 

4.3.2 Bilateral Filter 

A more sophisticated filter is the bilateral filter (Tomasi and Manduchi, 1998), which is 

based on a combination of two filters, one which is a function of spatial distance, and the 

other is a function of intensity difference. In the discrete case, the bilateral filter can be 
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described as follows. Given an image (discrete function), f, the filtered value of the 

image at position x is defined by: 

 

  K�/� � ∑ ·�¸�·��¸,��·¹�·�¸�,·����º∑ ��¸,��·¹�·�¸�,·����º ,  ( 4.6) 

 

where L�», /� measures the distance between the neighbourhood centre, x, and a nearby 

pixel, ε; and ¢���»�, ��/�� measures the intensity similarity between the neighbourhood 

centre, x, and a nearby pixel, ε. 

An important case of the bilateral filter is when both similarity measures are Gaussians. 

In this case L�», /� is defined as: 

 

  L�», /� � ����d¼|º¶½|¼­¾ k�
,  ( 4.7) 

 

and ¢���»�, ��/�� as:  

 

  ¢�», /� � ����d¼|¿�º�¶¿�½�|¼­À k�
,  ( 4.8) 

 

where ¯Á is the spatial spread and Â̄ is the photometric spread.  

The bilateral filter usually performs better than a linear filter, such as a GLPF, in terms 

of preserving sharp edges and fine details while still eliminating a significant amount of 

noise (Tomasi and Manduchi, 1998). It can be easily implemented for 3D images (Jiang 

et al., 2003), including MRI data (Walker et al., 2006, Xie et al., 2006). 

4.3.3 Anisotropic Diffusion filter 

The idea of isotropic diffusion is derived from the heat (isotropic) diffusion process in 

nature. The basic idea is to embed the original image ¥��/, V� in a series of images, 

¥�/, V, 
�, obtained by convolving the original image with a Gaussian kernel, ��/, V; 
�, of 

variance t:  
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  ¥�/, V, 
� � ¥��/, V� Ä ��/, V; 
�,  ( 4.9) 

 

where larger values of t correspond to details at a coarser resolution. This can be 

viewed as the heat diffusion equation: 

 

  ¥̀ � QJR�Å¥� � ∆¥ � ¥��  ¥��   ( 4.10) 

 

with the initial condition ¥�/, V, 0� � ¥��/, V�. 

As demonstrated by Perona and Malik (Perona and Malik, 1990), the addition of an 

anisotropic ‘diffusion function’, L�/, V, 
�, to the basic heat equation yields an adaptive 

denoising process: 

¥̀ � QJR�L�/, V, 
�Å¥� � L�/, V, 
�∆¥  Åc · Å¥. 

Ideally, the diffusion function should be chosen such that smoothing is performed on 

relatively uniform regions but is suppressed on edges. Murase et al. (Murase et al., 

2001) propose the following diffusion function, based on the Tukey’s bi-weight model 

(Black et al., 1998), for denoising contrast-enhanced MR images: 

 

  L�/, V, 
� � ÈÉ1 � �|ÅÊ��,�,`�|
© ��Ë�     |Å¥�/, V, 
�| � ¯

0                          M
K�N6JO�
H,  ( 4.11) 

 

where σ is a scale parameter. Murase et al. propose that an appropriate value for σ is: 

 

  ¯ � 1.4826 · 
°Î�Å¥�,  ( 4.12) 

 

where the MAD (median absolute deviation) is given by: 

 

  
°Î�Ï/8Ð� � q�QJSPÏ|/8 � q�QJSP�Ï/8Ð�|Ð.  ( 4.13) 

 

Gerig et al.  (Gerig et al., 1992) propose the following two alternatives for the diffusion 

function: 
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1. L�/, V, 
� � ���|ÅÑ�½,Ò,��|Ó ��
 

2. L�/, V, 
� � �
�,�|ÅÑ�½,Ò,��|Ó ��«Ô  

where a>0 is constant and k is chosen according to the noise level and the edge strength. 

Denoising based on a higher order differential equation has also been proposed in the 

literature (Lysaker et al., 2003). 

4.3.4 Noise filtering using the wavelet transform 

Over the last twenty years, the wavelet transform has received a great deal of attention 

in many fields. In the fields of signal and image processing, it is commonly used for 

denoising. Not surprisingly, several wavelet-based denoising methods have been 

proposed for MR images (Bao and Zhang, 2003, Nowak, 1999, Wood and Johnson, 1999, 

Pizurica et al., 2003, Pan et al., 1999). The main advantages of the discrete wavelet 

transform (DWT) over other image representations, such as the discrete Fourier 

transform, are that it is a sparse representation that can describe local features, either 

spatially or spectrally. The sparse representation makes it possible to filter out most of 

the noise whilst at the same time preserving the high frequency features (fine 

structures) of the signal. 

 Nowak (Nowak, 1999) proposed a wavelet-domain filter for denoising MR images 

specifically designed to handle Rician noise. The method is based on filtering the 

squared magnitude image (sum of the squared real and imaginary components) 

computed from the k-space data, and requires that the underlying noise variance be 

specified or estimated. This approach overcomes the signal-dependent bias that may be 

introduced, especially in low SNR regions of the image, if the real and imaginary 

components are filtered separately. Nowak advocates the use of the Haar wavelet to 

preserve fine detail. 

Wood and Johnson (Wood and Johnson, 1999) proposed an MR image denoising 

method based on the wavelet packet denoising method developed by Coifman and 

Woog (Coifman and Wickerhauser, 1994, Coifman et al., 1997). The method comprises 

three elementary steps:  wavelet packet transformation, best-basis selection and 

coefficient thresholding. The method is particularly suited to images that are 

contaminated by Rician noise with low SNR. 
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Bao and Zang (Bao and Zhang, 2003) propose a MR image denoising method based on 

an adaptive multiscale products threshold. The method uses the Mallat and Zhong 

(Mallat and Zhong, 1992) wavelets family and is based on the evaluation of scale 

products which are defined as: 

 

  YÕ��/� � ∏ ×Õ,8 · R�/���8����  ,  ( 4.14) 

 

where k1 and k2 are non-negative integers, and Wj is the wavelet coefficient of scale j of 

the image v at position x. The algorithm consists of the following three steps: 

1. Compute the DWT of input image v up to J scales 

2. Calculate the multiscale products Y8R, select the thresholds 
��Ø�, and then threshold 

the wavelet coefficients as follows: 

 

  ×[ÕR�/� � F×ÕR�/�     YÕR�/� ± 
��Ø�0                     M
K�N6JO� H;  ( 4.15) 

 
 

3. Recover the image from the thresholded wavelet coefficients ×ÕR�/�. 

The thresholds, 
��Ø�, are calculated as a function of the estimated noise in the image in 

the scale product domain. 

4.3.5 Non-local Means (NLM) 

The NLM algorithm was proposed by Buades et al. (Buades et al., 2004). The discrete 

version of the NLM algorithm can be described as follows. Let I be a discrete grid of 

pixels (voxels), and let R � ÏR�J�|J ; ¥Ð be a noisy image. The estimated, denoised, value 

£Ù�R��J� is computed as a weighted average of the image pixels: 

 

  £Ù�R��J� � ∑ 6�J, Ø�R�Ø�Õ;Ê ,  ( 4.16) 

 

where the weight values Ï6�J, Ø�Ð depend on the similarity between the pixels i and j, 

and satisfy the conditions 0 � 6�J, Ø� � 1 and ∑ 6�J, Ø� � 1Õ . 
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The definition of the weights 6�J, Ø� relies on the definition of a neighbourhood system 

on I and of a distance measure between two neighbourhoods or similarity windows. A 

neighbourhood system on I is a family £ � ÏN8Ð 8;Ê  of subsets of I such that for all J ; ¥:  

(i) J ; £8 
(ii) Ø ; £8 Û J ; £Õ  

The subset £8 is called the neighbourhood or the similarity window of i. Let the 

restriction of v to the neighbourhood £8 be denoted by R�£8�,  where  

 

  R�£8� � ÏR�Ø�| Ø ; £8Ð .  ( 4.17) 

 

The Gaussian weighted Euclidian distance between two similarity-windows is defined:  

 

  ¢���, ��� � Ü�� � ��Ü�,m� ,  ( 4.18) 

 

where a is the standard deviation of the Gaussian and V1 and V2 represents two vectors 

that represent the intensity values in the two similarity windows. The weights 

associated with this distance are defined by: 

 

  6�J, Ø� � �
��8� · �� Ýdo^Þß_,o�Þà�k

á� ,  ( 4.19) 

 

where z(i) is the normalisation factor "�J� � ∑ ��¹�â�ãß�,â^ãà_� ¦�⁄Õ  and the parameter h 

controls the decay of the weights and is usually related to the level of noise in the image 

(Buades et al., 2004, Buades et al., 2005b). Hence, a natural choice for h will be of the 

form K � L · ¯ where c is a scalar and σ is the level of noise in the image. 

The NLM algorithm exploits the redundancy of information contained within an image. 

This redundancy typically exists in high-resolution natural images, because they usually 

contain textured and smooth regions. However, in the case of medical images, care must 

be taken, because similar textures in two distant areas of the image may have different 

meanings (e.g. similar tissue texture from different regions of the brain) and therefore 



64 Denoising of DCE-MRI 
 

 
 

should not be compared. Several variations on the NLM algorithm have been proposed 

for denoising 3D MRI (Coupe et al., 2008, Manjon et al., 2007, Manjón et al., 2008, 

Kervrann et al., 2007), DW-MRI, and DT-MRI data (Wiest-Daessle et al., 2007, Wiest-

Daessle et al., 2008). 

A drawback of the NLM algorithm is that its time complexity is ¤�£ å 6 å O� for an image, 

where £ is the number of pixels in the image, w is the number of pixels in a similarity 

window and s is the number of comparisons for each similarity window (i.e. the search 

area). For DCE MRI data, this complexity is squared relative to 2D, which often yields 

non-practical running times. Methods to address this issue include the selective 

comparison of similarity windows (Mahmoudi and Sapiro, 2005, Coupe et al., 2008) and 

Laplacian Pyramids (Liu et al., 2008). 

4.3.6 Summary 

None of the methods proposed in the literature is specifically designed for DCE-MRI and 

none actually exploits the redundancy of information that exists in DCE-MRI data. 

Moreover, some algorithms, such as the NLM, actually seek to exploit redundancy of 

information that may be false and introduce artefacts in clinical images. This point is 

discussed further and experimentally demonstrated in Section  4.5.  

4.4 Review of methods for evaluating denoising performance 

The evaluation and comparison of different denoising methods is a difficult problem, to 

date and to the knowledge of the author, no optimal method has been found. Many 

measures and methods have been proposed in the literature, but comparative results 

strongly depend on the choice of measurement (Marron and Tsybakov, 1995, Kohler 

and Lorenz, 2005) and thus depends on the target application. The evaluation of a 

denoising method usually starts with the creation or acquisition of a noise free image. 

The noise free image can be synthetically created or acquired in special conditions that 

produce an approximately noiseless image. Next, random noise is added to the noise 

free image (according to the ‘real life’ expected distribution) and the compared 

denoising algorithms are then applied to the noisy image. The resulting (i.e. denoised) 

images are then compared to the original (noise free) image using a visual comparison 

(human eye) and one or more distance measurements (Gonzalez and Woods, 2002).  
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Numerous measurements can be found in the literature and have been reviewed by 

Dangeti (Dangeti, 2002). Dangeti also proposes a comparison method that is a 

combination of visual comparison and a calculation of the SNR in the denoised image. 

Measuring the SNR of the denoised image, however, may be misleading, because over-

smoothed images tend to have a very high SNR. Also SNR does not provide an indication 

about the visual similarity between the denoised image and the original one.  

Maron and Tsybakov (Marron and Tsybakov, 1995), propose a novel method for 

comparing the original with the denoised signal, using a ‘graph representation’, which is 

constructed in the following way.  

Let � be the original signal and �ÁZ1 be the denoised signal. Then, the ‘symmetrical 

visual error measure’ (VE) between the original and the denoised signals will be: 

 

  �]���, �ÁZ1� � dæ Qç �^
, ��
�_, �·¾èé�� Q
k
��

  ( 4.20) 

 

Where �·¾èé  is the graph of the function  �ÁZ1, and Qç^�/, V�, °_ is the minimal Euclidean 

distance from the point �/, V� ; 3� to a set ° ê 3�. The ‘symmetrised version’ is 

 

  ¢]���, �ÁZ1� � ��]���, �ÁZ1��  �]���ÁZ1 , ������
 ( 4.21) 

 

This comparison between images allows more flexibility for small consistent changes in 

the denoised image, such as a small shift. However, this flexibility also implies that there 

might be a lack of sensitivity in the method for small artefacts in the denoised image, 

which makes it not suitable for clinical image evaluation, where small details are often 

important.  

Kohler and Lorenz (Kohler and Lorenz, 2005) compare several denoising methods for 

one-dimensional signals. Their proposed way for evaluating the denoised signal quality 

includes Maron and Tsybakov’s measurement and a set of distance measurements, 

including: 

The L1 norm: 
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  Ü� � �ÁZ1Üë� � æ|��
� � �ÁZ1�
�|Q
  ( 4.22) 

 

The L2 norm: 

 

  Ü� � �ÁZ1Üë� � �æ|��
� � �ÁZ1�
�|�Q
���  ( 4.23) 

 

And the ∞L  norm: 

 

  Ü� � �ÁZ1Üëì � max`|��
� � �ÁZ1�
�|  ( 4.24) 

 

This comparison method produces a set of numbers that represent different sensitivity 

to outliers in the differences between the images. However, analysing a set of numbers, 

rather than one, is only a partial solution, because we would like to present the value of 

the similarity using a single number that can then be easily compared between different 

candidate denoising methods. 

Buades et al. (Buades et al., 2004) review several image denoising methods and 

compare them. The comparison method, proposed by Buades et al. is based on a visual 

quality comparison and a mean square error measurement between the original image 

and the denoised one. One of the visual qualities that Buades et al. propose is the 

‘method noise’ that is the difference image between the noisy (original) image and the 

denoised version of the image. Buades et al. suggest that a ‘method noise’ of a good 

denoising algorithm should look like white noise and present no structures from the 

original image that were possibly removed by the denoising process. However, in 

clinical images, different structures have different meanings and contextual information 

is of great importance in evaluating clinical images visually. 

Based on the methods proposed in the literature, it can be concluded that a comparison 

between the denoising methods must include both quantitative (distance-based 

measure) evaluation and qualitative (visual) evaluation. In this research we have 

selected the root-mean-squared-error (RMSE) to be the quantitative measurement, 

mainly because it is well known and easy to interpret, while the visual evaluation was 
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selected to be performed on the images (noise free and denoised) by professional 

assessors that posses either relevant scientific or clinical knowledge.  

4.5 A new algorithm for denoising DCE-MR data 

Recall that DCE-MRI data consists of a set of image volumes acquired before, during and 

after the injection of a contrast agent. In the absence of any patient movement, it is 

expected that the volumes will be spatially aligned and have similar voxel values up to 

the effects of noise and localised contrast enhancement. In practice, of course, the 

volumes are not perfectly aligned and patient motion will lead to additional variation in 

the intensity of voxels over time.  Nevertheless, it must be the case that the temporal 

axis contains redundant information, similar to that found in video sequences (Buades 

et al., 2008). Clearly, in DCE-MRI, a simple averaging over the temporal dimension will 

not be able to achieve the satisfactory attenuation of noise, the preservation of contrast 

enhancement and preservation of fine details in the image data. A simple extension of 

the original NLM algorithm (hereinafter denoted the extended NLM or ENLM) that 

additionally searches for similarity windows across the temporal dimension is also 

unsatisfactory for two reasons. First, its similarity metric does not account for local 

changes in intensity caused by contrast enhancement. Second, while the ‘non-local’ 

property of the algorithm means that it can eliminate small differences between 

different parts of similar tissues because of textural similarity, in the case of MR images, 

this can lead to the elimination of diagnostically important details. This is especially 

true when the differences are small or manifest themselves in a relatively small 

area/volume. Consequently, its suitability and potential for denoising medical images in 

general is much less than for natural images. Whilst the algorithm may yield very good 

results in terms of distance-based quality measurements (e.g. MSE) diagnostically-

important small details may be lost and possibly false structures introduced. To our 

knowledge this issue, demonstrated in Figure  4.1, has neither been discussed nor 

addressed in the literature. To overcome the first drawback, what is needed is a 

similarity metric that takes into account local enhancement. This leads to the proposed 

variation on the NLM algorithm, Dynamic Non-Local Means (DNLM). Specifically, we 

redefine the similarity metric to be: 
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and the definition of weights to be: 
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where t1 and t2 are the temporal components from which the vectors V1 and V2 were 

selected, σ is the (estimated) level of noise in the image and E(V) denotes expected 

value. The new weights (equation 4.26) are to replace the original ones (equation 4.19). 

In choosing the level of noise, σ, to be the threshold for the normalisation, the 

underlying assumption is that changes in signal that are smaller than the level of noise 

are likely to be related to noise, while larger changes indicate a real change in signal 

(and thus should not be normalised). In making this change, it is assumed that different 

pixels in two similarity windows from different time points in the acquisition will 

enhance in the same manner if they are part of a similar tissue. To address the second 

drawback (the propensity of the ‘non-local’ property to eliminate small details), the 

search for similarity windows must be limited to a relatively small area in the spatial 

domain. The search over the temporal domain, however, is not limited. In other words, 

the algorithm searches for ‘dynamic’ similarity windows along the whole temporal axis.  

Therefore, the DNLM algorithm makes it possible to filter the image in the spatial 

domain, while exploiting the similarity over the temporal axis without changing the 

effect of contrast enhancement or blurring the image in the event of patient movement. 

An additional advantage of the restricted similarity window search is that the execution 

time of DNLM is significantly faster than the ENLM. 

 



 

 

 

(a) (b) 

Figure  4.1: The disadvantage of the 
 (a) Synthetic, noiseless, image of two similar tissues, the upper one with a potential 
abnormality (e.g. enhancing tissue), (b) image (a) after the addition of Rician noise to yield an 
SNR of 28db, (c) image (b) after the application of NLM with a search d
yielding an MSE of 8.75, (d) the ‘method noise’ 
the application of the NLM with a search distance of 20 pixels, yielding a ‘better’ MSE of 5.33, 
(f) the ‘method noise’ of (d). It can be cl
noise’ images that, although the larger search distance yields a smaller MSE, important detail is 
lost.  

4.6 Empirical evaluation

To evaluate the performance of the DNLM algorithm

denoising ability to that of seven other algorithms: Gaussian low pass filter (GLPF), 

bilateral filter anisotropic diffusion (AD) 

multiscale products threshold (WAMPT) 

thresholding (TWT) (Pan et al., 1999, Bao and Zh

trivial temporal extension of 

a reference filtering approach. The others were chosen because they represent several 

different approaches to the MR image denoising problem. Three experiments were 

performed.  

Experiment 1: A quantitative evaluation using an artificially

sequence.  

Experiment 2: A quantitative evaluation using real clinical DCE

Experiment 3: A qualitative evaluation using real clinical DCE MRI data.

The purpose of the quantitative experiments was to evaluate 

purely in terms of the MSE. 

algorithm to yield results that appear to be good both visually and in terms of 

and yet, on closer inspection, contain geometric artefacts. This was the rationale for 

  

(c) 

 

(d) 

 

(e) 

: The disadvantage of the ‘non-local’ property of NLM in DCE MRI 
(a) Synthetic, noiseless, image of two similar tissues, the upper one with a potential 
abnormality (e.g. enhancing tissue), (b) image (a) after the addition of Rician noise to yield an 
SNR of 28db, (c) image (b) after the application of NLM with a search d
yielding an MSE of 8.75, (d) the ‘method noise’ (Buades et al., 2005b) of (c), (e) image (b) after 
the application of the NLM with a search distance of 20 pixels, yielding a ‘better’ MSE of 5.33, 
(f) the ‘method noise’ of (d). It can be clearly seen in both the denoised images and the ‘method 
noise’ images that, although the larger search distance yields a smaller MSE, important detail is 

Empirical evaluation 

To evaluate the performance of the DNLM algorithm, we elected to compare it

denoising ability to that of seven other algorithms: Gaussian low pass filter (GLPF), 

bilateral filter anisotropic diffusion (AD) (Murase et al., 2001), wavelet adaptive 

multiscale products threshold (WAMPT) (Bao and Zhang, 2003), traditional wavelet 

(Pan et al., 1999, Bao and Zhang, 2003), NLM, and 

trivial temporal extension of the NLM discussed in section  4.5). The GLPF was chosen as 

a reference filtering approach. The others were chosen because they represent several 

different approaches to the MR image denoising problem. Three experiments were 

: A quantitative evaluation using an artificially-generated DCE

: A quantitative evaluation using real clinical DCE-MRI data

: A qualitative evaluation using real clinical DCE MRI data.

he purpose of the quantitative experiments was to evaluate the denoising performance 

MSE. However, as noted in Section  4.5, it is possible f

algorithm to yield results that appear to be good both visually and in terms of 

and yet, on closer inspection, contain geometric artefacts. This was the rationale for 
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(f) 

(a) Synthetic, noiseless, image of two similar tissues, the upper one with a potential 
abnormality (e.g. enhancing tissue), (b) image (a) after the addition of Rician noise to yield an 
SNR of 28db, (c) image (b) after the application of NLM with a search distance of 1 pixel, 

of (c), (e) image (b) after 
the application of the NLM with a search distance of 20 pixels, yielding a ‘better’ MSE of 5.33, 

early seen in both the denoised images and the ‘method 
noise’ images that, although the larger search distance yields a smaller MSE, important detail is 

we elected to compare its 

denoising ability to that of seven other algorithms: Gaussian low pass filter (GLPF), the 

, wavelet adaptive 

, traditional wavelet 

, NLM, and the ENLM (the 

). The GLPF was chosen as 

a reference filtering approach. The others were chosen because they represent several 

different approaches to the MR image denoising problem. Three experiments were 

generated DCE-MRI image 

MRI data. 

: A qualitative evaluation using real clinical DCE MRI data. 

denoising performance 

, it is possible for an 

algorithm to yield results that appear to be good both visually and in terms of the MSE 

and yet, on closer inspection, contain geometric artefacts. This was the rationale for 
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undertaking the qualitative experiment. In all experiments, the denoising algorithms 

were applied to individual sagittal slices rather than to entire volumes. This was done 

because, in the clinical data, the slice pixels were square (~0.8mm) with a much smaller 

dimension than the slice thicknesses (~5mm).  

The DCE-MRI data used directly in these experiments, hereinafter called the test data, 

originate from 16 routine clinical breast MRI examinations performed by Queensland X-

Ray (QXR) and four breast MRI examinations of subjects with diagnosed breast cancer 

performed at the Wesley Research Institute (WRI). The QXR DCE-MRI data were 

acquired with fat-suppression and the WRI data without. Several additional QXR data 

sets, hereinafter called the training data, were used indirectly to, (i) gauge the range of 

noise levels that might typically be encountered in DCE MR images acquired in clinical 

practice to optimise parameter values for the denoising algorithms subsequently 

evaluated in the experiments (the parameters were optimised to yield the minimum 

MSE on the training data) and, (ii) to build the synthetic image sequence used in 

Experiment 1. The approval of the Human Research Ethics Committee of the University 

of Queensland was obtained for this study. 

The specific instantiations of the denoising algorithms evaluated in the experiments are 

as follows. For the GLPF, a 2D Gaussian with a standard deviation of one pixel was used. 

For the Bilateral filter, Gaussian similarity measures were used with ¯Á (spatial spread) 

equal to 1.8 pixels and Â̄ (photometric spread) equal to 4 times the amount of the 

estimated noise. For the NLM, a 11×11 pixel similarity window was used 

(corresponding to approximately 9×9 mm) and h was taken to be 1.75¯ (where σ is the 

estimated level of noise in the image). For the ENLM, a 7×7 pixel similarity window was 

used (approximately 5.5×5.5 mm) with K � 1.25¯ and for the DNLM, a 5×5 similarity 

window was used (approximately 4×4 mm) with K � 1.5¯. The search area for the NLM 

algorithm was defined to be one pixel in each spatial direction, whilst for the DNLM and 

ENLM algorithms, it was defined to be one pixel in each spatial direction and all time 

points in the temporal dimension. The constraint on the spatial search area was 

imposed to minimise the drawback of the ‘non-local’ property of the NLM algorithm 

(discussed in Section  4.5) while still accounting for some patient movement. The 

anisotropic diffusion parameter was chosen to be five times the amount of estimated 

noise. For the WAMPT algorithm, k1=1 and k2=0 were used (these were the default 
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values in the implementation made available to us by Bao & Zhang (Bao and Zhang, 

2003). In the case of the TWT algorithm no parameter values needed to be selected a 

priori.  

The median-absolute-value (MAV) (Bao and Zhang, 2003) estimator, which is based on 

Donoho’s noise estimator (Donoho and Johnstone, 1994), was chosen as the noise 

estimator for the experiments, based on experimental evaluation. The estimator was 

tested using three real images from the training data (selected because they contained 

very little visual evidence of noise). Several different levels of simulated Rician noise 

were imposed (Manjón et al., 2008) on these images, as shown in the first column of 

Table  4.1. The MAV estimator was found to yield biased, although linearly-related, 

estimates of the noise level. A line was then fitted to the estimated results to correct for 

the bias and an unbiased estimator of the noise was thus determined to be 

 

�̄ � 1.25¯ � 6. 

 

Table  4.1: Estimating Rician noise using the MAV estimator 
Imposed noise 
level 

SNR (db) Estimated  
Noise ( �̄) 

10 32.9 9.6 
40 20.9 40.7 
80 14.9 80.6 

120 11.3 117.0 
160 8.8 156.2 

 

4.6.1 Experiment 1: Quantitative evaluation using an artificially generated DCE-

MRI image sequence  

The aim of this experiment was to quantitatively evaluate the performance of each 

denoising algorithm using an artificially-created DCE-MRI sequence to which known 

levels of noise could be added. The artificial DCE-MRI sequence was created from the 

synthetic image shown in Figure  4.2. The image resembles a sagittal DCE-MRI image of a 

breast. It contains several structures that mimic different tissue types. The intensities of 

the individual structures were independently varied to yield an artificial temporal 

sequence. Realistic intensity variation over time was achieved by superimposing 

enhancement variations derived from a real breast DCE-MRI data set selected from the 
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training data. More specifically, a parametric model of contrast enhancement (Gal et al., 

2007b) was fitted voxel-wise to the selected data set and then used to generate 

plausible enhancements in the synthetic temporal sequence. The resulting artificial data 

set comprised 7 slice images of 256×256 pixels. For the enhancement model, we used 

the following parameter values, (i) a=6.2, b=1.4, c=1.2 to yield a curve shape which is 

typical for malignant enhancement and, (ii) a=1.2, b=3.8, c=0.8 to yield a curve shape 

that is typical for benign enhancement. Several intermediate curve shapes were also 

used. A GLPF, with a standard deviation of 2 pixels, was then applied to the synthetic 

image sequence to smooth the artificially-created step edges. Next, three separate noisy 

image sequences were generated from this data set. Each was obtained by adding a 

specific level of simulated Rician noise (Manjón et al., 2008) to the synthetic image 

sequence. In two cases, the level of noise added was consistent with that measured in 

the training data (SNR levels of about 19.8 and 13.8 db), and in the third, a higher level 

of noise was used (SNR of about 10.2 db). Next, each of the denoising algorithms was 

independently applied to the third image in each of the noisy sequences. The third 

image was chosen because, in the real DCE-MRI data set, most enhancing tissues 

showed significant enhancement at that time point.  The result from each algorithm was 

then compared to the noiseless version of this image using the mean-squared-error 

(MSE) metric. The results are shown in Table  4.2. In all cases, the DNLM algorithm 

yielded the smallest MSE. 

4.6.2 Experiment 2: Quantitative evaluation using real DCE-MRI data 

The aim of this experiment was to quantitatively evaluate the performance of each 

denoising algorithm using real DCE-MRI data. One post-contrast slice image was 

randomly selected from each of the 20 different DCE-MRI data sets in the test data. 

Rician noise was then added to these images and to their counterparts over time to 

yield 20 noisy image sequences. The level of noise added was chosen to yield SNRs 

consistent with the worst SNR estimated from the training data (about 8 db). Next, each 

of the algorithms was independently applied to the noise-corrupted versions of the 

selected post-contrast slice images and each of the denoised images was then corrected 

for Rician noise bias viz. (Manjón et al., 2008)  

 



 

 

  

 

 

 
(b) 

Figure  4.2: Synthetic breast DCE
DCE-MRI image sequences
Image (a) demonstrates the enhancement coefficients 
in the image represent different tissue types with different enhancement curves.
(e) are the substruction of the pre
images, respectively. The image

 

 

Where �ç�/, V� is the bias

resultant image was then compared to the corresponding original image using the MSE 

metric. The MSE results are summarised 

plots, in Figure  4.4. The results show that the median and mean MSE for the DNLM 

algorithm is smaller than that for any other method and that the spread of 

values about the median (interquartile range) is

to test the null hypothesis that all of the algorithms perform equally well, versus the 

alternate hypothesis that they do not. The different denoising methods were taken to be 

 �ç�/, V� � �w�ö�/, V�|� � 2¯�  

 

 
(a) 

 

 
(c) 

 
(d) 

 
: Synthetic breast DCE-MRI image used in Experiment 1 to generate the artificial 

MRI image sequences 
Image (a) demonstrates the enhancement coefficients of different tissues.

represent different tissue types with different enhancement curves.
(e) are the substruction of the pre-contrast from the first, second, third and forth post

The images are presented after the blurring stage. 

is the bias-corrected version of the denoised image 

image was then compared to the corresponding original image using the MSE 

metric. The MSE results are summarised in Table 4.3 and shown graphically, using box 

. The results show that the median and mean MSE for the DNLM 

algorithm is smaller than that for any other method and that the spread of 

values about the median (interquartile range) is also small. The Friedman test was used 

to test the null hypothesis that all of the algorithms perform equally well, versus the 

alternate hypothesis that they do not. The different denoising methods were taken to be 
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(e) 

MRI image used in Experiment 1 to generate the artificial 

of different tissues. The different shapes 
represent different tissue types with different enhancement curves. Images (b)-

contrast from the first, second, third and forth post-contrast 

corrected version of the denoised image �ö�/, V�. Each 

image was then compared to the corresponding original image using the MSE 

and shown graphically, using box 

. The results show that the median and mean MSE for the DNLM 

algorithm is smaller than that for any other method and that the spread of the MSE 

also small. The Friedman test was used 

to test the null hypothesis that all of the algorithms perform equally well, versus the 

alternate hypothesis that they do not. The different denoising methods were taken to be 
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the column effects, with the different images being taken to be the row effects. The test 

was performed using the Statistics Toolbox in MATLAB (2007). The p-value for the test 

was smaller than 10�÷, thus providing evidence, at the α=0.05 level of significance, that 

the algorithms do not all perform equally well. A post hoc multiple-comparison test 

consisting of seven paired-sample Wilcoxon tests was also performed. More specifically, 

the performance of each denoising method was compared in turn to that of the DNLM 

method using a paired-sample Wilcoxon test. In each test, the null hypothesis was that 

the DNLM method and the other method perform equally well, versus the alternative 

hypothesis that the DNLM method performs better; i.e. yields a smaller MSE. The 

unadjusted p-values for the individual paired-sample tests are shown in Table  4.4. The 

multiple comparison test was performed at the α=0.05 level of significance dictating 

that, using the Bonferroni correction, each pair-wise test be performed at the 

α=0.05/7=0.0071 level of significance. Thus, it can be concluded, at the α=0.05 level of 

significance, that the DNLM algorithm performs better than all of the other denoising 

algorithms. 

 

Table  4.2: Results of the quantitative evaluation using three artificially generated noisy DCE-MRI image 
sequences (Experiment 1)  
The numbers in the table are the MSE between the bias-corrected denoised image and the 
corresponding (noiseless) artificial image (lowest MSE is highlighted in bold).  

Method Sequence 1 
(SNR 19.8db) 

Sequence 2 
(SNR 13.8db) 

Sequence 3 
(SNR 10.2db) 

AD 1109 3989 8443 

WAMPT 1522 3795 7606 

DNLM 983 3487 7535 
GLPF 5858 8423 12681 

Bilateral 5864 8352 12066 

TWT 1609 4159 8170 

NLM 1244 4452 9532 

ENLM 1199 4168 8799 
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Table  4.3: Means and five number summaries of the MSE values for all the methods in Experiment 2 
(Minimum, mean, median, interquartile range (IQR) and maximum value), lowest values are 
highlighted in bold 

Method Min MEAN MEDIAN IQR Max 
AD 946 3773 1475 2412 24046 
WAMPT 815 3578 1330 2322 23971 
DNLM 542 1584 749 882 8540 

GLPF 647 2072 1023 1729 9494 
Bilateral 796 3783 1321 2446 25183 
TWT 883 3715 1376 2390 24526 
NLM 692 1967 924 1206 9664 
ENLM 545 1669 788 878 8987 

 
 

Table  4.4: Unadjusted p-values for the post hoc multiple comparison test of Experiment 2 

Test 
No. 

Null 
hypothesis 

Alternate 
hypothesis 

p-value 

1 µDNLM= µNLM µDNLM< µNLM < 10�ø 
2 µDNLM= µENLM µDNLM< µENLM < 10�÷ 

3 µDNLM= µBilateral µDNLM< µBilateral < 10�ø 

4 µDNLM= µTWT µDNLM< µTWT < 10�ø 
5 µDNLM= µGLPF µDNLM< µGLPF < 10�ø 

6 µDNLM= µWAMPT µDNLM< µWAMPT < 10�ø 
7 µDNLM= µAD µDNLM< µAD < 10�ø 

 

4.6.3 Experiment 3: Qualitative evaluation, by expert observers, using real DCE 

MRI data 

Experiments 1 and 2 yielded quantitative evaluations of the performance of each 

denoising algorithm. However, the results may be biased because of the nature of the 

image data used in the experiments and the choice of performance metric (MSE). Also, 

in Experiment 1, the synthetic image data used may be too simplistic, e.g. the bias field, 

motion artefacts, and the true complexity of the tissue types and structure are not 

modelled. In Experiment 2, although real data is used, the reality is that it is not possible 

to acquire perfectly noiseless data and thus the ground truth may be biased. To provide 

a more balanced picture it was decided to undertake a subjective (i.e. visual) 

comparison in Experiment 3. The aim of Experiment 3 was to qualitatively compare the 

performance of the five best denoising methods from Experiment 2 — the DNLM, ENLM, 

NLM, WAMPT and GLPF — using real DCE-MRI data.  The reason for choosing the best 

five was to simplify the ranking task (described in detail below), for the expert 

observers. The data used in Experiment 2 was used again in Experiment 3, i.e. 20 sets of 

images, each set containing the original, original with added Rician noise, and the 
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denoised versions of the noisy image after bias correction. A MATLAB (2007) program 

was written to: 

1. present to the user one of the 20 sets of images (original image, original image 

with added noise, five bias-corrected denoised versions of the noisy image) at a 

time, in a random order 

2. allow the user to arrange (rank) the five bias-corrected denoised images from 

best (a rank of 5) to worst (a rank of 1)  

3. record the ranking. 

Each invocation of the program yields the 20 sets of images in random order, and for 

each set of images, the bias-corrected denoised images are also presented in random 

order (a sample image is shown in Figure  4.3). A total of 24 expert observers were 

recruited for the experiment, 14 image/signal-processing experts, and 10 breast MRI 

radiographers. For practical reasons, the signal-processing observers and the clinical 

observers undertook the experiment at physically-different locations, using physically- 

different hardware. However, the lighting and viewing conditions for both groups were 

matched as closely as possible. In particular, TFT LCD screens were used, under regular 

office ambient lighting, with a one-to-one mapping of the image pixels to the screen 

pixels. In addition, the MATLAB program permitted the user to view each image in a 2:1 

pixel-doubled format (no interpolation) and, optionally, as a photographic negative 

(negative grey-scale). Each observer was asked to use the program to rank the denoised 

images in each set of images from best to worst in terms of ‘noise attenuation, the 

restoration/preservation of fine details and the minimal introduction of artefacts’. Each 

was instructed to make his/her own decision about the relative importance of each of 

these quality factors. Each observer completed this task in isolation from the other 

observers and was blind to the results of the other observers. A summary of the results 

by method is presented in Table  4.5 and shown graphically using box plots in Figure  4.5. 

The results show that the median and mean ranks for the DNLM algorithm are better 

than that for any other method. The different observers were not separated into their 

professional groups, because a previous experiment showed that both groups of experts  

rank the images in a similar manner (Gal et al., 2008). 

The Friedman test was again used to test the null hypothesis that all of the algorithms 

perform equally well, versus the alternate hypothesis that they do not. The different 



 77 

 

 

denoising methods were taken to be the column effects, the different observers were 

taken to be the row effects, and the individual images to be the replicates. The test was 

performed using the Statistics Toolbox in MATLAB (2007). The p-value for the test was 

smaller than 10�÷ thus providing evidence, at the α=0.05 level of significance, that the 

algorithms do not all perform equally well. A post hoc multiple-comparison test 

consisting of four paired-sample Wilcoxon tests was also performed. More specifically, 

each denoising method was compared in turn to the DNLM method using a paired-

sample Wilcoxon test. In each test, the null hypothesis was that the DNLM method and 

the other method perform equally well, versus the alternative hypothesis that the DNLM 

method performs better, i.e. that the assigned score (rank) is larger. The p-value for 

each test was no larger than 0.00410. The multiple comparison test was performed at 

the α=0.05 level of significance so that, using the Bonferroni correction, the level of 

significance actually used in each paired test was α=0.05/4≈0.0125. Thus, it can be 

concluded, at the α=0.05 level of significance, that the performance of the DNLM 

algorithm is better than all of the other algorithms.  
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(a) 

 
(e) 

Figure  4.3: Clinical breast DCE-MRI image used in experiment 3. The denoising results are demonstrated 
on a selected patch of the image
Top: Original, image, 
denoising result of the 
NLM, (f) denoising result of GLPF

 
 

Table  4.5: Means and five number summaries of the ranks assigned by all observers in Experiment 3
(Minimum, mean, median, interquartile range (IQR) and maximum value 
denoising methods, 1 is worst and 5 is best)

Method
DLNM
ENLM
NLM 
GLPF 
WAMPT

 

Denoising of DCE

 
 

  
(b) (c) 

  
(f) (g) 

MRI image used in experiment 3. The denoising results are demonstrated 
on a selected patch of the image. 

 (a) patch from the original image, (b) patch with added n
the DNLM (d) denoising result of the ENLM (e) denoising result of 

enoising result of GLPF and, (g) denoising result of the WAMPT.

number summaries of the ranks assigned by all observers in Experiment 3
inimum, mean, median, interquartile range (IQR) and maximum value 

1 is worst and 5 is best) 

Method Min MEAN median IQR Max 
DLNM 2 4.5 5 1 5 

ENLM 2 4.3 4 1 5 

 1 2.8 3 0 5 

 1 2.2 2 0 5 

WAMPT 1 1.1 1 0 4 

Denoising of DCE-MRI 

 
(d) 

 

 

MRI image used in experiment 3. The denoising results are demonstrated 

atch with added noise, (c) 
enoising result of the 2D 

WAMPT. 

number summaries of the ranks assigned by all observers in Experiment 3 
inimum, mean, median, interquartile range (IQR) and maximum value for each of the 



 

 

Figure  4.4: Box plots of the MSE values for all the methods in Experiment 2
 

  

Figure  4.5: Box plots of the ranks assigned by the observers in Experiment 3 to each of the denoising 
methods (1 is worst and 5 is best)

4.6.4 Discussion and conclusions

Section  4.6 presented details of 

DNLM relative to seven other denoising methods

the original NLM algorithm, a trivial temporal extension of 

filtering, anisotropic diffusion, wavelet adaptive multiscale products threshold, and 

traditional wavelet thresholding. In particular

: Box plots of the MSE values for all the methods in Experiment 2 

: Box plots of the ranks assigned by the observers in Experiment 3 to each of the denoising 
methods (1 is worst and 5 is best) 

onclusions of empirical evaluation 

etails of the empirical evaluations of the performance of 

DNLM relative to seven other denoising methods, Gaussian low-pass filtering (GLPF), 

the original NLM algorithm, a trivial temporal extension of the NLM (ENLM), bilateral 

filtering, anisotropic diffusion, wavelet adaptive multiscale products threshold, and 

traditional wavelet thresholding. In particular, three experiments were reported. In the 

 79 

 

 

: Box plots of the ranks assigned by the observers in Experiment 3 to each of the denoising 

empirical evaluations of the performance of the 

pass filtering (GLPF), 

NLM (ENLM), bilateral 

filtering, anisotropic diffusion, wavelet adaptive multiscale products threshold, and 

three experiments were reported. In the 
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first experiment, the algorithms were quantitatively evaluated using three synthetically-

generated noisy DCE MRI datasets. The results show that for all three data sets, the 

DNLM algorithm yielded the smallest MSE between the bias-corrected denoised image 

and its corresponding original noiseless version. In the second experiment, the 

algorithms were quantitatively evaluated using 20 DCE-MRI data sets from routine 

clinical breast MRI examinations to which a known level of Rician noise was added. A 

Friedman test provided evidence, at α=0.05 level of significance, that in terms of MSE, 

the algorithms do not all perform the same. A post hoc multiple comparison test, with 

Bonferroni correction, provided evidence, at α=0.05 level of significance, that the DNLM 

algorithm yields the smallest MSE between the bias-corrected denoised image and its 

corresponding original noiseless version. In the final experiment, the algorithms were 

qualitatively evaluated by 24 expert observers using the 20 data sets from Experiment 

2. The qualitative evaluation involved each observer independently ranking the bias-

corrected denoised images produced by each algorithm, from worst to best (visual 

comparison), for each of the 20 data sets. A Friedman test provided evidence, at α=0.05 

level of significance, that expert observers do not visually perceive each of the 

algorithms to perform equally well. A post hoc multiple comparison test, with 

Bonferroni correction, provided evidence, at α=0.05 level of significance, that expert 

observers find the DNLM algorithm to be the best denoising method. Collectively, the 

qualitative and quantitative results suggest that the DNLM algorithm more effectively 

attenuates noise in DCE MR images than any of the previously-proposed algorithms. The 

results suggest that the DNLM algorithm is useful both as a tool for improving image 

quality for a given resolution and to improve image resolution without compromising 

the image quality in DCE MRI data. This, in turn, may supply the clinician with more 

accurate image data for interpretation in addition to providing a better starting point 

for automatic segmentation and classification by computer. 

4.7 Summary 

This chapter has reviewed existing methods for denoising MR and DCE-MR images and 

methods for comparing denoising algorithms. The chapter introduced a new method, 

called dynamic non-local means (DNLM), for denoising DCE-MR images. This method 

exploits the redundancy of information in different volumes of the data acquired at 

different time points.  Also, quantitative (both on synthetic and real data) and 
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qualitative evaluations of the new method against seven other methods had been 

introduced. Denoising DCE-MR images improves the quality of the image and paves the 

way for higher-level processing methods that are discussed in Chapter 5 (segmentation 

of suspicious lesions) and Chapter 6 (feature extraction and classification of lesions). 
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5. Automatic Segmentation of 

Enhancing Breast Tissue in DCE-

MRI 

 

The amount of data that needs to be examined by a radiologist in DCE-MRI to locate 

suspicious lesions is huge (e.g. 512x512 voxels x 50 slices x 5 volumes). The automatic 

segmentation of suspicious lesions in DCE-MRI of the breast is thus attractive, because it 

may dramatically reduce the amount of data that needs to be examined and draws the 

radiologist’s attention to volumes that have a high probability of containing suspicious 

lesions. However, while, segmenting the image into the relevant objects and background 

parts is a crucial step, “it is also, in many cases, one of the more difficult tasks” 

(Rodenacker and Bengtsson, 2003). 

This chapter introduces the challenge of automatic segmentation. Also, it presents a 

method for the automatic segmentation of enhancing breast tissue. The method is based 

on seeded region growing and merging. The criteria for growing and merging are based 

on both the original image intensity values and the fitted parameters of an empiric 

parametric model of contrast enhancement. The results for the application of the 

method are also presented on 24 DCE-MRI breast data sets originating from routine 

clinical breast MRI examinations. The data includes 10 cases of benign enhancement 

and 14 cases of malignant enhancement (the latter confirmed by histopathology). The 

results show that the segmentation method has 100% sensitivity for the detection of 

suspicious regions independently identified by a radiologist. The results suggest that 

the method has the potential both as a tool to assist the clinician with the task of 

locating suspicious tissue and as a means for generating quantitative features for the 

automatic classification of suspicious regions. The core material of this chapter was 
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presented at ‘Digital Image Computing: Techniques and Applications’, 2007, Adelaide, 

Australia (Gal et al., 2007a). 

5.1 Introduction 

“Image segmentation is the process of separating objects from background” (Snyder and 

Qi, 2004). The segmentation of an image is the partitioning of an image into a set of 

connected regions, where each region is homogeneous in some sense (e.g. intensity or 

texture) and is identified by a unique label (Snyder and Qi, 2004). The basic assumption 

is that the object in the image differs from the background (i.e. everything that is not 

part of the object) in some properties (e.g. shape, intensity, texture). The result of a 

segmentation method is usually a list of equivalence classes where each class represents 

an object or the background.  

Classification of objects (e.g. lesions) in the spatial domain is commonly based on the 

segmentation and different properties of the image, such as morphometric (i.e. shape, 

size), radiometric (i.e. gray level, histogram) and textural properties. The first step in 

object classification is usually the segmentation of the object of interest in the image. 

Robust segmentation is difficult to achieve; thus, the classification process is often 

expected to overcome the noise and bias that may be introduced by the segmentation 

step.  

Manual segmentation is subjective, and given the vast quantity of data to be analysed in 

a DCE-MRI data set, the possibility exists that diagnostically-significant regions of 

enhancement may be overlooked. However, automatic segmentation is challenging, 

because the temporal and spatial distributions of the contrast agent in suspicious tissue 

can be highly varied, both for an individual patient and between patients. 

5.2 Segmentation methods for greyscale images 

In this section, an overview of segmentation methods for greyscale images is presented. 

These methods provide the basis for MR images segmentation techniques. In general, 

segmentation techniques can be roughly divided into two types of algorithms: those 

that find the edges and contours in the image, assuming that once a contour is found, the 

inner side of the contour will be the object while the outer region is the background; 

and those that define a criteria of membership for a region and search for connected 
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sets of pixels that satisfy these criteria. Some of these are based on global and local 

thresholding, which usually involves the analysis of the image histogram (Arifin and 

Asano, 2006, Abutableb, 1989, Wong and Sahoo, 1989, Otsu, 1979, Cheng et al., 2000, 

Sezgin and Sankur, 2004). Such techniques attempt to estimate a threshold or 

thresholds that can create a binary differentiation between the object’s intensity levels 

and the background intensity levels. Global, single value, thresholding techniques are 

usually not practical for real world images, because of the variety of objects in the image 

and the presence of noise and different bias effects (e.g. illumination, shadows, optical 

effects, bias field in MRI). Local thresholding techniques tend to overcome this 

limitation by dividing the image into small segments or regions of interest and applying 

a different threshold to each one of them. The size of these segments is usually decided 

prior to the segmentation process, because they have a major influence on the outcome. 

Global, multiple threshold binarization techniques, on the other hand, try to manipulate 

the image histogram by dividing it into intensity subsets or by projecting it into a 

different space such that the binarization will incorporate additional information, rather 

than just the intensity histogram (Abutableb, 1989, Cheng et al., 2000, Sezgin and 

Sankur, 2004). Of these, the entropy-based binarization (Abutableb, 1989) has shown to 

be both robust and parameter free. The entropy thresholding method is described in 

detail in Appendix A. 

Edge detection techniques attempt to mark the boundaries of the desired object(s) and 

to segment it/them by identifying the image pixels that lie inside those boundaries. 

Edge detection methods usually assume meaningful changes of intensity levels or 

intensity behaviour between different objects in the image (Pal and Pal, 1993). These 

techniques sometimes approximate the image by a set of planes, manifolds or curves 

that roughly present the expected behaviour of the intensity as if the image was 

continuous and noise free.  

Inside the edge detector algorithm family, both parallel and sequential edge detectors 

can be found. Examples of parallel edge detectors are Canny, Prewitt and Sobel edge 

detectors (Gonzalez and Woods, 2002). Sequential edge detectors tend to solve 

regularized ‘shortest path’ type problems that are an outcome of representing the image 

as an edge-weighted connected graph, where the edge weights are usually a function of 

the Euclidian distance between pixels, intensity difference, and so on. Some of the most 



86 Automatic Segmentation of Enhancing Breast Tissue in DCE-MRI 
 

 
 

common examples for such edge detectors are Snakes and Balloons. The main 

disadvantage of such methods is their dependency on the selection of the starting point 

and the regularization function for the algorithm (Kass et al., 1988).  

An expansion of the dynamic contour edge detectors are the level set/fast marching 

algorithms. The level set algorithms approximate the equations of motion for a 

propagating boundary by transforming them into a partial differential equation whose 

unique solution is the position of the boundary. The fast marching algorithm is a special 

case of the level set algorithms family with a boundary moving at a speed of ù � ù�/, V� 

where F is always positive or negative. This family of algorithms assumes a starting 

point that belongs to the desired object. Level set algorithms handle corners and cusps 

naturally, in addition to topological changes. Nevertheless, level set methods assume a 

pre-known behaviour of the intensity levels inside and on the boundaries of the object, 

which is incorporated into the formulated speed/time functions of the propagating 

boundary (Sethian, 1999, Malladi and Sethian, 1996, Malladi and Sethian, 1995, Sethian, 

1996).  

Another family of methods that uses a similar concept to the fast marching is the seeded 

region growing (SRG). This family of methods usually requires starting points or ‘seeds’ 

from which the growing process will start (Adams and Bischof, 1994, Petrick et al., 

1999, Mehnert and Jackway, 1997, Revol and Jourlin, 1997, Xuan et al., 1995, Pohle and 

Toennies, 2001, Kupinski and Giger, 1998). The attractiveness of the process is that it is 

fairly intuitive (one can estimate the final result by looking at the image) and that it 

permits integrating prior information into the algorithm. Suspicious lesions in DCE-MRI 

of the breast usually consist of a single tissue type (per lesion). Thus, they appear as one 

(or several) connected component of pixels with similar properties (e.g. textural, 

kinetic). This has made the SRG algorithm a good candidate for segmenting suspicious 

lesions in the breast, once a lesion area has been located, by using a pre-processing (e.g. 

too sensitive segmentation) step. 

Other families of segmentation algorithms include probalistic model estimations, such 

as Markov random fields and the Maximum Likelihood (Pal and Pal, 1993, Rimey and 

Cohen, 1988). The latter assumes that the data in the image of any one object are 

statistically independent of the others. It then tries to find a segmentation that has the 

maximum probability, given the image, assuming that the similarity in the intensity 
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properties of the neighbouring pixels is proportional to the probability that they belong 

to the same object. 

The robustness of the entropy-based binarization and the basic assumption upon which 

SRG is based, have made these methods the natural choice in this research. This was the 

main motivation for using them as the main steps in the segmentation algorithm 

proposed in this chapter. 

5.3 Review of breast lesion segmentation techniques 

Breast medical images can be acquired in several ways. Among which are the 

Ultrasound, X-ray mammograms, Computed Tomography (CT), Nuclear Medicine and 

MRI (including DCE MRI). Each modality yields a slightly different image that presents 

different properties of the same object. However, all acquisition results are translated to 

a discrete image that represents the local average intensity of the observed property of 

the tissue in each pixel/voxel in the image.  

When trying to detect malignant tissue in a breast volume, it is assumed that malignant 

tissues have different characteristics to benign tissue, in the scale of the acquisition 

intensity results. The differentiation can appear either in rough intensity, in boundary 

shape, texture or any combination of them. In dynamic imaging, differences can also be 

observed on the time axis. 

One of the common segmentation methods is the SRG. Variations of this method are 

often used in the transformation of the information extracted from the image, such as 

the Density Weighted Contrast Enhancement (DWCE) (Petrick et al., 1999). In other 

cases, strong assumptions, such as the convexity of the lesion (Kupinski and Giger, 1998, 

Pohle and Toennies, 2001) or the homogeneity of either the intensity levels (Pohle and 

Toennies, 2001) or the contrast enhancement over time (Lucas-Quesada et al., 2005), 

are made to simplify the process. Moreover, SRG-based methods in the literature often 

rely on manual seed selection, which requires the user to review the data and identify 

the regions of interest. Alternatively, the user is required to mark a region of interest 

around the lesion to bind the area in which the segmentation is performed (Chen et al., 

2006b, Chen et al., 2006a) or even perform a ‘rough’ prior delineation of the lesion that 

will later be refined by the algorithm (Gilhuijs et al., 1999). 
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Fully-automatic methods have been also proposed (Hayton, 1998, Li et al., 1995). These, 

however, usually involve a set of parameters that need to be empirically tuned, and may 

not fit every dataset (Hayton, 1998) or tend to be highly sensitive to the structure of the 

data (i.e. perform differently on different datasets) or to the order in which the pixels 

are scanned (Li et al., 1995). Li et al. also comment in their paper that the algorithm is 

not generally sensitive to masses. 

A fully-automatic segmentation algorithm with a high sensitivity to suspicious lesions is 

thus desirable. In this chapter, a fully-automatic segmentation algorithm for suspicious 

lesions in DCE-MRI of the breast is presented. The algorithm demonstrated a sensitivity 

of nearly 100% to enhancing lesions on DCE-MRI data from clinical practice. 

5.4 New algorithm for segmenting enhancing lesions in DCE-

MRI 

The proposed segmentation algorithm makes use of the kinetic model proposed in 

section  3.3. The proposed segmentation algorithm is shown in Algorithm  5.1. The 

individual steps of the algorithm are described below. 

5.4.1 Computing the ‘Critical Points Map’ (CPM) 

The proposed model of enhancement can be described as follows: 

 

  ��
� � S · 
 · ����
�   ( 5.1) 

 

where t is time, and a, b, and c are the free parameters to be fitted. 

The model is fitted to each time series voxel in the DCE-MRI data set, using a non-linear 

optimisation algorithm (Levenberg-Marquardt). For each voxel in turn, the critical point 

  

  ×� � SNI max` ��
� � ��
����  ( 5.2) 

 

 is computed and then normalised as follows 
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  ×�úúúú � ��ûü��� ,  ( 5.3) 

 

where T is the acquisition duration. The normalisation ensures that ×�úúúú lies in the 

interval [0,1). The resulting volume of ×�úúúú values is filtered, slice-wise, using a 3×3 

Gaussian�ý � 0, ¯� � 1�, to mitigate rapid changes caused by noise and/or patient 

movement. The resulting matrix of filtered ×�úúúú values constitutes the CPM. In essence, 

the CPM measures the speed of contrast uptake at each voxel location, independent of 

the actual intensity value of the voxel.  

 

Algorithm  5.1: The proposed segmentation algorithm 
Inputs • A breast DCE-MRI data set comprising one pre-contrast volume and several 

spatially co-registered post-contrast volumes  

• Time threshold �  

• Relative intensity thresholds �K� and �K� 
Output • A set of connected components locating regions of suspicious enhancement 

Steps 

1. Compute the ‘Critical Points Map’ (CPM). This is a map of (normalised and filtered) 
critical points obtained from a voxel-wise fit of the empiric parametric model of 
enhancement 

2. Compute the ‘Contrast Enhancement Image’ (CEI). This is a map of the maximum contrast 
enhancement attained for each voxel within � minutes of contrast agent injection 

3. Create the ‘Domain of Interest’ (DOI) binary mask. This mask is derived from the CEI and 
CPM and defines a subset of the breast volume in which region growing/merging will be 
performed 

4. Identify seed voxels within the DOI whose CEI value is greater than �K� times its pre-
contrast value  

5. Perform seeded region growing using the selected seeds, assimilating each voxel neighbour 
whose CPM value differ by less than �K� from the average CPM of the region (Algorithm 
 5.2) 

6. Merge abutting regions with similar average CPM (difference smaller than �K�) 

 

5.4.2 Computing the ‘Contrast Enhancement Image’ (CEI) 

The value of the CEI at voxel position x is computed as follows: 

 

  5]¥� � maxÏ�¥�4m� � ¥���, 0Ð,  ( 5.4) 

 

Where ¥�4m� � max`;}�,þ�Ï¥�̀Ð is the maximum intensity value at position x during the 

first � minutes of the acquisition, and ¥�� is the intensity value of the voxel at position x in 
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the pre-contrast image. The assumption is that significant contrast enhancement will 

occur in a suspicious lesion within τ minutes after the injection of the contrast agent. A 

suitable value for � is 2–3 minutes as prescribed in the American College of Radiology 

Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon (Morris and 

Liberman, 2005). The CEI essentially measures the maximum uptake of contrast agent 

at each voxel during the first τ minutes of the acquisition. 

5.4.3 Computing the ‘Domain of Interest’ (DOI) binary mask 

The DOI mask, M, is obtained by means of entropy-based thresholding (Abutableb, 

1989). Two variants of this step were devised to handle DCE-MRI data with and without 

fat suppression: 

1. Non-fat-suppressed DCE-MRI data. The DOI is obtained from a two-dimensional 

(2D) entropy thresholding based on the CEI and the CPM 

2. Fat-suppressed DCE-MRI data. The DOI is obtained from a one-dimensional (1D) 

entropy thresholding of the CEI. In our experience, the fat-suppressed data are 

noisier than the non-fat-suppressed data leading in turn to noisier CPMs and the 

possibility of under-segmentation if 2D entropy thresholding is used.  

The resulting binary mask, M, is assumed to be a superset of the set of all suspiciously 

enhancing regions. 

5.4.4 Identifying a seed voxel 

To segment each region, a seeded region growing (Adams and Bischof, 1994) is 

performed. The method is based on iteratively growing a seed pixel into a region and is 

described in detail in Appendix B.  

At the i-th iteration, the candidate seed, O8, is an unlabelled voxel satisfying:  

1. O8 ; 
, 

2. ÉðsÊ�ßÊ�ß�
� 1Ë 9 �K�, and 

3. O8 � SNI max��5]¥�� 

where �K� is a pre-defined threshold defining the minimum relative contrast 

enhancement rate of a suspicious lesion within τ minutes; ¥�ß�  is the intensity of the voxel 

at the position O8 in the pre-contrast image, and 5]¥�ß  is the CEI value at voxel position 
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O8. The value for �K� is determined experimentally, because the initial enhancement rate 

is affected by the variation in the pulse sequence, the field strength of the magnet, 

timing of the contrast agent, the start of the first post contrast scan, and the vendor-

related issues (Morris and Liberman, 2005). 

5.4.5 Perform seeded region growing 

A seeded region growing (Adams and Bischof, 1994) is performed using a candidate 

seed, constrained to the mask M. For each voxel, x, neighbouring the seed region, r8, the 

similarity criterion is defined by: 

 

  ��/, r8� � |5Y
�/� � 5Y
úúúúúú�r8�| < �K�,  ( 5.5) 

 

where 5Y
úúúúúú�r8� is the mean critical point value of the evolving region; and �K� is a 

predefined similarity threshold, measured experimentally. With the appropriate 

definition of the neighbour relation, this step can be performed in either 2D or 3D. The 

algorithm of this step is described in Algorithm  5.2. 

 

Algorithm  5.2: Algorithm for the seeded region growing/merging step 

 

While there are potential seeds: 

Find the next potential seed, O8, that satisfies the following criteria: 

1. O8 ; 
 

2. 
ðsÊ��ß�

Ê�ß�
9 �K� 

Push O8 into a priority queue, Q 

While Q not empty: 

Pop the first O8 from Q 

If there is a j such that O8 ; rÕ then continue (pop next seed) 

Mark O8 as part of a new region, r8 
Add each pixel AÕ that satisfies the following criteria to r8:  

1. AÕ ; £�r8�  
2. AÕ ; 
 
3. AÕ � r�, �~  
4. ¼5Y
úúúúúú�r8� � 5Y
^AÕ_¼ < �K� 
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5.4.6 Merge abutting regions 

Every pair of neighbouring regions �r�, r4� satisfying |5Y
úúúúúú�r�� � 5Y
úúúúúú�r4�| < �K� are 

merged into a single region. With the appropriate definition of the neighbour relation, 

this step can be performed in either 2D or 3D.  Moreover, the relation can be defined 

such that two regions are considered neighbours not only if they abut, but also if they 

are within a prescribed proximity to one another. 

5.5 Evaluation of the proposed segmentation algorithm 

The aim of the experiment is to evaluate the sensitivity of the proposed segmentation 

algorithm to enhancing lesions. Two separate sources of DCE-MRI data were used to 

evaluate the segmentation algorithm: 20 fat-suppressed data sets originating from 

routine unilateral breast MRI examinations; and 4 non-fat-suppressed data sets from 

unilateral breast MRI examinations of 4 subjects, each with a diagnosis of primary 

breast cancer and each imaged prior to intervention. The fat-suppressed data were 

acquired on a 1.5T Signa EchoSpeed (GE Medical Systems, Milwaukee, USA). The non-

fat-suppressed data were acquired on a 1.5T Siemens Sonata (Siemens Medical Systems, 

Berlin, Germany). All data sets were acquired using a three dimensional FSPGR 

sequence and an open breast coil that permitted the subject to lie prone. Gadopentate 

dimeglumine, 0.2 mmol/kg, was administered at a rate of about 3 ml/second. 

Scan/sequence details are given in Table  5.1. In the case of the fat-suppressed data, the 

screen captures of suspicious ROIs drawn by the interpreting radiologist, in addition to 

the MRI findings and histopathology findings (where available), accompanied each data 

set. 

 

Table  5.1: Scan/sequence parameters for the data sets used to evaluate the segmentation algorithm 

 Fat suppressed data 
(20 data sets) 

Non-fat-suppressed data 
(4 data sets) 

Acquisition matrix 256×256 256×256 
Image matrix 512×512 (ZIP512) 256×256 
Flip angle 10° 25° 
No. sagittal slices 24–72 48 
Slice thickness  2.5 mm (ZIP2) 2.5 mm 
No. postcontrast 
volumes 

4–10 5 

Pixel spacing 0.39 mm 0.7 mm 
Labelled ROIs Yes No 
No. labelled ROIs 1–9 NA 



 93 

 

 

 

The segmentation algorithm was applied to all 24 data sets using the following 

parameters, τ=3 minutes, �K� � 0.4, and �K� � 0.2. The value for �h� was based on 

reported contrast-enhancement rates from the literature, and measurements on 

additional DCE-MRI datasets originating from routine clinical examination, while the 

value for �K� was determined experimentally (using the same datasets as for �h�). The 

region growing was performed slice by slice in 2D using a 4-connected neighbourhood, 

and the region-merging step was performed in 3D using a 6-connected neighbourhood 

to allow consistent distances between the neighbouring voxels. For the 20 subjects for 

which ROIs had been marked by the interpreting radiologist, the results of the 

segmentation algorithm included the marked ROIs in all of the cases, i.e. the 

segmentation algorithm has 100% sensitivity for suspicious ROIs. However, in most 

cases, additional regions were selected by the algorithm, including the liver (when 

present in the data). A typical segmentation result is shown in Figure  5.1 and the worst 

case of over-segmentation is shown in Figure  5.2. The ROIs selected by the interpreting 

radiologist were not exhaustive and thus may not include all suspicious tissue. In 

addition, the ROIs delineate the ‘hot spots’ of enhancement rather than the entire 

lesions. Consequently, it is not possible to assess the specificity of the segmentation 

algorithm for the detection of suspicious lesions. Instead, to assess the efficacy of the 

method, for each labelled data set, the percentage of voxels segmented in each slice was 

computed for the slices containing a radiologist-marked ROI. For the 20 data sets, the 

results ranged from 0.20% to 8.98% with a median value of 0.8% and a mean value of 

1.9% of the slice image area (Table 5.2). For the four non-fat-suppressed data sets, each 

corresponding to a subject with diagnosed breast cancer, the segmentation results were 

visually compared to the respective raw subtraction images. In each case, the 

segmentation algorithm detected the malignant tissue, whilst at the same time labelling 

only a small fraction of the voxels in each slice as suspicious (consistent with the 

findings based on the 20 fat-suppressed data sets). 
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Table  5.2: Summary of the segmentation results for the 24 DCE-MRI data sets 

Subject No. of  
radiologist-
marked ROIs * 

% of 
radiologist’s 
ROIs included 
in the 
segmentation 

% of Image  
Segmented** 

Overall MRI 
finding  

Fat Suppression 

1 1 100 2.02 Malignant Y 
2 1 100 2.04 Malignant Y 
3 1 100 0.20 Malignant Y 
4 7 100 0.53 Malignant Y 
5 3 100 0.49 Malignant Y 
6 3 100 0.99 Malignant Y 
7 1 100 0.36 Malignant Y 
8 6 100 0.49 Malignant Y 
9 1 100 0.52 Malignant Y 

10 3 100 0.74 Malignant Y 
11 6 100 2.00 Benign Y 
12 5 100 8.98 Benign Y 
13 3 100 0.85 Benign Y 
14 3 100 1.57 Benign Y 
15 7 100 5.00 Benign Y 
16 9 100 6.67 Benign Y 
17 6 100 0.39 Benign Y 
18 4 100 0.79 Benign Y 
19 5 100 0.28 Benign Y 
20 2 100 4.39 Benign Y 
21 - - 0.66 Malignant N 
22 - - 0.26 Malignant N 
23 - - 4.20 Malignant N 
24 - - 0.86 Malignant N 

* The ROIs selected by the radiologist are not exhaustive and thus may not include all of 

the suspicious lesions 

** The percentage is calculated for the slices on which the radiologist traced a ROI. The 

data for subjects 21–24 did not include radiologist-marked ROIs. Consequently, the 

percentage was calculated based on slices exhibiting a significant amount of segmented 

voxels. 

 

  



 

 

(a) 

Figure  5.1: Typical segmentation result. 
(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist
Segmented regions 

 

 

(a) 

Figure  5.2: Worst case segmentation results.
(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist
Segmented regions. The over

 

 

(b) 

Typical segmentation result.  
(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist

 

(b) 

case segmentation results. 
(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist
Segmented regions. The over-segmentation includes the liver (lower right).
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(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist, (b) 

 

(a) Original slice image superimposed with the ROI drawn by the interpreting radiologist, (b) 
segmentation includes the liver (lower right). 
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5.5.1 Discussion and conclusion 

The results demonstrate that the proposed segmentation algorithm has 100% 

sensitivity for the detection of suspicious regions independently identified by a 

radiologist. The results show that, in the worst case of over-segmentation, the 

percentage of voxels identified by the algorithm in a given 2D slice is less than 9%. 

Moreover, this figure is inflated because the algorithm segments the liver in addition to 

the suspiciously-enhancing tissue. Thus, the algorithm has the potential to be a tool that 

can assist the clinician with the task of locating suspicious tissue faster and more 

accurately than can be done by the current manual practice. The increased speed is 

afforded because the clinician need only review a small sub-volume of the data 

identified by the algorithm, and the improved accuracy is afforded because the clinician 

has a much lower chance of missing diagnostically significant regions of suspicious 

enhancement. In addition, the regions detected by the algorithm can be used as input to 

a computer-assisted diagnostic system for generating quantitative features for 

automatic classification of suspicious tissue. Future research includes, (i) the 

development of a chest wall segmentation algorithm so that enhancement not within 

the breast volume, e.g. the liver, can be easily distinguished and, (ii) an evaluation of the 

specificity of the segmentation algorithm based on a manual segmentation by a 

radiologist of the suspicious tissue in raw DCE-MRI data. 

The proposed algorithm is highly sensitive to enhancing lesions. However, the 

specificity of the algorithm should still be improved. This can be achieved in several 

ways: 

1. Implementing a more fastidious seed selection process 

2. Use contextual information, including breast volume segmentation, to filter out 

lesions that are outside of the breast volume (i.e. out of context), by segmenting 

the breast volume as a pre-processing step 

3. Perform a post-processing step, based on statistical pattern recognition tools to 

classify and locate those lesions that may have suspicious characteristics and 

thus may be of interest to the radiologist. 

In this thesis, the last option was chosen and hence, a classification method for 

suspicious lesions has been developed and is presented in Chapter 6. 
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5.6 Summary 

This chapter reviewed existing methods for the segmentation of suspicious lesions in 

breast MRI and presented a new, fully-automatic, algorithm for segmenting suspicious 

lesions in DCE-MRI of the breast. An experimental evaluation of the algorithm’s 

sensitivity to enhancing lesions was also presented. The results of the experiment 

suggest that the algorithm has a high sensitivity to enhancing lesions in DCE-MRI of the 

breast. However, it specificity is low and needs to be improved. This can be done by 

creating a mask of the breast volume as a pre-processing step. This will prevent 

segmentation of tissue outside of the breast volume, such as the liver that tends to be 

accidently segmented by the proposed algorithm. Furthermore, as a post-processing 

step, the segmented tissue can be classified, using statistical pattern recognition 

techniques. Chapter 6 of the thesis presents new features for automatic classification of 

suspicious lesions in DCE-MRI of the breast. A classification system, based on these 

features, may allow filtering the results of a segmentation process and thus improve its 

specificity.  
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6. Automatic classification of 

suspicious lesions in DCE-MRI of 

the breast 

The preceding chapters have dealt with low and intermediate-level processing needed 

to implement a CAE system for breast MRI. This chapter focuses on the classification 

(high-level processing) of suspicious lesions. It introduces the background and 

motivation for the automatic classification of the suspicious lesions and reviews the 

existing methods and features for the classification of the suspicious lesions in breast 

MRI. It also presents a study whose aim was to determine the most discriminatory 

subset of features for suspicious lesions in DCE-MRI of the breast. The study shortlists 

the most discriminatory features for the classification of breast lesions in DCE-MRI that 

have been reported to date (Section  6.2). It also presents several new features based on 

the empirical model of contrast enhancement described in Chapter 3, while taking into 

account the curse of dimensionality, and assessing the classification performance using 

separate validation data (Section  6.3). The results (presented in Section  6.3.6) suggest 

that textural and kinetic features are more important than morphometric ones and that 

the CAE can, indeed, improve the specificity of breast MRI. The core material in this 

chapter was presented at ‘Digital Image Computing: Techniques and Applications’, 

2009, Melbourne, Australia (Gal et al., 2009a) and was submitted to the Elsevier 

Artificial Intelligence in Medicine. 

6.1 Introduction 

Dynamic contrast-enhanced (DCE) MRI is being increasingly used in the clinical setting 

to help detect and characterise tissue, suspicious for malignancy (Sinha et al., 1997). In 

an attempt to reduce the subjectiveness of the interpretation, the American College of 

Radiology developed the BI-RADS (Breast Imaging Reporting and Data System) MRI 
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lexicon (American College of Radiology, 2006) that provides a standard terminology for 

reporting breast MRI findings (see Appendix D). In particular, the BI-RADS lexicon 

provides terminology for describing the morphology of a lesion, in addition to its 

enhancement and kinetic behaviour. A plethora of features for the automatic 

segmentation of suspicious lesions have been proposed for breast MRI (Sinha et al., 

1997, Chen et al., 2006b, Chen et al., 2004, Arbach et al., 2004, Nattkemper et al., 2005, 

Torheim et al., 2001, Lee et al., 2007). This chapter reviews these and identifies those 

features that have been found to be the most discriminatory (Section  6.2).  

6.2 Classification of suspicious lesions in breast MRI 

The automatic discrimination between malignant and benign tissue is being researched 

in several different fields of medical image analysis including: cytology (analysis of cells 

from a small sample from a suspicious tissue), histology (analysis of cells from an 

extracted suspicious tissue), MRI, CT, and X-ray mammography. One of the goals of 

automatic classification is to eliminate the subjectivity that exists in human 

interpretation by providing quantitative evaluation of features. A compendium of such 

features developed for automated cytometry can be found in (Rodenacker and 

Bengtsson, 2003). These are principally features for two-dimensional grey-scale images. 

Rodenacker and Bengtsson (Rodenacker and Bengtsson, 2003) classify these features 

into the following four categories, (a) morphometric features, expressing size and 

shape, (b) densitometric features, expressing total intensity, (c) textural features, 

expressing a quantification of local intensity variability and, (d) Structural or contextual 

features, expressing the relationships between different objects. Many of these have 

been used to date in MRI research. In DCE-MRI, however, contrast enhancement makes 

the definition of additional enhancement/kinetic features possible. A review of the 

previous research on breast lesion classification in MRI follows. 

6.2.1 Features proposed for classification of breast MRI lesions 

Various features have been proposed in the literature for the classification of breast 

lesions in MRI. Many of these quantify identical or similar features that are proposed in 

the ACR BI-RADS lexicon. These features include: 



 101 

 

 

Morphometric features 

1. Shape compactness (Sinha et al., 1997, Arbach et al., 2004)  

2.  Radial entropy, which is measured on the histogram of the normalised radial 

lengths for all the points on the boundary of the lesion (Sinha et al., 1997)  

3. Total bending energy, which is defined in terms of the integral of the curvature at 

the different points of the contour (Sinha et al., 1997)  

4. Ratio of minimum to maximum radial length (Sinha et al., 1997)  

5. Maximum standard deviation of the radial gradient histogram (Chen et al., 2004)  

6. Circularity (Chen et al., 2004)  

7. Irregularity of lesion surface (Chen et al., 2004)  

8. Margin gradient along the lesion surface (Chen et al., 2004)  

9. Variance of margin gradient along the lesion surface (Chen et al., 2004)  

10. The volume of the region (Arbach et al., 2004)  

11. Normalised radial length (normalised by the maximum radial length in the 

lesion) (Arbach et al., 2004)  

12. Perimeter length (Arbach et al., 2004)  

Textural features 

13. Textural features based on a co-occurrence matrix (Haralick et al., 1973). These 

may include contrast, sum of average, sum of variance, sum of entropy, entropy, 

difference of entropy, inverse difference moment (IDM) and angular second 

moment (ASM) (Sinha et al., 1997)  

14. Level of spiculation (Arbach et al., 2004).  

Kinetic features (based on the temporal data or a fitted model of enhancement) 

15. Total percentage intensity enhancement (Sinha et al., 1997)   

16. Slope factor of the enhancement curve (Sinha et al., 1997)   

17. Time to half maximum enhancement (Sinha et al., 1997)   

18. Maximum rate of enhancement (Sinha et al., 1997)  

19. Standard deviation of the means of intensity at each of the time points from the 

mean intensity of the entire time-intensity curve (Sinha et al., 1997)  

20. Minimum enhancement (during the first 30 sec) (Torheim et al., 2001)  

21. Wash-in rate (Torheim et al., 2001, Chen et al., 2004, Chen et al., 2006b)  
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22. Wash-out rate (Torheim et al., 2001, Chen et al., 2004, Chen et al., 2006b)  

23. Change in baseline signal (Torheim et al., 2001)  

24. Time to peak(Torheim et al., 2001, Chen et al., 2004, Chen et al., 2006b)  

Maximum uptake (in a pre-defined time frame) (Chen et al., 2004, Chen et al., 

2006b)  

25. Maximum enhancement-variance (Chen et al., 2004)  

26. Enhancement-variance in the first post-contrast volume (Chen et al., 2004)  

27. Percentage enhancement (PE) (Lee et al., 2007), on the 3TP curve (Furman-

Haran and Degani, 2002)  

28. Signal enhancement ratio (SER) (Lee et al., 2007), on the 3TP curve (Furman-

Haran and Degani, 2002).  

Other features 

29. Patients’ age (Sinha et al., 1997) 

30. A variety of features from BI-RADS, where the quantified values are estimated 

manually by skilled radiologists (Nattkemper et al., 2005). These may include: 

a. Normalised, sub-sampled, version of the enhancement curve  

b. Pattern of enhancement (e.g. No enhancement, centrifugal, 

heterogeneous, homogenous and ring-like)  

c. Wash-out type (e.g. typical benign, suspicious and typical malignant); 

d. Morphological features: edge (e.g. well defined, poorly defined, 

spiculated) and contour (e.g. irregular, round). 

6.2.2 Review of existing classification models for breast MRI lesions 

The various features can be broadly divided into two classes, static and dynamic. Static 

features are those that can be derived from a single image volume. They include 

morphometric (quantifying size, shape, boundary, and so on), intensity (derived from 

the intensity histogram), and textural (quantifying the spatial variation of intensities). 

Dynamic features are those derived from the sequence of image volumes acquired 

before and after contrast agent injection. They include direct measures (e.g. time-to-

peak) obtained directly from the temporal data (voxel enhancement curves) and fitted 

model parameters obtained from empiric-parametric and pharmacokinetic models.  
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Table  6.1 lists the highest performing classifiers reported in the literature for breast 

lesion classification in MRI. The performance is measured in terms of either the 

reported area under the ROC curve (AUC) (Arbach et al., 2004, Chen et al., 2006b, Chen 

et al., 2004, Lee et al., 2007, Nattkemper et al., 2005) or a single reported sensitivity and 

specificity (Sinha et al., 1997, Torheim et al., 2001). The table also lists the types of 

features and types of classifiers used in each case, the number of malignant and the 

number of benign data samples, the total number of features that were tested and the 

number of features that were used to generate the best reported result. From the table, 

it is possible to make the following observations. First, in (Sinha et al., 1997, Arbach et 

al., 2004) the number of features that were used is arguably too large relative to the 

number of data samples, in order to avoid the ‘curse of dimensionality’ (Jain et al., 

2000). Second, in the cases where fewer features were used, either the results are not as 

good as those with more features or the feature values were estimated manually by 

clinicians rather than automatically (Nattkemper et al., 2005). Thirdly, in (Chen et al., 

2006b, Chen et al., 2004, Nattkemper et al., 2005, Sinha et al., 1997, Torheim et al., 

2001) it is apparent that the same data was used both for feature selection and for 

measuring classification performance. This fact may positively bias the results. 

Clearly, what is the most useful set of features for breast lesion classification and what 

performance can be expected using this feature set remain open questions. This 

question has motivated the present study. 

6.3 Empirical study of the most discriminatory feature set 

for lesion classification in breast MRI 

6.3.1 Methodology 

The aim of this study was to determine the most discriminatory subset of features from 

among those in Table  6.1 and a couple of new features, described in Section  6.3.3, using 

clinical DCE-MRI data, but taking into account the curse of dimensionality, and assessing 

the classification performance using separate validation data. 

Two experiments were undertaken. The aim of the first experiment was to select the 

most discriminatory subset of features out of a shortlist of features drawn from Table 

 6.1 and a couple of new features described below. Only classifiers with a simple 
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discrimination boundary (i.e. linear in the feature space) were used. The underlying 

assumption was that a feature set with a high discriminatory power should provide 

good discrimination between malignant and benign lesions, even when using a simple 

discrimination boundary. The aim of the second experiment was to estimate the 

performance of the selected features on unseen data, using the same classifiers from 

Experiment 1. 

6.3.2 DCE-MRI data 

A total of 48 breast lesions from 39 DCE-MRI datasets obtained from clinical breast MRI 

examinations of 39 different patients were used. The DCE-MRI data were acquired on a 

1.5T Signa Echospeed (GE Medical Systems), using a three-dimensional fast-spoiled 

gradient-echo (3D FSPGR) sequence. The data were acquired using three different 

protocols because of the protocol changes over time in the clinic from which the data 

were sourced. The data were divided into two sets. 

1. Dataset 1 - 21 lesions from 20 subjects, 11 malignant and 10 benign. The protocol 

used here involved acquiring a single pre-contrast volume and 5–7 post-contrast 

volumes, following an injection of a gadolinium-based contrast agent. Images were 

acquired and viewed at a size of 256x256 pixels per slice, with a pixel size of 0.859 

mm, a slice thickness of 1.5 mm and a temporal resolution of 60–90 seconds per 

volume.  

2. Dataset 2 – a total of 27 lesions from 19 subjects. The data were acquired using two 

different protocols:   

a. 15 lesions from 10 subjects, 8 malignant and 7 benign. The protocol used 

here involved acquiring a single pre-contrast volume and 4 post-contrast 

volumes, following an injection of a gadolinium-based contrast agent. Images 

were acquired at a size of 512x512 pixels per slice, with a pixel size of 0.644 

mm, a slice thickness of 1.2 mm, and a temporal resolution of 90–120 

seconds per volume  

b. 12 lesions from 9 subjects, 6 malignant and 6 benign. The protocol used here 

involved acquiring a single pre-contrast volume and 3–4 post-contrast 

volumes, following an injection of a gadolinium-based contrast agent. Images 

were acquired at a size of 512x512 pixels per slice, with a pixel size of 0.586-
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0.644 mm, a slice thickness of 1.0–1.4 mm and temporal resolution of 90–120 

seconds per volume. 

All lesion findings (i.e. malignant/benign) were confirmed by cyto- or histo-pathology. 

Each lesion was manually delineated in the DCE-MR images by a clinical radiographer, 

using the region growing tool in Osirix (Rosset et al., 2004) and saved as a binary mask. 

The data were split into two datasets so that approximately half of the data was used for 

feature selection and the rest for validation. The data were divided based on the 

different protocols to strengthen the validation of the selected features. Such a 

validation increases the chances that the selected features will be useful on a large 

range of protocols rather than on the protocols that were used for the feature selection 

experiment or for the classifier training. 
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Table  6.1: Literature review summary 
No. Source Feature types  Feature 

selection 
Classifiers 

1 (Sinha et al., 
1997) 

Kinetic, morphometric, 
textural  

Y 
Stepwise 

Stepwise linear discriminant 
analysis 

2 (Torheim et al., 
2001)  

Kinetic (defined from the 
mean enhancement curve in a 
lesion)  

Y 
Exhaustive 

Minimum enhancement threshold 
Fisher’s linear discriminant analysis 
Probabilistic neural network 
Back propagation neural network  
Correlation coefficient (CC) 

3 (Chen et al., 
2004) 

Kinetic, morphometric  Y 
Stepwise 

Linear discriminant analysis 

4 (Arbach et al., 
2004) 

Morphometric (�� weighted 
MRI)  

N Back propagation neural network  
 

5 (Nattkemper 
et al., 2005) 

Kinetic, morphometric  Y 
- 

K-means 
Self organising maps 
Linear discriminant analysis 
K-nearest neighbour 
Support vector machine 
Decision tree 

6 (Chen et al., 
2006b) 

Kinetic (on a selected kinetic 
curve)  

Y 
Single*** 

Fuzzy C-mean 

7 (Lee et al., 
2007) 

Kinetic (based on 3TP curve 
(Degani et al., 1997)), classify 
voxel-wise  

N K-means 

 

No. No. data 
samples 

No. 
Benign  

No. 
Malignant  

Validation  
method 

Test set size SE*  SP*  Best 
AUC  

**Total 
features 

1 43 23 20 N/A N/A 95%  93%  N/A 10/18 

2 127 57 70 Leave-one-out 
cross-
validation 

Leave-one-out 81%  95%  N/A 2/5 

3 121 44 77 Leave-one-out 
cross-
validation 

Leave-one-out   0.86�0.0
4  

4/14 

4 35 N/A N/A 40% - holdout 40% - 
randomly 
selected 

  0.91�0.0
5  

5/5 

5 74 25 49 Leave-one-out 
cross-
validation 

Leave-one-out   0.88�N/
A  

§2/6 

6 121 44 77 N/A N/A   0.85�0.0
4  

1/4 

7 25 - 25 Visual only – 
classify voxels 

N/A Visual only – 
classify voxels 

2/2 

*  SE = Sensitivity, SP = Specificity 

**  Number of features used to achieve the best reported result / total number of features tested 

*** In this case every single feature out of four was tested separately 

§ Feature values were estimated manually, by experienced radiologists 
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6.3.3 Features considered 

In practice, clinicians commonly analyse each volume slice-by-slice (i.e. in 2D). Thus, it 

is reasonable to assume that the information in the 2D slices is sufficient for 

discriminating between benign and malignant. Given that the pixels in the data that 

were used for this study are not cubic and, to avoid interpolating the original data, 

features were extracted in 2D from the slice containing the largest cross section 

between the binary mask and the original MRI image of each lesion. This dimensional 

constraint eliminated the use of some morphological features, especially those that 

account for 3D connectivity.  

To keep the set of candidate features for Experiment 1 to a reasonable size, 10 features 

were shortlisted from Table  6.1. They include examples of morphological (based on the 

binary mask of the lesion), textural (based on intensities inside the lesion) and kinetic 

(based on individual/mean enhancement curves inside the lesion) features. In the 

following feature list, �� denotes the pre-contrast volume and MI denotes an image that 

is constructed from the maximum intensity projection along the temporal dimension 

(more specifically, the first 5 minutes of the acquisition). In the general case, �� may be 

substituted with any post-contrast volume. Moreover, the maximum intensity for MI can 

be extracted either from the original data or calculated from a model of enhancement.  

The selected features are as follows. 

Features shortlisted from the literature 

1. Eccentricity. The eccentricity of the ellipse that has the same second moments as 

the lesion. This is the ratio of the distance between the foci of the ellipse and its 

major axis length. 

2. Solidity. The proportion between the number of the pixels that are in the region 

and the number of pixels in the convex hull of the region (i.e. Area divided by 

Convex Area). 

3. Shape compactness. Defined as  (Sinha et al., 1997):  
L � A�

S  
where p is the perimeter of the lesion and a is the area of the lesion. 

4. Fractal Dimension (Landini and Rippin, 1996). Mean value of the fractal 

dimension of the boundary defined as: 
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t � log^
�»�_log�»�  

where 
�»� is the number of locally connected pixels (using 8-neighbourhood 

connectivity) in a window of size » by » pixels. 

5. Fractal Dimension Entropy. Entropy of the fractal dimension of the boundary. 

6. �� Entropy. Entropy of the intensities in the pre-contrast image inside the lesion. 

7. Time-to-Peak Entropy. Entropy of the time-to-peak (��) values. 

8. Mean Time-To-Peak. Time-to-Peak of the mean enhancement curve. 

9. Mean Wash-in rate. The wash-in slope of the mean enhancement curve (line 1 in 

Figure  6.1). The wash-in slope is given by �����/��, where �� is the intensity 

peak time as given by the enhancement curve f and ����� is the peak value (i.e. 

value of maximum enhancement). 

10. Mean Wash-out rate. The wash-out slope of the mean enhancement curve (line 2 

in Figure  6.1). The wash-out slope is given by ����� � �^��_� ^� � ��_	 . 

New features 

11. MI Entropy. Entropy of the intensities in the MI image inside the lesion. 

12. Gradient Correlation (GC) in �� - The mean correlation between adjacent 

gradients in �� (Levin et al., 2003): 

�57� � 
�SP @ 
�8 , �Õ�Ü�8Ü · ��Õ�C 

where �8 � Å���/8, V8�, �Õ � Å��^/Õ , VÕ_,  are gradients in the pre-contrast image, 

i and j  are two pixel positions in the image that obey the N4 neighbourhood rule. 

The gradient values, Å��, were calculated based on the discrete differences over 

the spatial axes in the N4 neighbours. 

13. Gradient Correlation in MI. The mean correlation between adjacent gradients in 

MI: 

�5¨Ê � 
�SP @ 
�8 , �Õ�Ü�8Ü · ��Õ�C 

where �8 and �Õ  are as above. 
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Other features: 

14. Random number. A randomly-generated number from uniform distribution, to be 

used as a mean of validation in the feature selection experiment. 

Features 1 to 5 were chosen because they provide a description of the shape and 

boundary irregularity of the lesion. More specifically, features  1,  2 and  3 can be related 

to shape descriptions (i.e. round/oval/lobular) in the ACR BIRADS lexicon (American 

College of Radiology, 2006). Feature  4 can be related to the level of irregularity of the 

shape or the boundary. The smoother the boundary is, the less irregular it is. However, 

when only part of the boundary is irregular, the measurement of the fractal dimension 

alone may yield low values (i.e. present the boundary as regular). Feature  5 

compensates for this weakness of feature  4. In the case where only part of the lesion’s 

boundary is irregular, feature  5 will yield a high value. In terms of intensity variation, 

features  6 and  12 provide two different measures of intensity irregularity in the pre-

contrast image. Note, that features  12 and  13 are inspired by an in-painting related 

work (Levin et al., 2003). 

Features  7,  8,  9 and  10 measure properties of the enhancement pattern in DCE-MRI and 

are commonly used to describe the characteristics of kinetic curves (Nattkemper et al., 

2005, Sinha et al., 1997, Lee et al., 2007, Chen et al., 2004). The importance of these 

characteristics is also indicated in the ACR BIRADS lexicon (American College of 

Radiology, 2006). 

Feature  14 (random number) was added to the initial feature set in order to validate the 

feature selection process (i.e. a ‘sanity check’), assuming that a selection of feature  14 by 

the process will imply that the results of the feature selection process are unreliable or 

suggesting features that do not contain real discriminatory information.  

6.3.4 Experiment 1 - Determining the best feature subset 

The aim of this experiment was to find the feature subset that produces the best 

discrimination between malignant and benign tissues while minimising the number of 

features used. The curse of dimensionality (Jain et al., 2000) motivates the reduction of 

the number of features used for classification to increase the generalisability of the 

classification system. The small number of datasets (21 lesions) that was available for 
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the experiments dictated a feature subset of size no larger than 2. The selected features 

and classifiers from Experiment 1 were then used in Experiment 2 

 

Figure  6.1: The mean wash-in rate (1) and mean wash-out rate (2) of the mean enhancement curve #� represents intensity peak time as calculated by the enhancement model. T is the total 
acquisition time 

 

Before the feature extraction, all clinical data was denoised using the DNLM algorithm 

that was presented in Chapter 4 of this thesis. For the feature selection, the lesions from 

dataset 1 were used. Although the relatively small number of training samples dictates 

that only one, or perhaps two, features can be used for classification, feature sets of size 

3 and 4 were also considered in order to assess the consistency of the selection of 

certain features, rather than to assess their performance. 

In order to extract features  11 and  13, the MI image was computed. In this study, 

features  7,  8,  9 and  10 as well as the MI image were calculated, based on the empirical 

model that was presented in Chapter 3 of this thesis and given by: 

��
� � S · 
 · ��`��  

where t is the time that has elapsed since the injection of the contrast agent; and a, b 

and c are the free parameters. The proposed model has been chosen because it has 

shown to fit better to clinical MRI data (Gal et al., 2007b) and has a parsimonious form 

relative to the pharmacokinetic models. The model of enhancement was fitted voxel-

wise and was also fitted to the mean enhancement curve of the delineated lesion using 

the Levenberg-Marquardt non-linear optimisation method (Gal et al., 2007b). Then, the 

maximum value of the fitted model was calculated for each voxel to create the MI. The 

maximum value of the model is given by:  

�4m� � S d EL · �k
��

 

1 

Intensity 

Time 

2 

Tp T 
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which is the value of the point where ���
� � 0. The point in time where the model gets 

its maximum value is the time-to-peak point and is given by: 

�� � dELk
��

 

To select the best features, an exhaustive search was used, using several different 

classifiers. An exhaustive search was selected because it considers all the possible 

feature subsets and thus finds the global optimum of the feature selection problem 

(rather than heuristic methods, such as simulated annealing and genetic algorithms). 

This was possible because of the small number of features (13 features) and the small 

size of the subsets to be considered (up to four features). In total, for each classifier type 

that was tested, a total of 5��p  5��p  5p�p  5÷�p � 1092 subsets of features were tested.  

The feature selection was performed using several different classifiers (Webb, 2003): 

1. Logistic regression  

2. Fisher’s linear discriminant analysis  

3. Linear Bayesian discriminant analysis  

4. Support Vector Machine (SVM) with the Sigmoid kernel (order 1 and 2). 

These were chosen mainly because they are simple to implement and train (e.g. easily 

converge and do not have a large degree of freedom) and are well studied. All classifiers 

examined in this experiment create a linear or simple discrimination boundary. The 

underlying assumption in the selection of classifiers was that an effective selection of 

the feature set would lead to an easily-separable classification problem and thus would 

reduce the influence of the bias/variance dilemma (Geman et al., 1992).  

In the first stage of the experiment, a set of all the possible subsets of size one to four 

was generated from the original feature set. Next, each of the classifiers was trained and 

tested on each of the feature subsets, using a leave-one-out strategy with all 20 training 

samples. Finally, the AUC and the minimum error of the empirical ROC curve were 

calculated and recorded for each combination of feature subset and classifier. In the 

cases where many feature subsets gave the same optimal AUC (usually AUC of 1.0), a 

frequency table was constructed, showing the occurrence of each feature in the list of 

optimal feature subsets. 
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6.3.5 Experiment 2 – Classification validation 

The aim of this experiment was to, (1) validate the classification performance of the 

best feature sets identified in experiment 1 using unseen data and, (2) validate the 

classification performance of a variety of classifier types using the best feature sets. 

The selected classifiers were trained on dataset 1 and were then tested on dataset 2. 

The performance of the classifiers was measured in terms of the AUC. 

6.3.6 Results 

Experiment 1 - Feature selection 

The results of the feature selection experiment show that the Fisher’s linear classifier 

(Table  6.5) has the lowest classification performance (in terms of the AUC) while the 

SVM with sigmoid kernel has the highest. SVM with other kernels (e.g. distance, 

exponential and radial) did not perform as well as the sigmoid kernel and thus, they are 

not discussed here. The logistic regression results (see table 6.2) show that the larger 

the feature set is, the better the classification performance is, while the best results 

were obtained by using features  7,  8,  12 and  13 from the feature list. The AUC standard 

error was calculated according to (Hanley and McNeil, 1982), based on the Wilcoxon 

test. Note that the high AUC standard errors reflect both the small size of the training 

data set and the inherently large variance of the AUC estimate obtained using the leave-

one-out cross validation.  

Out of the SVM results, the ones with the sigmoid kernel yielded the highest AUC values 

when using a sigmoid kernel of order 1 or 2. The most dominant feature in this case is 

feature  13 (i.e. gradient correlation in MI), which, in the case of a single feature based 

classification, yields the highest AUC value (AUC of 0.963�0.043 with min error 0.095 

for Sigmoid kernel of order 1 and AUC of 1.0 for Sigmoid kernel of order 2). When 

testing feature subsets of size 2 or higher, the best subsets yield an AUC value of 1.0. 

Given the large number of optimal subsets for subsets of sizes 3 and 4, the SVM results 

(sigmoid kernel) are presented in Table  6.3 and Table  6.4 in terms of the relative 

frequency for each feature, rather than the list of best subsets, i.e. the number of times 

that a feature appeared in an optimal feature subset out of the total number of optimal 

subsets. The tables show only the features that were included in at least one feature set. 
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Table  6.2: Feature selection results for the logistic regression classifier 
The best AUC (in a leave-one-out cross validation) is presented with its calculated error rate. 
‘Min error’ represents the minimum ratio between misclassification and number of test cases 
among all possible thresholds.  

No. of 
features 

Best AUC � 
standard 
error 

Corresponding 
feature subset 

Min error 

1 0.654�0.121 { 8} 0.238 
2 0.727�0.111 { 13,  8} 0.286 
3 0.736�0.110 { 13, 7,  8} 0.238 
4 0.800�0.098 { 12,  13,  7,  8} 0.143 

 

Table  6.3: Relative frequencies of features in the feature selection experiment for SVM with sigmoid 
kernel of order 1 
Relative frequency 0 represents a feature that was never selected for an optimal subset while 
relative frequency of 1 represents a feature that was selected in each one of the optimal 
subsets. 

Feature  Relative frequency 

1 feature 2 features 3 features 4 features 
 4 0.00 0.00 0.22 0.41 

 5 0.00 0.00 0.00 0.06 

 6 0.00 0.00 0.22 0.41 

 8 0.00 0.00 0.22 0.41 

 9 0.00 0.50 0.56 0.65 

 10 0.00 0.00 0.22 0.41 

 11 0.00 0.50 0.56 0.65 

 13 1.00 1.00 1.00 1.00 

 

Table  6.4: Relative frequencies of features in the feature selection experiment for SVM with sigmoid 
kernel of order 2 

Feature  Relative frequency 
1 feature 2 features 3 features 4 features 

 4 0.00 0.17 0.36 0.41 

 5 0.00 0.00 0.14 0.31 

 6 0.00 0.17 0.36 0.41 

 8 0.00 0.17 0.36 0.41 

 9 0.00 0.17 0.43 0.52 

 10 0.00 0.17 0.36 0.41 

 11 0.00 0.17 0.43 0.52 

 13 1.00 1.00 1.00 1.00 

 

The results for Fisher’s linear discriminant are presented in Table  6.5 and show similar 

performance to logistic regression, with the same optimal feature subsets. Again, as in 

the case of logistic regression, the high AUC standard errors reflect both the small size 

of the training data set and the inherently large variance of the AUC estimate obtained 

using leave-one-out cross validation. 
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Table  6.5: Feature selection results for the Fisher’s linear classifier 
The AUC is presented with its calculated error rate. ‘Min error’ represents the minimum ratio 
between misclassification and number of test cases among all possible thresholds. 

No. of 
features 

Best AUC � 
standard error 

Corresponding 
feature subset 

Min error 

1 0.636�0.122 { 8} 0.286 
2 0.664�0.120 { 13, 8} 0.286 
3 0.773�0.104 { 13, 7, 8} 0.190 
4 0.836�0.090 { 12, 13, 7, 8} 0.142 

 

The results of the linear discriminant Bayes normal classifier (LDC), in Table  6.6, show 

that feature  13 (correlation between adjacent gradients in the maximum enhancement 

image) is the best feature for a single feature classification. However, the performance 

of the classifier decreases as the size of the feature space increases. Also, the minimum 

error rate (estimate of the probability of misclassification) increases as the size of the 

feature space increases. This illustrates the peaking phenomenon or curse of 

dimensionality (Jain et al., 2000), wherein the performance of a classifier increases to a 

peak as the number of features is increased, but then decreases. 

Table  6.6: Feature selection results for the LDC classifier 
The AUC is presented with its calculated error rate. ‘Min error’ represents the minimum ratio 
between misclassification and number of test cases among all possible thresholds. 

No. of 
features 

Best AUC � 
standard error 

Corresponding 
feature subset 

Min 
error 

1 1.000�0.000 { 13} 0.000 
2 0.818�0.094 { 12, 13} 0.190 
3 0.745�0.109 { 11, 12, 7} 0.238 
4 0.770�0.104 { 1, 5, 11, 12} 0.286 

Experiment 2 – Classification validation 

The classification performance was measured on the same classifiers that were used for 

Experiment 1. The best features from Experiment 1 were selected to create the feature 

spaces for Experiment 2. Feature  13, which demonstrated the best result, was validated 

as a single feature in addition to each of the features  11,  8 and  9. The results are 

presented in Table  6.8. The results show that the best performance is given by the 

logistic regression and the SVM (with Sigmoid kernel) classifiers, while using features 

 13 and  9. The LDC classifier, on the other hand, shows a very poor generalisability to 

unseen data. The scatter plot of features  13 and  9 is shown in Figure  6.2. The ROC curve 

with the highest AUC (of the logistic regression classifier) is shown in Figure  6.3. The 



 

 

different operating points, for the Logistic Regression, between 100% sensitivity and 

100% specificity are presented in 

 

Figure  6.2: Scatter plot of the validation data using features 

 

Fe
at

u
re

  9
 

different operating points, for the Logistic Regression, between 100% sensitivity and 
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Figure  6.3: The ROC curve of the logistic regression when tested using features  13 and  9.  
The steps in the curve are related to the small number of data samples in the validation (i.e. 
test) set. 

 

Table  6.7: Operating points of interest on the ROC curve of the logistic regression classifier, using features 
 13 and  9 

Threshold False 
Positive 

False 
Negative 

Sensitivity Specificity Positive 
predictive 
value 
(PPV) 

0.63 14 8 1.00 0.62 0.74 
0.65 13 9 0.93 0.69 0.76 
0.66 13 10 0.93 0.69 0.76 
0.68 13 10 0.93 0.77 0.81 
0.69 12 10 0.86 0.77 0.80 
0.70 11 10 0.79 0.77 0.79 
0.70 10 10 0.71 0.77 0.77 
0.72 9 10 0.64 0.77 0.75 
0.73 9 11 0.64 0.85 0.82 
0.73 9 12 0.64 0.92 0.90 
0.75 9 13 0.64 1.00 1.00 
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Table  6.8: Results of classification performance evaluation 
Classifier Feature 

subset 
AUC Min 

error 

SVM  (Sigmoid 1 kernel) { 13} 0.80�0.09 0.26 
SVM  (Sigmoid 1 kernel) { 11, 13} 0.88�0.07 0.15 
SVM  (Sigmoid 1 kernel) { 13, 8} 0.80�0.09 0.26 
SVM  (Sigmoid 1 kernel) { 13, 9} 0.90�0.06 0.15 
SVM  (Sigmoid 2 kernel) { 13} 0.80�0.09 0.26 
SVM  (Sigmoid 2 kernel) { 11, 13} 0.88�0.07 0.15 
SVM  (Sigmoid 2 kernel) { 13, 8} 0.80�0.09 0.26 
SVM  (Sigmoid 2 kernel) { 13, 9} 0.86�0.07 0.18 
Fisher’s LD { 13} 0.80�0.09 0.26 
Fisher’s LD { 11, 13} 0.86�0.07 0.22 
Fisher’s LD { 13, 8} 0.65�0.11 0.26 
Fisher’s LD { 13, 9} 0.85�0.07 0.18 
LDC { 13} 0.55�0.11 0.33 
LDC { 11, 13} 0.47�0.11 0.37 
LDC { 13, 8} 0.62�0.11 0.33 
LDC { 13, 9} 0.21�0.09 0.52 
Logistic Regression { 13} 0.80�0.09 0.26 
Logistic Regression { 11, 13} 0.81�0.08 0.22 
Logistic Regression { 13, 8} 0.73�0.10 0.22 
Logistic Regression { 13, 9} 0.91�0.06 0.15 

 

6.3.7 Discussion of empirical study results 

The results of Experiment 1 (feature selection), suggest that the correlation between 

adjacent gradients in the maximum enhancement image, MI, (feature  13) is the most 

important single feature for classifying suspicious lesions in DCE-MRI of the breast. This 

is, perhaps, not surprising, given that heterogeneous enhancement is a characteristic of 

malignant lesions (Morris and Liberman, 2005) and feature  13 is a measure of both 

texture and enhancement. To the best of our knowledge, this is the first time that this 

feature, which was inspired by image in-painting (Levin et al., 2003), has been used for 

classifying lesions in breast MRI. 

Three other dominant features are the entropy of intensities in the maximum intensity 

image (feature  11), mean time-to-peak (feature  8) and the mean wash-in rate (feature 

 9). Given that features  8 and  9 represent similar information, it is not surprising that 

both turn out to be good features. Note that although features  11 and  13 are textural 

features, they implicitly rely on kinetic information in the DCE-MRI sequence (i.e. the 

maximum enhancement intensity value in the first 5 minutes). 
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Interestingly, the results show that morphometric features tend to be less important. 

Two possible reasons for this are, (i) the relatively low resolution of DCE MR images 

which limits the accuracy of boundary description and, (ii) the relative fuzziness of the 

boundary definition of malignant lesions in MR images (Behrens et al., 2007) that may 

lead to a subjective manual delineation. 

The results of Experiment 2 show that features  13 and  9 constitute the best feature set 

of size 2, when used with the logistic regression classifier. Hence, logistic regression 

shows the best generalisation for unseen data when used with features  13 and  9, 

yielding an AUC value of 0.91�0.06 on an unseen validation data. The SVM classifier 

with the Sigmoid kernel of order 2, shows similar results to the Logistic regression, 

suggesting that features  13 and  9 indeed have a high discriminatory power for DCE-MRI 

breast lesions. 

6.4 Summary and conclusions 

This chapter of the thesis reviewed the best performing features and classifiers that 

have been proposed for classifying benign and malignant lesions in DCE-MRI of the 

breast. It has been found that textural, kinetic and morphometric features are the most 

useful types of features for the classification of lesions in DCE-MRI. A set of 13 features 

were proposed. These are based on textural, kinetic or morphological information, in 

addition to the features that rely on both textural and kinetic information from the DCE-

MRI data. The results of the two experiments were also presented, (i) the feature 

selection experiment and, (ii) the classification performance evaluation. 

The results of the two experiments suggest that suspicious lesions in DCE-MRI of the 

breast can be classified, with a high AUC of 0.91�0.06, using a feature set of two 

features only. These features include both textural and kinetic information from the 

lesion. Moreover, morphological features seem not to play an important role in 

automatic classification of suspicious lesions in DCE-MRI of the breast. The results of 

the experiments also suggest that combining different types of information (e.g. kinetic 

and textural) into a single feature may enhance the discriminatory power of a feature 

space without increasing its size. 
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7. Summary and conclusions 

This section reviews the thesis, summarises its key contributions and discusses their 

implications. It also presents the limitations of the research and opportunities for 

further research.  

Thesis review 

Chapter 1 described the field of breast MRI and the inherent problems in interpreting 

breast MRI data. Although MRI is a promising imaging modality for breast cancer, it 

suffers from poor specificity and subjectivity in interpretation. The chapter also 

described the different approaches to overcome these weaknesses including, 

standardisation of reporting terminology (e.g. the ACR BI-RADS lexicon) and 

computerised analysis. 

Chapter 2 introduced the terminology and background concepts of MR Imaging of the 

breast and of breast cancer. It also described the basic physics behind the different 

types of MR imaging in addition to the physiology of the female breast. The chapter also 

provides an overview of the different types of breast cancer and how they appear in MR 

images. 

Chapter 3 dealt with the parameterisation of contrast enhancement. It reviewed 

existing models for contrast enhancement in DCE-MRI and presented a new, empirical, 

model of enhancement that is parsimonious in form. The chapter also described the 

properties of the new model and its advantages, in comparison with the existing 

pharmacokinetic models. A quantitative comparison between the new model and 

existing models in terms of ‘goodness of fit’ to measured data and ‘goodness-of-fit’ to 

missing temporal data (i.e. prediction of missing points) is also presented. The existing 

models that were chosen for the comparison were the Tofts, Brix and Hayton models. 

The results of the comparison showed that, in terms of goodness-of-fit, the proposed 



120 Summary and conclusions 

 

 
 

model performs better than the Tofts and Brix models and about equally as well with 

the more complicated Hayton model.  

Chapter 4 dealt with noise reduction in MRI. It described the nature of noise in MR 

images and ways to reduce it. The chapter reviewed denoising methods for MRI and 

described a new denoising method, called Dynamic Non-Local Means (DNLM), designed 

to exploit the redundancy of information existing in DCE-MRI. The DNLM algorithm was 

compared to seven other denoising methods quantitatively (in terms of the MSE) and 

qualitatively (i.e. visually) and the results showed that DNLM performs significantly 

better than all the competing algorithms. The chapter also presented an experiment that 

demonstrates a case where the original NL-Means algorithm can actually eliminate 

small details that may be diagnostically important.  

Chapter 5 dealt with the segmentation of the enhancing tissue in DCE-MRI. It presented 

a method for automatically segmenting enhancing lesions in DCE-MRI of the breast. The 

method is based on seeded region growing where the selection of seeds is performed 

automatically. The algorithm was applied to a set of 24 DCE-MRI datasets from clinical 

practice with suspicious lesions that were marked by a radiologist. The results showed 

that the sensitivity of the algorithm to enhancing lesions is 100% on the test datasets. 

Nevertheless, it is possible to improve the performance of the segmentation, in terms 

data reduction (i.e. reduce the volume of the breast that is being segmented by the 

algorithm), using a lesion post-classification, similar to the one proposed in Chapter 6. 

Chapter 6 dealt with the classification of suspicious lesions in DCE-MRI of the breast. It 

reviewed existing methods for the automatic classification of suspicious lesions in DCE-

MRI of the breast. The chapter also described the process of the selection of a best 

combination of a feature set for classifying suspicious lesions in DCE-MRI of the breast. 

An evaluation of the performance of the selected features was also presented. Two 

experiments were presented: (i) feature selection; and, (ii) classification validation. 

Both experiments were performed on DCE-MRI data from clinical practice and all 

features were extracted from lesions that were manually delineated by clinical experts. 

The results show that, based on two features, both derived from the kinetic model of 

enhancement that was proposed in Chapter 3, a classification system for suspicious 

lesions can be built, yielding an AUC of 0.9 on the given validation dataset.  
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Key contributions and findings 

• A new empiric model of contrast enhancement. The new model is parsimonious 

in form, containing only one exponential factor. It has three free parameters and 

makes no assumptions about the perfusion of contrast agent between the tissue 

compartments, as in the case of the pharmacokinetic models. 

• A new method to compare the models of contrast enhancement was proposed. 

The new method suggests that, in addition to traditional measures, such as the 

MSE to the fitted data, each competing model should be also fitted to a high 

temporal resolution data where a few data points have been eliminated from the 

data. The fitted model should then be measured against the missing points to 

indicate if its ‘goodness-of-fit’ is related only to flexibility or to its actual ability to 

represent the truth (i.e. ability to predict missing data points).  

• A new denoising algorithm, called DNLM, designed specifically for DCE-MRI. The 

DNLM algorithm was tested on DCE-MRI data of the breast, but can be used on 

other types of DCE-MRI datasets. Also, the algorithm has the potential for use in 

other imaging modalities that produce contrast enhancement, between different 

acquired volumes, as part of the acquisition process (e.g. nuclear medicine 

modalities). 

• Empirical evidence that medical experts and image processing experts evaluate 

the quality of denoising algorithms in a similar manner.  

• Demonstration that although the NL-Means denoising algorithm is widely used 

for denoising medical images, it can actually eliminate small details in the image 

that may be diagnostically important.      

• A novel algorithm for segmenting enhancing lesions in DCE-MRI of the breast. 

The algorithm is fully automatic and is based on the well-known seeded region 

growing method. The algorithm is sensitive to enhancing lesions and has the 

potential to assist a radiologist in locating suspicious lesions in DCE-MRI by 

reducing the volume of the data that need to be scanned. 

• Two novel features for the classification of suspicious lesions in DCE-MRI of the 

breast. Both features are based on the empiric model of enhancement that was 

proposed in Chapter 3 of the thesis. 
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• Empiric evidence that morphometric features have little contribution in the 

classification of benign and malignant tissues in DCE-MRI of the breast. This 

result is possibly caused by the relatively low resolution of DCE-MR images that 

do not allow a fine description of the lesion boundary and because of the 

inherited fuzziness of the lesion boundaries in these types of images.  

Implications of findings 

Denoising DCE-MRI data with DNLM 

The empirical results of Chapter 4 suggest that the DNLM has the highest potential for 

suppressing noise in DCE-MRI images without diminishing clinically important details. 

An increase in the SNR in the DCE-MR images provides the opportunity to acquire 

images with a higher spatial or a higher temporal resolution. A higher spatial resolution 

may reveal more anatomical details, while a higher temporal resolution will provide 

more accurate kinetic features and will allow fitting models with more free parameters 

to the data that potentially describe more accurately the perfusion of the contrast agent 

in the body.  

Automatic classification of suspicious lesions in DCE-MRI 

The classification system, proposed in Chapter 6 of the thesis, showed a higher 

performance in classifying suspicious lesions in DCE-MRI of the breast than the existing 

classification systems. More specifically, the AUC of the proposed system is 0.91�0.06, 

based on 27 unseen datasets. The operating points on the ROC curve of the proposed 

classification system suggest that both the specificity and the sensitivity of DCE-MRI of 

the breast can be improved by using computerised analysis methods (e.g. 93% 

sensitivity with 77% specificity). 

Limitations of the proposed methods 

Denoising algorithm 

The DNLM has three parameters that need to be tuned prior to the denoising, (i) the 

similarity window size, (ii) the searching distance and, (iii) the weights decay rate (h). 

The first two can be tuned once for each protocol. However, an estimation of the noise 

in the image is required to determine the value of the parameter h. The accurate 
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estimation of noise in images is influenced by image manipulation, including rescaling 

and different types of filtering that change the characteristics of the noise in the image. 

Thus, the noise estimation process, in addition to the denoising process, must receive 

the image before it has been manipulated in any way that may change the 

characteristics of the noise. 

Segmentation algorithm 

The segmentation algorithm in Chapter 5 incorporates two different thresholds that 

need to be specified in advance. The first, �K�, is used for the selection of the seeds. This 

threshold can be determined, based on previous clinical studies, because it relies on the 

expected relative enhancement in the intensity of malignant tissue in DCE-MRI. 

However, the second threshold, �K�, which determines the seed-growing criterion, 

should be selected empirically. In certain cases, it may be hard to pick a sufficiently 

general value for this threshold, such that it will suit a large variety of studies and 

protocols.  

Another limitation of the algorithm is the binarization step. This step relies on a global 

threshold. In cases where there are several enhancing tissues in the image, stronger 

enhancing tissues may deflect the automatically-selected threshold upwards and so 

eliminate weaker enhancement from the binary mask. An especially problematic case is 

when the liver or the heart, which tend to enhance greatly, appears in the image and 

masks malignant tissue that enhances less. 

Classification of suspicious lesions 

The performance of the classification system in Chapter 6 is higher than those that can 

be found in the literature, in terms of the AUC. Nevertheless, the accuracy of the 

measured performance depends on the size of the validation set, which is relatively 

small (27 lesions), and thus restricts the generalisability of the method. To increase the 

confidence of the results, a larger ground truth database should be tested (i.e. at least 40 

lesions). 

Another limitation of the method is the small variety of cancers on which the classifier 

was trained and tested (mass enhancement and DCIS). A larger variety of cancers (e.g. 

necrotic core, LCIS) should be tested to check the robustness of the proposed 

classification system.   
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Opportunities and future directions 

Efficient fitting of the proposed empiric model of enhancement  

Fitting a nonlinear model of contrast enhancement to every voxel in a DCE-MRI study is 

time-consuming and requires extensive computing power. The simple form of the 

proposed model may suggest that using a dedicated non-linear fitting (e.g. Jacobian 

matrix, adaptive selection of starting values, and so on), will reduce the fitting time 

dramatically, because it will reduce the number of iterations that the optimisation 

process requires to converge. 

Visualising empiric model parameters 

The proposed empiric model of enhancement has three free parameters. It is possible 

that a proper conversion of the parameters’ values from the fitted empiric model into 

visual representation may reveal properties about the investigated breast tissue that 

will be clinically useful (i.e. will help to differentiate malignant from benign more easily) 

(Vidholm et al., 2007, Mehnert et al., 2005). 

Improve the data reduction rate of the segmentation algorithm 

The segmentation algorithm in Chapter 5 reduces the amount of data needing to be 

interpreted by the radiologist. The segmented amount of tissue can be further reduced 

by a more careful selection of seed points that can be based on several voxels rather 

than one. Also, a post-filtering process for the segmented lesions can be applied to 

eliminate falsely segmented lesions using prior knowledge, such as contextual 

information (e.g. eliminate the liver from the image based on its location and size or 

create a mask of the breast volume). 

Voxel-wise classification 

The classification system proposed in Chapter 6 is based on two features that can be 

generated locally (i.e. for a single voxel of a small set of voxel neighbourhood) and do 

not require prior segmentation of the lesion. This means that the training and the 

classification can be applied on a voxel-by-voxel basis. The result of such classification 

can be then visualised, based on the probability for malignancy that the classifier yields 

for each voxel. This visualisation may provide a good indication for the location of 
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highly suspicious lesions without the need to segment them in advance. Also, the result 

of such a classification may be used as the basis for a reliable segmentation of 

suspicious lesions for further computerised analysis. 

Conclusion 

The underlying hypothesis of this research is that the specificity (and possibly 

sensitivity) of breast MRI interpretation can be improved by: 

• design features for suspicious lesion classification that will integrate information 

about tissue kinetic enhancement and morphology 

• reducing the subjectivity of breast MRI interpretation by using image analysis 

and pattern recognition techniques to automatically classify suspicious lesions in 

the breast. 

This thesis has introduced a set of methods for processing and analysing DCE-MR 

images of the breast. The proposed set of methods can be used as part of a larger CAE 

system to improve breast cancer diagnosis. The results of this research suggest that by 

using the methods proposed here, and possibly additional methods (e.g. breast 

registration, breast volume segmentation), the specificity and sensitivity of DCE-MRI of 

the breast can indeed be improved (e.g. 93% sensitivity with 77% specificity) by 

integrating the kinetic and structural information and by using image analysis and 

pattern recognition techniques.  
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Appendix A: 

Entropy based thresholding 

Entropy based thresholding methods determine a threshold that maximizes the sum of 

the information below and above the threshold (Abutableb, 1989, Wong and Sahoo, 

1989, Sezgin and Sankur, 2004). They are attractive because they are fully automatic 

and do not assume any particular distributional model of the intensity levels in the 

image. Also, they can incorporate one or more features (e.g. similarity to neighbouring 

pixels) into the threshold decision process and thus allow better control over specificity 

and sensitivity. Breast lesions in MRI are complicated in nature and have a high variety 

in appearance (Morris and Liberman, 2005). The entropy thresholding was thus chosen 

to be used as a first stage segmentation of suspicious lesions in DCE-MRI of the breast, 

because it is robust to the distribution of intensities in the segmented object in addition 

to allowing it to create a synergy between two (or more) features in the thresholding 

process.  

In its simplest form, the binarization threshold minimizes the sum of Shannon’s entropy 

for the foreground and background intensity histograms. The method is based on 

principals from information theory; a description of the method follows (Abutableb, 

1989, Sezgin and Sankur, 2004). 

Given a set (alphabet) with N letters, ° � ÏS8Ð8��ã , represents all the possible letters (i.e. 

the intensity levels in an image) that are used in a given information channel (i.e. an 

image), the probability of appearance for each letter is defined as follows: 

 

  A8 � Y�S8|°�,    

 

where ∑ Y8ã8�� � 1 

The amount of information that a letter, S8, introduces in the system is defined as  
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  ¥�S8� � logã �
�ß � � logã�A8�   

 

The quantity ¥�S8� is often called the self-information of S8. 
Thus, the average amount of information in the channel (image) is:  

 

  
ã � � ∑ A8 log�A8�ã8��    

 

Now, in the case of an image with histogram, 
² � ÏK8Ð8��¨ , we normalise the histogram to 

become a probability density function (PDF), where each intensity bin in the histogram 

represents the probability of a randomly-selected pixel to have the corresponding 

intensity, i. In this case the corresponding probability A8 will be:  

 

  A8 � ¦ß∑ ¦�ª���    

 

where M is the number of intensity levels in the histogram.  

We will now define the amount of information below the threshold as:  

 

  
�°� � � ∑ ��ß��� log ��ß����8��    

 

where  

  

  Y� � ∑ A�8��    

 

We now define: 

 

  
� � � ∑ A8 log�A8��8��    

 

Using (5.7), we can now write equation (5.5) as follows: 
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�°� � �� �
��� ∑ }A8 log�A8� � A8 log�Y��� � log�Y��  ����

�8��     

 

The information above the threshold will be defined as:  

 

  
�	� � ∑ � �ß����� log � �ß�����8̈��,�    

 

Equation (5.9) can be written as: 

 

  
�	� � � � �
����� ∑ A8}log�A8� � log�1 � Y���8̈��,� � log�1 � Y��  ���������     

 

where 
4 � � ∑ A88̈�� log �A8� 

The aim is to find a threshold s that maximizes the entropy criterion: 

 

  � � 
�°�  
�	� � log}Y��1 � Y���  ����  ���������    

 

The threshold, s, which maximizes � is used to differentiate between the objects of 

interest and the background of the image. 

In the two-dimensional entropy method, the aim is to find two thresholds s, t, that 

maximize the same basic criterion. The histogram in this case is two-dimensional and 

one of its axes is usually the intensity value of the pixel, while the other axis represents 

a feature of the object that may introduce additional relevant information, such as 

spatial information (e.g. the histogram of a filtered version of the image) (Cheng et al., 

2000, Abutableb, 1989). 

In the two dimensional case we define: 

Y�` � �� A8Õ
`

Õ��

�

8��
 

and 
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�` � �� A8Õ
`

Õ��
log^A8Õ_

�

8��
 

The two-dimensional entropy criterion will then be defined as: 

 

  ��O, 
� � 
�°�  
�	� � log}Y�`�1 � Y�`��  ������  ������������    

 

The foreground pixels will be those that satisfy both thresholds and the rest will be 

considered as background.  

Other entropy-based methods consider different parameterizations of entropies over 

the image histogram, such as the Kullback-Leibler distance and cross-entropy between 

the original and binarized images (Sezgin and Sankur, 2004).  
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Appendix B: Seeded Region Growing 

Segmentation 

Of the region-based segmentation techniques, one family is region growing 

segmentation. This family of methods usually requires starting points or “seeds” from 

which the growing process will start (Adams and Bischof, 1994, Petrick et al., 1999, 

Mehnert and Jackway, 1997, Revol and Jourlin, 1997, Xuan et al., 1995, Pohle and 

Toennies, 2001, Kupinski and Giger, 1998).  

The process of seeded region growing (SRG) starts with a number of seeds that have 

been grouped into n sets of connected components, say, °�, °�, … , °1. Sometimes, 

individual sets will contain a single point. The choice of seeds depends on the features of 

interest and what is relevant or noise. The process starts from the seeds and evolves 

iteratively. Each step of the algorithm adds a new pixel to one of the initial sets, 

according to a predefined similarity criterion. 

Let us define S as the set of all the unvisited pixels that border at least one of the 

growing regions: 

 

¢ � È/ ��°8
1

8��
�£�/� ��°8 � W

1

8��
� 

 

where N(x) is the set of immediate neighbours of the pixel x. If for / ; ¢, N(x) meets just 

one of the °8 , then the predefined metric, ��/, °8�, which is computed to measure how 

different x is from the region °8  it adjoins, is used to determine if x should be joined to 

°8 . The simplest definition for ��/, °8� is: 

 



142 Appendix B: Seeded Region Growing Segmentation 

 

 
 

��/, °8� � |I�/� � 
°8�| 
 

where g(x) is the intensity of the pixel x and 
°8� is the mean intensity of the pixels of 

the region °8 . If N(x) meets two or more of the °8 , then x is assigned to the °8  that 

minimizes ��/, °8� (Adams and Bischof, 1994). The special case of a tie between two °8  

should be considered and may be handled, if needed, by introducing additional 

assignment criteria or by a random selection.   

The growing criterion can be based on more than one measurement. In fact, the 

simplest measurement will most likely cause the region to grow beyond the desired 

boundaries. A stopping criterion, based on additional information, such as the order of 

magnitude of the gradient, can be incorporated into the growing criterion (Xuan et al., 

1995). After the growing process is complete, a merging stage may be considered. In 

this stage, adjacent regions are merged according to a similarity criterion. Jianhua et al.  

(Xuan et al., 1995) propose a similarity criterion that is based on the intensity statistics: 

 

¢�84�°, 	� � |ý® � ý�|max�1, ®̄  ¯�� 

 

where ý is the mean intensity and ¯ is the standard deviation. The maximum in the 

denominator ensures that the result is stable in cases where the standard deviation is 

very small.  

Revol and Jourlin (Revol and Jourlin, 1997) propose a minimum variance criterion on 

the growing process, yielding a homogenous region that does not necessarily contain 

the original seeds. Their algorithm may add new pixels to a region in one step and 

eliminate certain pixels from a region in a following sub-step if they decrease the 

homogeneity of the region.  
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Appendix C:  

MATLAB code for NL-Means and 

DNLM algorithms 

function fimg = nlmeans4d(img, options) 
 
% fimg = nlmeans4d(img, options) 
% 
% img is a 4D image 
% options is a structure containing: 
%  options.k is a vector, holding the radius of the comparison window for each dimension 
%  if a single value is used an isotropic window will be used 
%  options.sig is the estimated noise standard deviation. Default: automatic estimation. 
%  options.beta is the denoising factor. If not given, it will be set to be 1 
%  note that h^2 = 2 * beta * sig^2 * n_of_neighbours (according to the similarity window size) 
%  options.dstsig is the std, in pixels, to use for distance weighting (default is max(k)/2) 
%  options.win is a vector, holding the size of search radius in each direction if a single value is used an isotropic search 
% area will be used 
%  options.ancor is a scalar determining the method to be used: 
%  0 (default) for old DNLM (EMBC 2008) 
%  1 for classic NL-Means,  
%  2 New DNLM (IEEE TMI 2009) 
 
size_x = size(img,1); 
size_y = size(img,2); 
size_z = size(img,3); 
size_w = size(img,4); 
 
fimg = zeros(size_x, size_y, size_z, size_w); 
 
if length(options.k) == 1 
    k = [options.k options.k options.k options.k]; 
else 
    k = options.k; 
end 
 
if isfield(options, 'dstsig') 
    dst_sig2 = options.dstsig * options.dstsig; 
else 
    dst_sig2 = max(k)*max(k)/4; 
end 
 
if isfield(options, 'ancor') 
    ancor = options.ancor; % 0=Old DNLM (EMBC 2008), 1=ENLM (3D NL-Means), 2= DNLM (IEEE TMI 2009) 
else 
    ancor = 0; % old DNLM 
end 
 
if isfield(options, 'win') 
    if length(options.win) == 1 
        win = [options.win options.win options.win options.win]; 
    else 
        win = options.win; 
    end 
else 
    win = [0 0 0 size(img,4)]; 
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end 
 
if isfield(options, 'sig') 
    sig = options.sig; 
else 
    est_noise = 0; 
    est_count = 0; 
    for w=1:size_w 
        for z=1:size_z 
            [est_sig est_SNR est_MAV] = estimate_noise_dwt(img(:,:,z,w)); 
            est_noise = est_noise + est_MAV; 
            est_count = est_count + 1; 
        end 
    end 
    sig = est_noise / est_count; 
end 
 
if isfield(options, 'beta') 
    sig2 = 2 * options.beta * sig * sig * (prod(2*k+1)-1); % = 2 * beta * noise^2 * n_of_neighbours 
else 
    sig2 = 2 * sig * sig * (prod(2*k+1)-1); % = 2 * noise^2 * n_of_neighbours 
end 
 
% Zero padding 
size_px = size_x + 2 * k(1); 
size_py = size_y + 2 * k(2); 
size_pz = size_z + 2 * k(3); 
size_pw = size_w + 2 * k(4); 
pimg = zeros(size_px, size_py, size_pz, size_pw); 
pimg((k(1)+1):(k(1)+size_x),(k(2)+1):(k(2)+size_y),(k(3)+1):(k(3)+size_z),(k(4)+1):(k(4)+size_w))=img; 
 
% Building a distance Gaussian filter 
dist_flt = zeros(k(1)*2+1, k(2)*2+1, k(3)*2+1, k(4)*2+1); 
for wx=1:(k(1)*2+1) 
    for wy=1:(k(2)*2+1) 
        for wz=1:(k(3)*2+1) 
            for ww=1:(k(4)*2+1) 
                dst = norm([wx-k(1)-1 wy-k(2)-1 wz-k(3)-1 ww-k(4)-1]); 
                dist_flt(wx,wy,wz,ww)=exp(-dst*dst/dst_sig2); 
            end 
        end 
    end 
end 
dist_flt(k(1)+1,k(2)+1,k(3)+1,k(4)+1)=dist_flt(k(1),k(2)+1,k(3)+1,k(4)+1); % Reduce central weight to avoid over-weighting 
dist_flt = dist_flt / sum(dist_flt(:)); 
 
% pixel external loops 
for w=(k(4)+1):(k(4)+size_w) 
    for z=(k(3)+1):(k(3)+size_z) 
        for y=(k(2)+1):(k(2)+size_y) 
            for x=(k(1)+1):(k(1)+size_x) 
                pix_win = pimg((x-k(1)):(x+k(1)), (y-k(2)):(y+k(2)), (z-k(3)):(z+k(3)), (w-k(4)):(w+k(4))); 
                mean_pix_win = mean(pix_win(:)); 
                win_len = length(pix_win(:)); 
                Zi = 0; 
                Wval_sum = 0; 
                 
                % internal search loops 
                for ww=max(w-win(4),k(4)+1):min(w+win(4),k(4)+size_w) 
                    for zz=max(z-win(3),k(3)+1):min(z+win(3),k(3)+size_z) 
                        for yy=max(y-win(2),k(2)+1):min(y+win(2),k(2)+size_y) 
                            for xx=max(x-win(1),k(1)+1):min(x+win(1),k(1)+size_x) 
                                comp_win = pimg((xx-k(1)):(xx+k(1)), (yy-k(2)):(yy+k(2)), (zz-k(3)):(zz+k(3)), (ww-k(4)):(ww+k(4))); 
                                mean_comp_win = mean(comp_win(:)); 
                                if (mean_comp_win > 0) 
                                    if ww ~= w && ancor ~= 1 
                                         diff_win = comp_win-pix_win; 
                                         diff_mean = sum(abs(diff_win(:)))/win_len; 
                                         if diff_mean > sig || ancor == 0 % Old DNLM 
                                            comp_win_factor = mean_pix_win / mean_comp_win; % original factor 
                                            comp_win = comp_win * comp_win_factor; 
                                         else 
                                             comp_win_factor = 1; 
                                         end 
                                    else 
                                        comp_win_factor = 1; 
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                                    end 
 
                                    diff_win = comp_win-pix_win; 
                                    diff_nrm2 = sum(dist_flt(:).*diff_win(:).*diff_win(:)); % norm2 convolved with a Gaussian 
                                    nb_Wij = exp(-diff_nrm2/sig2); 
 
                                    Zi = Zi + nb_Wij; 
                                    Wval_sum = Wval_sum + (nb_Wij*pimg(xx,yy,zz,ww)*comp_win_factor); 
                                end 
                            end % closing internal search loops 
                        end % closing internal search loops 
                    end % closing internal search loops 
                end % closing internal search loops 
 
                if (Zi > 0) 
                    fimg(x-k(1),y-k(2),z-k(3),w-k(4)) = Wval_sum / Zi; % normalising 
                else 
                    fimg(x-k(1),y-k(2),z-k(3),w-k(4)) = 0; % normalising 
                end 
 
            end % closing pixel external loops 
        end % closing pixel external loops 
    end % closing pixel external loops 
end 
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Appendix D:  

The ACR-BIRADS Lexicon 
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